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ABSTRACT

Ozkan, Erdal (Doctor of Philosophy in Petroleum Engineering)
Performance of Horizontal Wells (290 pp. — Chapter V)
Directed by Dr. Rajagopal Raghavan

(307 WORDS)

This dissertation examines the performance of horizontal wells. The per-
formance of horizontal wells are compared to that of vertically fractured wells
and vertical wells. The performance comparisons are expressed in terms of
pseudoskin factors and effective wellbore radii when the top and the bottom
boundaries of the reservoir are impermeable. Applications of the pressure nor-
malized by the derivative procedure to analyze horizontal well and vertically
fractured well responses are presented. This procedure eliminates some of the
nonuniqueness problems usually encountered in type curve matching the pres-
sure data. It also provides a means to determine the correct semilog straight
line on a semilog plot of pressure data.

Performance of horizontal wells under bottom water drive conditions is also
discussed. Comparison of the basic phenomena underlying the bottom water
drive and the edge water drive mechanisms is presented. Influence of reservoir
boundaries on the well response is investigated. Charts are presented whereby
vertical and horizontal well performances under bottom water drive conditions
can be compared. Results presented here can also be used to determine break-
through times, water free oil recovery, and well spacing.

A new procedure that combines the Laplace transformation and the source
function approach is presented to develop solutions to the transient flow prob-

lem in porous media. An extensive library of solutions for most well-reservoir
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systems of interest is provided. These solutions can be used to obtain pressure
distributions in homogeneous and naturally fractured reservoirs. The solutions
presented are in terms of the Laplace transform variable; they can be used to
incorporate the influence of wellbore storage and skin and to obtain the rate
responses under constant pressure production condition.

Computational issues involved in the numerical evaluation of the Laplace
domain solutions presented here are also addressed. Applications of some of the
solutions are considered to demonstrate the utility of the procedures developed

in this work.
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CHAPTER I

INTRODUCTION

A review of production performance over the past few years conclusively estab-
lishes the advantage of horizontal wells and drainholes!'2. Like vertically fractured
wells, horizontal well completions are intended to provide a larger surface area for
fluid withdrawal and thus improve well productivity. It has been suggested that this
mode of completion should be effective in (i) reservoirs that are thin or reservoirs
with high vertical permeability, (i7) reservoirs wherein gas and/or water coning
problems preclude the efficient operation of vertical wells, and (i1i) reservoirs that
are naturally fractured. The primary purpose of this work is to present information
on the productivity of horizontal wells and enable the engineer to decide whether
horizontal wells are more advantageous than vertical well completions. We exam-
ine two situations of interest: both top ﬁnd bottom boundaries closed and bottom
boundary at a constant pressure. Results for the case where bottom boundary is
at a constant pressure may be used to examine bottom water or gas cap drive.

During the course of the investigation of the performance of horizontal wells, we
used the Green’s functions and the method of sources and sinks approach introduced
to the petroleum literature by Gringarten and Ramey3. Although this approach is
extremely powerful in solving two and three dimensional unsteady flow problems as
in the case of horizontal wells, we encountered difficulties in extending our results
to more complicated yet practical problems such as incorporating the influence of
storage and skin effects and variable rate production. These problems could be
readily solved if the Laplace transform of the solutions provided by Gringarten and

Ramey were available. Even in this case, an important problem, production from
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naturally fractured reservoirs, would still be solved by other means since the source
functions developed by Gringarten and Ramey only consider flow in homogenéous
porous media. Our attempt to overcome the limitations of the approach suggested
by Gringarten and Ramey led us to the result that many problems one encounters
in obtaining the Laplace transforms of pressure distributions in reservoirs (homo-
geneous or naturally fractured) can be resolved if one examines the appropriate
point source solutions. The result of our attempt is a new source function ap-
proach to obtain solutions to a broad range of problems of unsteady single phase
flow in porous media. Thus, in Chapter II, point source solutions are derived in
the Laplace transform domain and an extensive library of solutions is documented
to obtain pressure distributions and well responses for a wide variety of wellbore
configurations: partially penetrating vertical wells, horizontal wells, fractured wells
(complete or partial penetration). The top and bottom boundaries are assumed
to be sealed or at a pressure equal to the initial reservoir pressure. Wells may
be located in infinite or bounded systems (rectangular or circular reservoirs). For
rectangular drainage areas several combinations of closed and/or constant pressure
outer boundary conditions are considered. For circular systems the outer bound-
ary may be closed or at a constant pressure. Solutions given here may be used to
examine homogeneous or naturally fractured reservoirs. Although some solutions
presented in Chapter II do not directly pertain to horizontal well performance, con-
sidering the importance of these solutions, we believe that complete documentation

of these solutions is wothwhile.

The central new result to follow from Chapter II is that our source function
approach permits the analyst to obtain solutions for a wide variety of complex
problems useful in well test analysis. Computational considerations in obtaining well
responses and pressure distributions for several problems discussed in the literature
are also noted in Chapter II. In addition, new asymptotic expressions for pressure
distributions in closed drainage volumes that are applicable during the boundary-
dominated flow period are derived. Interestingly, these expressions are much simpler

than the expressions available in the literature and can be used to derive shape



factors for a variety of completion conditions (vertical wells, horizontal wells, and
vertically fractured wells). Application of constant rate solutions to more complex
conditions, such as wellbore storage and constant pressure production are presented.

As mentioned above, the development of the new source function approach
presented in Chapter II of this work is subsequent to the development of the results
pertaining to the performance of horizontal wells presented in Chapters III and
IV. Therefore, Chapters III and IV use the source function approach suggested by
Gringarten and Ramey to obtain the basic solutions.

The major objective of Chapter III is to present detailed information on hor-
izontal well productivity and to provide new physical insight of the variables that
govern horizontal well performance. To be a viable method of completion for pri-
mary recovery, horizontal well productivity must be comparable to the productivity
of vertically fractured wells. Therefore, in Chapter III, we compare horizontal well
performance to that of vertically fractured wells. Performance comparison with
unstimulated vertical wells is also presented.

The analysis of pressure data in horizontal wells may prove to be an exceed-
ingly difficult problem. First, three dimensional aspects of the problem must be
considered. Second, if horizontal well lengths are long, then conventional semilog
techniques may not be applicable. Thus, in this work new applications of the deriva-
tive procedure examined by Chow* are discussed. Although, the method of Chow
is probably the oldest derivative method, this method was not well-known in the
petroleum industry until recently. It was applied to horizontal wells and also verti-
cally fractured wells in Ref. 5. Three other recent references® 72 have also discussed
the applications of this method. Chow’s procedure should eliminate some of the
nonuniqueness problems often encountered in the analysis of data by type curve
matching. The method can also be extremely useful in identifying semilog straight
lines. New analysis procedures are discussed in Chapter III.

Chapter IV examines the influence of bottom water drive on horizontal well
productivity. Methods to determine circumstances under which this completion

mode would be appropriate are discussed. The distinct flow characteristics of bot-



tom water drive reservoirs are noted. Basic phenomena underlying bottom water
drive and edge water drive mechanisms are examined and differences between the
two systems are documented. Well productivity is examined in terms of displace-
ment efficiencies. Charts are presented whereby vertical well and horizontal well
performances can be compared. Results given in Chapter IV can also be used to

determine breakthrough times, water free oil recovery, and well spacing.



CHAPTER 11

SOME NEW SOLUTIONS TO SOLVE PROBLEMS
IN WELL TEST ANALYSIS

The importance of the transient flow of a slightly compressible fluid is well-
known and many techniques are available for solving the problem of the transient
flow of slightly compressible fluids in porous media. These include transform tech-
niques such as Laplace and Fourier transforms, Green’s functions and the method
of sources and sinks. In 1973, Gringarten and Ramey® considerably expanded our
ability to solve problems of transient flow by exploring the use of source functions
and the Newman product method. Their work provides an extensive library of solu-
tions. Although this work is extremely useful, it is difficult to extend their solutions
to other situations of interest. For example, the utility of these solutions could
be enhanced tremendously if wellbore storage effects could be readily incorporated.
This objective can be achieved if the Laplace transforms of the solutions provided by
Gringarten and Ramey are available. More importantly, the transformed solutions
could also be used for history matching purposes through the use of the Stehfest
algorithm® and it becomes easier to consider variable rate conditions; for example,
constant pressure production. If we consider a specific example, the pressure drop

at the wellbore for an infinite-conductivity or uniform-flux vertical fracture is given

by 10

1—-zp

po(zp,yp =0,tp) = 14—7?/0‘» [erf( N

)+erf

(1+ID)] dT. (2.1)

27 | VF
Obtaining the Laplace transform of the right hand side of Eq. 2.1 is not straight-

forward (for example, see Ref. 11). One of the objectives of this chapter is to
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obtain the Laplace transform of the right hand side of Eq. 2.1 and then incorporate
the existence of storage and skin effects (see Refs. 12 and 13). The procedure we
present here is much more general and can be used for more complex problems such
as vertically fractured wells in naturally fractured reservoirs (see Refs. 14 and 15).
In addition, we extend these solutions to other well systems; for example, horizontal
wells.

In §§2.1 — 2.3, we present a procedure that combines the Laplace transformation
technique and the source function approach to develop solutions to the transient flow
problem in porous media. In order to obtain expressions corresponding to Eq. 2.1
in terms of the Laplace transform variable, our work indicates that it is convenient
to first obtain the pressure distribution due to the continuous point source and then
incorporate the outer boundary conditions by the method of images. The wellbore
conditions (vertical fractures, horizontal wells, partially penetrating wells) can be
subsequently incorporated by the appropriate integration of the source functions.
These solutions can then be used in the manner suggested by van Everdingen and
Hurst!® to incorporate the existence of wellbore storage and skin effects or variable
rate production.

Obtaining solutions in terms of the transform variable represents only the first
step in computing well responses. Computational aspects must also be addressed.
As is well known, the solutions for the well responses in many cases require the com-
putation of integrals involving the modified Bessel function of zero order, Ky (z), for
small values of its argument. Such computations can be exceedingly difficult!5:17,
In other cases, such as the horizontal well problem in an infinite reservoir, compo-
nents of the solution converge extremely slowly (convergence is not obtained even
after several thousand terms in the series are computed). For bounded reservoir
systems, some solutions we present (partially penetrating vertical wells, horizontal
wells) require the computation of “double infinite Fourier series”. Researchers have
reported difficulties in the computation of solutions that involve double infinite se-
ries. These issues are addressed in §§2.5 and 2.6 and methods to overcome these

difficulties are presented. In §2.6, we examine the following problems of interest:



1. A vertically fractured well in an infinite reservqir that is naturally fractured
and produced at a constant rate. This problem examines the computation of
integrals involving the modified Besse! function of zero order, Ko(z), for small
values of its argument. Problems involved in such computations are discussed
in Refs. 15 and 17.
2. Computation of horizontal well responses in homogeneous or naturally frac-
tured reservoirs. The primary issue we deal with involves recasting series which
behave as if they are divergent series over certain time ranges into series that
converge rapidly.
3. Computation of dimensionless pressure distributions for fractured wells in
bounded systems (circles and rectangles). Consideration of this problem pro-
vides us an opportunity to discuss procedures to compute responses for all
times. Thus “patching” of infinite reservoir and bounded reservoir solutions is
avoided.
4. Some of the solutions presented in §§2.1 — 2.3 involve the computation of dou-
ble infinite Fourier series and these computations can be exceedingly difficult.
These computational problems are addressed by examining horizontal well per-
formance in a closed rectangular drainage region. This discussion should also
enable the reader to obtain solutions for other boundary conditions.
Obtaining solutions in terms of the Laplace variable has other advantages. It
is possible to obtain approximate solutions for long and short times rather easily if
solutions are available in terms of the Laplace variable. In §2.7, we derive asymp-
totic approximations for some of the problems noted above and use the long time
asymptotic expansions to compute shape factors for wells producing in bounded
systems. These shape factors can be used to compute inflow relationships for a
wide variety of conditions.

As mentioned earlier, the principal advantage of the solutions given in §§2.1 -
2.3, is that they permit us to solve more complex problems, particularly variable
rate problems. In §2.8, we demonstrate this aspect by considering two variable rate

problems of interest for vertically fractured and horizontal wells: (i) the influence



of wellbore storage and skin and (11} constant pressure production.

In summary, our objectives in this chapter are: (i) to present a suite of solu-
tions similar to that considered in Ref. 3 in terms of the Laplace transform variable
(¥i) to document procedures to overcome some of the practical problems in com-
puting well responses for constant rate production, and (1s5) to present applications
of some of the solutions developed here in order to demonstrate the utility of these
solutions. The solutions we present are applicable to the naturally fractured reser-

t18 or Kazemi!® and deSwaan-02°. Solutions

voir idealization of Warren and Roo
in infinite and bounded reservoirs are considered. For rectangular drainage areas,
the well may be located at any point within the reservoir with any combination
of outer boundary conditions (closed or constant pressure). Solutions for circular

reservoirs are also presented.

2.1 Point Source Solution in Laplace Space

We consider the problem of production from an infinite, naturally fractured
reservoir. We assume that the behavior of a naturally fractured reservoir (or dou-
ble porosity medium?!) can be represented by the model suggested by Warren and
Root®. This representation assumes that the reservoir system consists of two sep-
arate media - the matrix system and the fracture system. The matrix system is
assumed to be a medium of high storativity and low permeability. It is also assumed
that production is only by virtue of the fracture system; that is, the wellbore has
no direct connection with the matrix system.

The equation governing the flow of a slightly compressible fluid in the fracture
system is obtained by using the law of conservation of mass and Darcy’s law and is

given by

I ot

Here the subscript f is used to denote the fracture system, Ap; is the pressure

k A .
v. (—’{- vAp_f) = (Voer), =2 4 g%, (2.1.1)

drop from the initial pressure which is assumed uniform throughout the system, u

is viscosity of the fluid, (V @c; ) is the storativity of the fracture system, and ¢* is the



volumetric flow rate from the matrix system to the fracture system. k ¢ in Eq. 2.1.1
represents the permeability tensor for the fracture system with nonzero elements
only on the diagonal (that is, we assume that the principal axes of permeability
coincide with the coordinate axes of Eq. 2.1.1).

Ignoring flow within the matrix system, the equivalent form of Eq. 2.1.1 for
the matrix system is given by

aApm

= (Vécm—3~

(2.1.2)

In Eq. 2.1.2, the subscript m refers to the matrix system.

Flow from the matrix system to the fracture system is proportional to the
difference between the pressures of the two systems. If we assume pseudosteady flow
from the matrix system to the fracture system (Warren and Root idealization!8),
then we can also write

. kyn
g = ——a-;—;—(Apm - Apf), (2.1.3)

where « is the interporosity shape factor'® and k,, is the permeability of the matrix
system.

Combining Egs. 2.1.1, 2.1.2, and 2.1.3, the following equations are obtained.

0Ap; AP,
V.(k; v Aps) = (‘W’%)H‘T + (Véer)mu ap (2.1.4)
dAp,,
km(Apm - Ap.f) - -(V¢ct)mﬂ alt) (2.1.5)
If we define a dimensionless distance zp; by
_Zi R
zDJ - L kfj’ (2.16)

then the dimensionless operator bigtriangledown?, is defined by

vh = Z axD, (2.1.7)



In Eq. 2.1.6, L is some reference length in the system, ky; is the principal permeabil-
ity of the fracture system in 5 direction, and k; is an arbitrary constant that may be

chosen to be the permeability of an equivalent isotropic system (k = ¢/ H?: Lkri).

Defining also the dimensionless time, tp, by

nt
tp = Iz (2.1.8)

where

_ ks
T [Véer)s + (Véer)ml’

and the dimensionless storativity, w, and the dimensionless transfer coefficient, A,

(2.1.9)

respectively by

_ (Ve)s
w= Voe)s - (Ve (2.1.10)

and

km
A=a-—L3 (2.1.11)
kg

Egs. 2.1.4 and 2.1.5 can be written as

0Ap Apn,
Vb(8ps) =w ath + (- w) 5, (2.1.12)
A(Apm — Apy) = —(1 — w) 92pm. (2.1.13)

Otp
We will assume that the fluid flow in the reservoir results from an instantaneous
pressure drop created at ¢ = O at the origin of the coordinate system. In our
terminology, a point at which an instantaneous pressure drop is created due to
instantaneous removal of fluids from this point is called an instantaneous point
source. Since we consider an infinite reservoir with only one point source located

at the origin, Ap should only depend on the radial coordinate rp, where

(2.1.14)

10



Therefore, using the appropriate spherical form of the operator 7%, we can write

Eq. 2.1.12 as

1 9 ( 2 3APf> =Wl w)aA”"‘. (2.1.15)

72 orp \ P orp dtp dtp

We assume that at t = 0, a finite volume of fluid, g, is removed from the reser-

voir at the source location instantaneously. We must require that the cumulative
flux through the surface of a small sphere about the source must equal the volume

of fluid removed from the source, §:

t lim 47ka 2 aApf ~
/0 [e-—>0+ p L<TD—6—E;>,D=( #=q (2:1.16)

It should be realized that although the removal of fluids from the source occurs

instantaneously, resulting flow in the system and therefore the flux through the
surface of the spherical region about the source is a continuous action in time. In
other words, if we let ¢ represent the withdrawal rate resulting from the distribution
of the instantaneous fluid removal g over the time period between 0 and ¢, then mass
balance for the system requires that the cumulative production from the system at

time t be equal to the amount of fluid instantaneously withdrawn from the source:

§= /th(t)dt (2.1.17)

Using the property of the symbolic §(t) function

b . . . .
/‘ 5(t)dt = { 1 if a,b] contains the ongm} (2.1.18)

0 otherwise

we can replace ¢(t) in Eq. 2.1.17 by ¢6(t) and hence write Eq. 2.1.16 in terms of

instantaneous fluid removal as

lim 47l'kf 2 8Apf ~
- = —qb(t). 1.
€e—0+ p L (rD 0D /) p=c () (2.1.19)

If we now take the Laplace transform of Egs. 2.1.15 and 2.1.13 with respect to tp,

we obtain respectively

—-— = wsA 1~ A 1.
2 drp (’D o ) = wshpr+ (1-w)sBpn (2.1.20)
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and

Ap,, = Ap; (2.1.21)

A
A+(1-w)s
where Ap denotes the Laplace transform of Ap and s is the Laplace transform

variable. Substituting the right hand side of Eq. 2.1.21 into 2.1.20 for Ap,,, we can

write

= drp (fo - sf(s)Ap; =0, (2.1.22)

where we define

_sw(l—w)+ A

,f(s) = Sl w) i (2.1.23)

Also noting that
/00 exp(—-stD)6(t)dtD = _1_7_ had exp(—s—n—t)a(t)dt — _I’___ (2.1.24)

0 L2 J, L2 12’

we can obtain the Laplace transform of Eq. 2.1.19 as

) _ ks
b er rp=¢ [(V¢ct)f + (V¢Q)m]#L2 )

We define the strength of the source by g/[(Vée:); + (Vée:)] and, for simplicity,

(2.1.25)

we assume that the strength of the source is unity. Then setting

~

q

=1, 2.1.26
(Véer)r + (Véee)m ( )
we can write Eq. 2.1.25 as
i dA
b (rf,——’l> = -1 (2.1.27)
e—0 drp /. -
If we now substitute
g =rpApy (2.1.28)
into Eq. 2.1.22, we obtain
d?
E—é’- — sf(s)g=0. (2.1.29)
D

The general solution of Eq. 2.1.29 is given by

g= Aexp [—\/;f(—s-)-rp] + Bexp [\/mfp] . (2.1.30)

12



Therefore, from Eqgs. 2.1.28 and 2.1.30, we have

Aexp [—\r/sfisirp] 4 Bexp [\/sfisirp]
D

Apy = -

(2.1.31)

By the requirement that Ap; vanish at infinity, we must have B = 0 in Eq. 2.1.31.
From the condition given by Eq. 2.1.27, we find

1
A= (2.1.32)
Then Apy is given by
Aps = —2 [=vETT)ro]. (2.1.33)

dnL3rp
A_pf given by Eq. 2.1.33 is the Laplace space solution of the pressure distribution
due to a unit strength instantaneous point source located at the origin. The pressure
distribution due to a point source at some arbitrary location Zyp,YwpD,2wp IS

obtained from Eq. 2.1.33 by translation. If we use the notation

Rp = v/(zp — 2wp)? + (¥ — %uD)? + (20 — 2uD)?, (2.1.34)

then the pressure distribution due to a unit strength snstantaneous point source is

given by

Ao = exp [—\/sﬂsiRD]

P = T 4 PRp
If the strength of the source is different from unity, then Eq. 2.1.35 becomes

vl 7 {exp{-,/—(‘ysf s RD]}.

(Véer)y + (Vder)m 47 L3Rp

(2.1.35)

(2.1.36)

Although the instantaneous point source solution is useful to develop solutions
for the analysis of slug test problems (see for example Ref. 22), in general well
testing applications we assume that the pressure distribution in the reservoir is
a result of the continuous withdrawal of fluid at a rate g(t) from time 0 to .
The continuous point source solution can be obtained by applying the principle of
superposition to the instantaneous sources distributed over the time interval from

0 to t. If we define
exp [—-\/sHszp]

§= 47 L3 Rp ’

(2.1.37)
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then the real inversion of Eq. 2.1.36 yields

_ gS{tp)
AP1 = Wga)s + (Véam”

If we consider continuous withdrawal of fluid from the point source located at z,p,

(2.1.38)

YwD, 2wD, then by the principle of superposition, we can write

1 t LZ” tp
Ap; = /“’r.S't —7)dr = — d(rp)S(tp — rp)drp.
PI= Waeds + (Voaim Jo g(r)S(tp — ) A 4(rp)S(tp — 7p)drp
(2.1.39)
The Laplace transform of Eq. 2.1.39 gives
— Gu &P ["\/‘7\/(-’51) —zwp)? + (yp — ywp)? + (2D — 2wD)2]
Ap = , (2.1.40)

- 4mkL V/(zp —zwp)? + (yp — ¥wD)? + (2D — 2uD)?
where we have dropped the subscript f (since we only solve for the pressure drop

in the fracture system) and defined
u = sf(s). (2.1.41)

Eq. 2.1.40 is the Laplace space solution for the pressure distribution due to a
continuous point source located at zup,YwD,2wp- If we set f(s) to be unity and
modify the definition of tp, then Eq. 2.1.40 also represents the pressure distribution
in a homogeneous reservoir. In fact, with these modifications, Eq. 2.1.40 is the

23, Eq. 2.1.40 may also

Laplace transform of Lord Kelvin’s point source solution
be extended to the naturally fractured reservoir model suggested by Kazemi!® and

deSwaan-02° by replacing the function f(s) given by Eq. 2.1.23 by

[ Aw! 3w’'s
f(s)=1+ Y tanh ( Y ) . (2.1.42)

The definitions of A’ and w’ are given by2*

w = (9eth)m (2.1.43)

(¢ecth)s

and )
. 12L (kh)m
A= ), (2.1.44)
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In Eqgs. 2.1.43 and 2.1.44, h,,, and hj are the thickness of the individual matrix and
fracture elements, respectively. The definition of the dimensionless time for this
model is given by?2* Ly
t
tp = W (2.1.45)
Thus far, we have used the classical mathematical formulation of the problem
under consideration. In fact, this formulation is equivalent to finding the Green’s
function of the problem and Eq. 2.1.35 represents the Laplace transform of the
Green’s function for our problem. The Green’s function approach has been used to
solve the same problem considered here by Refs. 25 and 26. The procedure used
in this work is considerably simpler than the Green’s function procedure taken by
Refs. 25 and 26, and its systematic application enables us to generate closed form

solutions in Laplace space for a variety of well (source) types in naturally fractured

reservoirs.

If we define

G (2p — TwD,YD ~ YuD>2D — 2wD) = =, (2.1.46)

Ap
q
then by the application of the principle of superposition, pressure distribution cor-

responding to the withdrawal of fluid from a line, a surface, or a volume, S, is

obtained by

Ap = / §(zwD>YwD>2wD) G (ZD — TwD,YD — YuwD,2D — Zwp)dS,  (2.1.47)
s

where dS denotes the differential element of the line, surface, or volume. Unless
specified otherwise, in the following development of the results, we will assume that
the source distribution in time and over the path of integration in Eq. 2.1.47 is

uniform and therefore we will use Eq. 2.1.47 in the following form:

~

Ap= %/ G (2D — TwDs YD — YuDs 2D — 2wp) dS. (2.1.48)
S

Fundamentally, Eq. 2.1.48 will represent the pressure distribution for a uniform-flux

well producing at a constant rate. Pressure distributions due to production from
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an infinite-conductivity well can be closely approximated by using the uniform-flux
well solution. The procedure to obtain infinite-conductivity source solutions by
using the solutions for uniform-flux sources has been extensively discussed in the
literature (see for example Refs. 3 and 10) and will not be discussed here. In the
following sections of this chapter, we will use Eq. 2.1.40 with 3 replaced with q/s.
We will also establish the convention that g represents the constant withdrawal rate
from a continuous point source and g represents the constant withdrawal rate from
a line, point, or volumetric source. The relation between the constant production
rate from the continuous point source, ¢, and the constant production rate from the
uniform-flux line, surface, or volumetric source, g, will be given by § = ¢/S, where

S is the length, area, or the volume of the source.

2.2 Solutions Useful in Well Test Analysis

We will first consider solutions for wells in reservoirs that extend to infinity
laterally. We examine a wide variety of wellbore conditions (partially penetrating
vertical wells, partially penetrating vertical fractures, and horizontal wells). We
then extend these solutions to wells located at the center of circular reservoirs.
Finally, we obtain solutions for wells located in rectangular drainage regions and

consider several combinations of boundary conditions.

1. Solutions for Laterally Infinite Reservoirs In the previous section, we ob-
tained the point source solution in an infinite reservoir. Since the actual reservoirs
have a finite thickness, here we will derive the point source solution in a laterally
infinite reservoir of thickness h. The bounding planes at z = 0 and h may be both
impermeable, or both at constant pressure equal to the initial pressure, or the plane
at z = 0 may be assumed to be impermeable while the plane at z = h is at constant

pressure equal to the initial pressure.

We will first consider the case where the boundaries at z = 0 and h are both

impermeable. The point source solution in such a system can be obtained by ap-
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plying the method of images to the point source solution given by Eq. 2.1.40. This
procedure yields

x5 G +Z°° exp [—\/E\/r% + (zp — 2wD — 2nhD)2]
4nkLs V%4 + (20 — zwp — 2nhp)?

n=-—0oo

+exp [—\/E\/r% + (2p + zuwp — 2nhD)2] }

Ve + (2D + 2wp — 2nhp)? (2:2.1)
In Eq. 2.2.1, we defined
b = (zp — Zwp)? + (¥0 — ¥wD)?, (2.2.2)
and
hp = % :—z (2.2.3)

Eq. 2.2.1 can be cast into a more suitable form for computational purposes by
using a formula derived from Poisson’s summation formula given by23

+Z°° exp [“(6_42:&)2] — [1 +223XP ( n’n T) cosmré] . (2.2.4)

n=-—0co

Multiplying both sides of Eq. 2.2.4 by exp|—a?/(47)]/y/773and then taking the

Laplace transform of the resulting expression with respect to 7, the following sum-

mation formula is obtained:

+o0 exp [—\/-'\/a2 + (€ - 2n€e)2] 1
nzz_:w VvaZ+(€- 2n£e) fe [KO( \/—)

+ 2§=:1K0 (q /V—i— nzgz) cos nwé}

If we use the summation formula given by Eq. 2.2.5, then the pressure distri-

(2.2.5)

bution for a continuous point source located at z,,p,Ywp, 2wp in a laterally infinite
reservoir bounded by two impermeable planes at z = 0 and k given by Eq. 2.2.1

can be written as

Ap= 27rkLh s [Ko (rD\/_)

n2x2
+2ZK0 (rn u+ h;r )cosmr-’;% cosmr—z}%]

n=1

(2.2.6)
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Similarly, if the horizontal boundaries at z = 0 and A are at constant pressure,

then the continuous point source solution corresponding to this case is given by

—— qu
Ap=—2£_
P= 4rkLs Z V15 + (2D — zwp — 2nhp)?

n==-00
exp [-—\/E\/% + (2p + 2up — 2nhD)2}
/"2 + (20 + zup - 2nkp)? ’

+oo {exp [—\/t_L\/rzn +(2p — 2wp — 2nhD)2]

(2.2.7)

which, by means of Eq. 2.2.5, can be transformed to

—_  qu s / n2x2 Zw
Ap = mp——s LE::I Ko (rp u+ ——’-%—) sin nwE sin an—D—-] (2.2.8)

Finally, if the boundary at z = 0 is impermeable while the boundary at z = &
is at constant pressure, then the solution for a continuous point source is given by

the following expression:

o +o0 . [exp [—\/ﬁ\/r% + (2p — 2up — 2nhD)2]
(_- \/r% + (ZD — ZwD — 2nhD)2
exp [—\/E\/rzp + (2p + 2wp — 2nhp)2] }

V"% + (2D + 2up — 2nhp)Z

=00

(2.2.9)

+

If we note that
+oco

S (1) exn [—“"’D ] ] -

k=-o00

+Z'° {Zexp [_a(:L'D —42:2%D)2] —exp [_a(:cp -;zkxen)z] }’ (2.2.10)

k=—oc0

then with the aid of the summation formula given by Eq. 2.2.5, we can recast Eq.

2.2.9 in the following form:

{ZKO [rp\/u+ _(gﬁih_;p)z-ﬁJ cos(2n — )—-—D—cos(zn_l);l'z’:,;}
(2.2.11)
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Eqgs. 2.2.6, 2.2.8, and 2.2.11 can now be used with Egs. 2.1.46 and 2.1.48
to generate solutions for a variety of well-reservoir systems. For example, if the
boundaries at 2 = 0 and h are impermeable, then the solution for a vertical line
source well of length h, can be obtained by integrating the right hand side of Eq.
2.2.6 from 2,, — hy /2 to 2z, + hy /2 with respect to z],. This solution corresponds
to a partially penetrating vertical well with the penetrated interval equal to h,,.
If hy, = h, then this procedure yields the solution for a fully penetrating vertical
line source well. Similarly, the solution for a horizontal line source well of length
Ly, results from the integration of the right hand side of Eq. 2.2.6 from z,, — L /2
to z, + Lin/2 with respect to z.,. Solution for a plane vertical fracture of height
hy and length 2L, is obtained by integrating Eq. 2.2.6 once from z, — hy /2 to
Zy + hy /2 with respect to 2], and then from z, — L, /2 to z, + Ly /2 with respect
to z{,. Again, as in the line source well case, using k,, = h the solution for a fully
penetrating fracture is obtained. All such solutions can now be obtained directly
in terms of the Laplace variable. To our knowledge, this approach for obtaining

solutions in terms of the Laplace variable is new.

Solutions for a variety of well types in laterally infinite reservoirs are presented
in Table 1 of Appendix A. For each type of well, the relations between the production
rate from the well, ¢, and the production rate from the point source, ¢, are also
noted. In case of partially penetrating vertical wells and fractures, h,, is used to
denote the length of the open interval in the vertical plane. The horizontal length
of a vertical fracture is denoted by 2L,, and the length of a horizontal line source
well is denoted by L,. Solutions presented in Table 1 — A correspond to the case
where the boundaries at z = 0 and h are impermeable. Table 1 — B presents the
solutions for the case where the boundaries at z = 0 are at constant pressure and
Table 1 — C presents the solutions for the case where the boundary at z = 0 is
impermeable and the boundary at 2 = h is at constant pressure. Note that using

= s [f(s) = 1] in the solutions given in Table 1 of Appendix A, we obtain the
solutions for homogeneous reservoirs. In this case the Laplace inversion of the

solutions presented in Table 1 of Appendix A can be easily found in standard tables
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of Laplace transforms (see for example the one given by Ref. 27). For convenience,
Table 1-—- A which pertains to solutions for a system with top and bottom boundaries
sealed is reproduced in Table 2.2.1.

Some of the solutions presented in Table 1 of Appendix A can be found in the
literature; however, the procedure used here to obtain these solutions is considerably
simpler than the ones used in the literature. The solution for a fully penetrating
vertical well given in Table 1 — A is a standard result and is presented for complete-
ness. The fully penetrating vertical fracture solution presented in Table 1 — A has
been reported by Ref. 15. Another solution which is different in form but identical
to that given in Table 1 — A for fully penetrating vertical fractures in homogeneous
reservoirs has recently been reported in Ref. 28. A real time solution for partially
penetrating vertical wells has been obtained in Ref. 25 by using the Green’s func-
tions and the Newman’s product solution procedure. The Laplace transform of the
partially penetrating vertical well solution (the case corresponding to u = s in Table
1— A) has been obtained directly from the real time domain solution by Kuchuk and
Kirwan?®. To the best of our knowledge, other solutions in Table 1 of Appendix A
have not been reported in the literature and the procedure used here to obtain the
solutions is new. Solutions for horizontal wells in homogeneous reservoirs presented
in Tables 1 — A and 1 — C are used for evaluating pseudoskin factors in Chapter III
and studying well productivity under bottom water drive in Chapter IV. Note that
our procedure not only yields the wellbore responses but also yields the pressure
distribution.

Numerical evaluation of the integrals appearing in some of the solutions pre-
sented in Table 1 of Appendix A will pose difficulties as yp — y,,p (see for example
Ref. 15). In §2.5, we present alternative forms of these integrals to be used in
numerical computations. To our knowledge, these alternative forms are not dis-
cussed in the literature. The results are extremely important in that they render
the approach presented extremely attractive for computational purposes. Not hav-
ing these alternative forms has been one of the main obstacles in obtain‘ing solutions

even when the Laplace transform solution is available.
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TADLE 2.2.1

SOLUTIONS FOR WELLS IN INFINITE RESERVOIRS
IMPERMEABLE BOUNDARIES AT zp =0 AND 25 = hp

WELL TYPE

PRESSURE DISTRIBUTION IN LAPLACE SPACE, &p

POINT SOURCE

n2g2
211’_’(247:—; [Ko (YD\/- +2ZK0 (TD +'71:‘>

n=]
q=‘q~ COS"J\'i cosn‘rrz—w
h h
FULLY
PENETRATING
Guh T Ko (rov/a
VERTICAL WELL Trehgs o (ro V)
g=7gh
PARTIALLY Guhy 25uh = |1 n2z?2
PENETRATING 2ok Ihgs 1o oV + h T "2; R\ ey et g
VERTICAL WELL hy 2y z
g= a,h sin nTE}—l cos Ny —— h cos nr;
FULLY
PENETRATING
Guh tLe /L 1
VERTICAL FRACTURE | 2= | . Ko [ﬁ\/(zp - zup ~ avk/k;)? + (yp - wa)zJ da
g=2GhL,, !
Guh, +L.,/L / ; 2.
PARTIALLY 2rkhps /,_ L Ko [ VeV (a0 = 2up ~aVk/k:)* + (so ~ yuo)? | o
PENETRATING . _2Guh Z 1 N z
VERTICAL FRACTURE T ¥ikhps 4 ””" p oS cosny
g= 2Ethx +L'//L 27|'2 ]
! /L s Ko n \/(Ip zwp—a\/k/k ) +(yp—ywp)2 da
- 2y o
~ +Laf{2L)
gu _ _ /T \2 _
HORIZONTAL 2thD$ {./...LA/(zL) KO [ﬁJ(zD IwD a k/k-l) + (yD wa)Q] da
WELL &, 2 o
g=§ln +2 z: cosnmo cosnm==

n=1

Laf(aL) niy
f+ Ko[ wt 2\/("’D"3-«1>-°l\/’°/" )7+(VD—wa)J }

-Laf(2L}
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I1. Solutions for Bounded Reservoirs - Cylindrical Coordinates As in the

case of laterally infinite reservoirs considered above, we first generate the solution for
a point source well. The equation that describes the flow in cylindrical coordinate
system is given in Laplace space by

1 9 8Ap 8%Ap —_—
——— - =0 2.
- (rD Brp) + 62% ulp , (2.2.12)

where rp = \/:::D§ + yf, and zp, yp, and zp are defined by Eq. 2.1.6. The solution
of Eq. 2.2.12 is required to satisfy the following flux condition at the source location
(rp — 0+,zp = z4p+):

) . kL [?*wptep/2  5AL qg
lim ( lim 27 / i szwD) -_9 (2.2.13)
€p =20 \rp =0 pep J, p-cp/2 9rp S

The structure of Eq. 2.2.13 deserves comment. In writing Eq. 2.2.13, we visualize
a point source as a line source of length ¢ as the length of the source vanishes.
Before proceeding to the limit as ep — 0, the left hand side of Eq. 2.2.13 yields
the average value of flux along the line source. Therefore, as the length of the
line source vanishes (ep — 0), the left hand side of Eq. 2.2.13 represents the flux
around a point source located at rp = 0 and 2p = 24 p. (It should be realized that
if Eq. 2.2.13 is to represent the flux condition for a point sburce, the order of the
limits as rp — O and as ¢ — 0 must be interchangable; proof of this, however, is
outside the scope of our discussion). Note also that the right hand side of Eq. 2.2.13
assumes continuous withdrawal of fluid at a constant rate q. If we wish to consider
an instantaneous point source, then the right hand side of Eq. 2.2.13 is written by a

similar procedure as discussed in §2.1 (see Eq. 2.1.25) and the appropriate equation

is given by
lim ( lim 2wkl [*ePte2/2  GAp ) k;
rp——dzyp | = — .
€Ep — 4] rp — 0 HED z.,p—ep/2 6rD [(V¢Ct)f + (V¢Cg)m]ML2
(2.2.14)

We will assume that the reservoir is bounded by a cylindrical surface located
at rp = r.p (it should be realized that a cylindrical reservoir in transformed coor-

dinate, rp, would correspond to a cylindrical reservoir in real coordinate, r, only if
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kz = k). The bounding surface at rp = r.p will be assumed either impermeable or
at a constant pressure equal to the initial pressure. The bounding planes at zp = 0
and hp may be both impermeable, at constant pressure, or the plane at zp = 0
may be impermeable while the plane at z2p = hp is at constant pressure.

We seek a solution of Eq. 2.2.12 in the following form:
Ap=P+R. (2.2.15)

In Eq. 2.2.15, P is a solution of Eq. 2.2.12 satisfying the condition given by Eq.
2.2.13 and the boundary conditions at zp = 0 and hp. It should be clear that P can
be chosen as one of the solutions given by Egs. 2.2.6, 2.2.8, or 2.2.11, depending on
the boundary conditions at 2p = 0 and hp (if one considers an instantaneous point
source, then the equivalent forms of Eqgs. 2.2.6, 2.2.8, or 2.2.11 for an instantaneous
point source should be used). R in Eq. 2.2.15 is also a solution of Eq. 2.2.12
satisfying the boundary conditions at zp = 0 and hp and chosen such that P+ R
satisfies the boundary condition at rp = r.p and the flux condition given by Eq.
2.2.13 (since we have already required that P satisfy the flux condition, this means
that the contribution of R to the flux as rp — 0 should vanish). A similar procedure
is used by Muskat>? to generate solutions for vertical line source wells in cylindrical
reservoirs under steady flow assumption.

Let us first consider the case where the boundary conditions at zp = 0 and hp

and at rp = r.p are given, respectively, by
dAp

-é—‘z-;—[z‘,:o,hp =0, (2.2.16)
and _

aA

aer lro=rep = 0. (2.2.17)

In accordance with the boundary condition given by Eq. 2.2.16, we choose P as
the solution given by the right hand side of Eq. 2.2.6. It can be shown that one
of the solutions of Eq. 2.2.12 satisfying the condition given by Eq. 2.2.16 and not

contributing to the flux as rp — 0 is the following expression:

©0 2.2 o
R = ALy(rpvu) + E B, Ip (rp1 [u+ nh21r ) cos nw% cos nrf;;"— (2.2.18)
n=1 D
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If the coefficients A and B,, in Eq. 2.2.18 are chosen as

qu Ky (rep \/E)

A= g T, (2.2.19)
and
gu_ (reD vt n_z’ﬂ)
B, = (2.2.20)

= nkLhps I, ( \/-Tﬂh:;) )

then P + R satisfies the boundary condition at rp = r.p given by Eq. 2.2.17 and
therefore the continuous point source solution for the system considered can be

written from Eq. 2.2.15 as

Z; ~ { Ko (TD ‘/—) (rD \/E) Kl (reD \/;;)

zkah I (rep/u)
z Zw
+ 2 E cos nﬂ'z cos n7r—h—
n=1
272 (TD u+”—:5’ﬁ)K1( eD u+"—;¥3)
Ko | rpyju+ h2 = 3.3 -
D I (rw ut B

(2.2.21)
If, in the above system, we replace the boundary condition given by Eq. 2.2.17
by

Aplrp=r.p =0, (2.2.22)

then the function P would still be given by the right hand side of Eq. 2.2.6 but the

function R would have to be chosen as

B __ Gk Io (rpy/u) Ko (rep /1)
27rkLhDs Io (Tep\/;

+22cosn1r (fD'u+—,;f-)Ko( “—,:::3) }

— COS mr——

n=1 h IO (reD u+ %2:3)

(2.2.23)
Therefore, the solution satisfying the boundary condition given by Eq. 2.2.22 would

24



be
—_ _ §u _ To(rpv/u) Ko (repv/y)
Ap = 2rkLhps {Ko (TD \/J) Ip (rep\/u)
= z 2y
+ 2 Z cos mr;l- cos anL—

n=1

( nzwz)_Io(rD u+%‘:—z)Ko(rcp‘/u+'ﬂ—;£—i) }

2 2q3
h Io (repfu+ 228
D

(2.2.24)
In general, after choosing the P function as one of the solutions given by Eqs. 2.2.6,
2.2.8, or 2.2.11, appropriate for the boundary conditions at zp = 0 and hkp, the
R function can be obtained by replacing the K, (rp+/a) terms in the P function
by Io (rpva) K1 (repv/a) / I1 (rep+/a) if the boundary condition at rp = r.p is
given by Eq. 2.2.17 and by —I (rpv/a) Ko (repva) / Io (rep+/a) if the boundary
condition at rp = r.p is given by Eq. 2.2.22.

Continuous point source solutions for different combinations of boundary con-
ditions at zp = 0 and hp are given in Table 2 — A of Appendix A. Solutions for
line, surface, and volumetric sources can now be obtained by replacing Ap in Eq.
2.1.46 (note that we assume § = §/s) with the point source solutions derived in
this section and then using Eq. 2.1.48. Obtaining the solutions for line source
wells and vertically fractured wells by using Eq. 2.1.48 follows the same lines as
that explained in §2.2 II and will not be repeated here. Solutions for line source
wells and vertically fractured wells obtained from the point source solutions given
in Table 2 — A of Appendix A by using Eq. 2.1.48 are given in Tables 2 — B -
2 — E of Appendix A. All the solutions given in Table 2 of Appendix A assume
that the flux distribution on the surface of the source and also in time is uniform.
The relation between the production rate from the appropriate source, g, and the
production rate from a point source, g, is also noted in Table 2 for each source type
considered. We use h,, to denote the length of the open interval of the pay in case
of limited entry wells, L,, to denote the half-length of a vertical fracture, and L,

to denote the length of horizontal line source wells. To the best of our knowledge,
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all;solutions, except the solutions for vertical line source wells, given in Table 2 of
A;;pendix A are new. The solution for a partially penetrating vertical well in a
double porosity medium is presented in Ref. 31 for finite wellbore radius, r,,.
Finally some care should be taken in applying solutions in Table 2 of Appendix
A.If k; = k,, then the solutions given here correspond to a well located in a circular
reservoir. If k, # k, then the solutions given here will be applicable for wells at the

center of reservoirs with elliptical outer boundaries.

II1. Solutions for Bounded Reservoirs - Rectangular Reservoirs In this

section, we derive the solutions for point source wells in rectangular reservoirs.
Again we consider three combinations of boundary conditions for the top and the
bottom of the reservoir. We consider all possible combinations of impermeable
and constant pressure conditions along the bounding surfaces of the rectangular
drainage region.

When the reservoir boundaries consist of planar surfaces, the method of images
can be used to obtain the solutions in bounded systems by using the solution in
an infinite system. It should be realized that two or three dimensional bounded
system solutions cannot be obtained by using the appropriate one dimensional sys-
tem solution as in Ref. 3 since Newman’s product method is not applicable in
Laplace domain®®. Therefore, for each combination of boundary conditions, solu-
tions must be obtained separately. This, of course, requires deriving more basic
solutions (namely, point source solutions) than those required in real time domain
(see Ref. 3); however, once the point source solutions are obtained for all com-
binations of boundary conditions, solutions for different source geometries can be
simply obtained by using Eq. 2.1.48 (only integration of trigonometric functions
is required). Note that, for homogeneous reservoirs, one may obtain the desired
solution in real time domain by using the source functions given in Ref. 3 and then
take the Laplace transform of the resulting solution. In this case, however, the
procedure of taking the Laplace transform and evaluating some of the known series

should be performed for every source-reservoir system considered (for example, see
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Ref. 32).

Although obtaining the point source solutions in rectangular reservoirs by using
the method of images is fairly easy, recasting the resulting expressions in a more
managable form for computational purposes is not straightforward. Evaluation
of triple infinite Fourier series in z, y and z directions is required; however, the
triple infinite summations can be readily reduced by the procedure outlined in
Appendix B. For two dimensional problems, these triple summations reduce to the
computation of single summations, and for three dimensional problems, a double
infinite series must be computed.

In order to briefly demonstrate the procedure used to generate the solutions
given in this section, we consider an example case wherein all reservoir boundaries

are impermeable. For convenience, we define

exp ["‘ﬁ\/(ip.’ —2kz.p)? + (Ip; — 2myep)? + (2p1 — 2nhD)2]

Lid = = = =
’ \/(ID; - 2k.’l:eD)2 + (yDj - 2myep)2 -+ (ZDI - 2nhD)2
(2.2.25)
for 1, 7,1 =1 or 2, where
Ip1 = Ip — TuD; (2.2.26)
Ip2 = Zp + ZuwD, (2.2.27)
YD1 = YD — YuD; (2.2.28)
Yp2 = YD + YuD, (2.2.29)
Epl = ZD — 2wD, (2.2.30)
and
Zpas = 2p + 2uwp, (2.2.31)

Physically, S; ;i represents the contribution of each individual well in an infinite
array of wells used to generate the influence of boundaries to the pressure distribu-

tion in the reservoir. By using Egs. 2.1.40 and 2.2.25 and the method of images,
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the point source solution in a reservoir as described above can be written as

+oco -+ 00 +co
Ap= S S211+ S1,21+ S
p= 47rkLs Z Z E (St11+ 82,11 + S1,21 + S2.21 (2.2.32)

k=—00 m=—00 n=-=00

+S1,1,2+ S2,1,2 + S1,2,2 + S2,2,2)-

(Note that in writing Eq. 2.2.32, we have assumed a uniform continuous source in
time.) Using the triple summation formula given by Eq. B — 6 in Appendix B for
each triple summation in Eq. 2.2.32 and simplifying, we obtain the first solution

given in Table 3 — A of Appendix A:

yv {chﬁ (¥ep — [¥D — Yup|) + ch/E[ven — (YD + Yuwp)]

\/&' Shﬁ YeD

ZeD

o0
+2 Z cosk D
k=1 ZeD

chvu + a(yep — [yp — Yuwp|) + chvu + aly.p — (vp + Yuwp)]
Vu + ashv/u + ayep

2ZywD
+2 E cosmr— COS N ——

n=1 hD
chv/u +b(yep — [yp — Yuwp|) + chVu + blyep — (yp + yuwp)]
Vu + bshv/u + by.p
ZeD
chv/u + ¢ (yep — lyp — yup|) + chvVu +¢[yep — (yp + wa)]] (2.2.33)
Vu + cshy/u + ¢yep ’ -

where a = k272 /22, b= n?x2/h%, and ¢ = n?n? /hE +k?x?[z2},. ch(z) and sh(z)
are used to denote the hyperbolic cosine and hyperbolic sine functions, respectively.

The procedure outlined above can be used to obtain the point source solutions
for different combinations of boundary conditions. Triple summation formulas to
be used in deriving appropriate solutions are given in Appendix B and the resulting
point source solutions are tabulated in Table 3 of Appendix A. For convenience, we

grouped these solutions in three sections. Solutions given in Table 3— A of Appendix
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A arefor rectangular reservoirs with impermeable top and bottom boundaries. In
Table 3 — B of Appendix A, the top and the bottom boundaries of the reservoir are
assumed to be at constant pressure. Solutions given in Table 3 — C of Appendix A
assume that the reservoir boundary at the top (zp = 0) is impermeable while the
boundary at the bottom (2p = kp) is at constant pressure. The symbols ch(z) and
sh(z) used in these tables denote hyperbolic cosine and hyperbolic sine functions,
respectively. Shown to the left of each solution is the areal view of the reservoir
corresponding to the respective solution. In these figures, unbroken lines denote the
impermeable boundaries and dashed lines denote the constant pressure boundaries.
The appropriate combinations of S; ;; to be used in Eq. 2.2.32 are also noted. The
point source is assumed to be located at some arbitrary point zyp,ywp,2wp and
its action is assumed to be continuous and uniform in time. (Although the list is
extensive, for coding purposes, no particular difficulties are involved since many of

the components of the solutions are identical.)

Point source solutions presented in Table 3 of Appendix A have not been re-
ported in the literature. Utilizing the point source solutions given in Table 3 of
Appendix A, solutions for a large variety of well-reservoir systems can be obtained
by a simple integration with respect to z,, and/or z,. Due to the large number of
possibie solutions and the simplicity of the required operations, solutions for differ-
ent source geometries will not be presented in detail. The procedure to obtain the
solutions for different source geometries is demonstrated on some example cases in

§2.3.

2.3 Some Solutions for Rectangular Systems

To demonstrate the utility of the solutions presented in §2.2 III, here we derive
three solutions of interest: a fully penetrating vertical well, a fully penetrating
vertical fracture, and a horizontal well in a closed rectangular reservoir. The top
and the bottom boundaries of the reservoir are assumed to be impermeable. We will

assume that the flux distribution on the surface of the well is uniform. For generality,
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we will express the solutions in terms of the dimensionless pressure defined by

2nkh —
Pp = Ap. 2.3.1
Pp Py p ( )

We will define the dimensionless time, tp, as in Eq. 2.1.8 with L=r,, L, and
Ly /2 for vertical well, vertically fractured well, and horizontal well, respectively.

For discussion, we will also assume that the reservoir is isotropic; that is, k = k; =

k, = k,.

1. Fully Penetrating Vertical Well As required by Eq. 2.1.48, the solution for
this problem is obtained by integrating the solution given in Eq. 2.2.33 with respect
to z!, over the interval O to h. (Note that only the integral of cos @z,, needs to be

determined.) The appropriate result is

A5 = quh chv/u(Yep — [Yp — Yuwb|) + chAvulyep — (YD + Yup)]
2kLz.phps Vushy/uy.p
z
2 k knr—
+ Zcos 7rzeD COS KT oD

chyfu+E (yeD - |yp — Ywp|) + chyju + & [yeD — (yp + ywp)]

\/u 'k?% sh u+-’523:’fyep
(2.3.2)

If we use the definition of §p given by Eq. 2.3.1 (with ¢ = gh), then we can write
Eq. 2.3.2 as

Fp(2p,up) = 7f [Ch\/_ u (yep — |y — Yupl) + ch\/ulyep — (yp + YuD)]

Z.DS \/'7 sh \/_yeD

T,
k=1 eD

ch.futk g,_f(yep — |yp — Ywpl) +chyfu+ 5 vep ~ (vp + yup)]
Ju+ Bk fu+ By p
eD eD
(2.3.3)

Here s represents the Laplace transform variable with respect to dimensionless time

based on the wellbore radius, ry,.
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I1. Fully Penetrating Vertically Fractured Well The solution for this prob-

lem is obtained by integrating the solution given in Eq. 2.2.33 with respect to
z,, over the interval O to k and then with respect z;, over the interval z,, — L.,
to z, + Lz,. (Note that only integrals of cos az,, and cos az, need to be deter-
mined.) Using the definition of the dimensionless pressure given by Eq. 2.3.1 (with
g = 2ghL,,), the result is the following expression:

%0 (2, up) = — chv/u (yep = lyp — yuwp|) + chv/U[yep — (yp + Yup)]
Ppi*D,YD Tep S \/17 sh \/EyeD
+ E —sin k= cos kr cos kn

3 k=1 k ZeD ZeD TeD

chy/u+ 'k;’{f(yeu — lyp — vwpl) + chy/u+ %?f[yw ~ (vp + yup)]

3Ix32 33
Ver ke v
e e

(2.3.4)
Here s represents the Laplace transform variable with respect to dimensionless time
based on fracture half-length, L.,.

Recently, Fraim and Lee3? used the solution presented by Gringarten et al.l°
(Eq. 29 of Ref. 10) and derived an expression for the Laplace transform of the
dimensionless wellbore pressure for a vertical fracture located at the center of a
closed, square drainage region (zwp = Zep/2, YwD = ¥eD/2, Zeb = Yep). Their

expression can be obtained from Eq. 2.3.4 to be

. Y e (2.3.5)
Ze.D 1, 1 Ip co V 1 L
+ —sin 2kn cos 2km .
1§1 k T.D IZ.p i+ 4k272

In Eq. 2.3.5, § denotes the Laplace transform variable with respect to ¢tp4 where

t
tpa = =, (2.3.6)
IeD

and & = 5§f(5). To account for the change in time scale, we used the Laplace

transformation property

cF(es) = L{F(t/c)}, (2.3.7)
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wher L denotes the Laplace transform operator. Using f(3) = 1, we recognize that

Eq. 2.3.5 is the solution given by Ref. 32 for homogeneous reservoirs.

III. Horizontal Well The solution for this case is obtained by integrating the
point source solution given by Eq. 2.2.33 from z,, — L, /2 to z,, + Ly /2 with respect

to z!,. The appropriate expression for the dimensionless pressure drop is given by

Pp =Pps; + F1, (2.3.8)

where B, is defined by Eq. 2.3.1 (with ¢ = gLy), Bp, is the fracture solution given
by the right hand side of Eq. 2.3.4, and F, is defined by

- 2
Fy = ==

(o o
E COSNTZp COS NN 2y D

n=1

chvuv + a(yep — |yp — Yup|) + chvVu + a[yep — (D + Yub)]
Vu + a shy/u + ay.p

4 > — 1
+ - E COS N Zp COSNT 2y D E -Esinkﬂ'
sn=1 k=1

T.DS

. (2.3.9)
cos kr 222 cos k=2
ZeD ZeD ZeD

chvu +b(yep — |yp — Yuwp|) + chVu + blyep — (¥p + Yub)]
Vu+ b shvu + byep

Here a = n?x%L% and b = n?n2L% + kzﬂz/zzp. In Egs. 2.3.8 and 2.3.9, s is the
Laplace transform variable with respect to dimensionless time, tp, based on the

horizontal well half length, L, /2 and 2p and Lp are defined, respectively, by
zp =z/h (2.3.10)

and

L 1
LD—E—-I?;.

(2.3.11)

As mentioned earlier, obtaining the solution for the pressure distribution, is
only the first step toward the computation of well responses. Examining the so-
lutions derived in this section, it is reasonable for one to be concerned about the

computational difficulties involved. These aspects are addressed in §§2.5 and 2.6.
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2.4 Anisotropic Reservoirs

Solutions presented in §§2.1 and 2.2 consider that the reservoir may be
anisotropic in the three principal directions, z, y, 2; that is, k, k,, k., are the
permeabilities in z, y, and z directions, respectively, and k represents the perme-
ability of an equivalent isotropic system. In the solutions presented in §§2.1 and
2.2, k is defined by

k= kzkyk,. (2.4.1)

In many instances, it is convenient to define the permeability in the horizontal plane
(z-y) by

ki = \/kzky, (2.4.2)

and replace k in the definitions of dimensionless variables by k;. The procedure to
accomplish this objective is as follows: Let tp denote the dimensionless time based
on k given by Eq. 2.4.1 and tp denote the dimensionless time based on k; given by

Eq. 2.4.2. Then we have the follwing relation:

- k
tp = —kétD. (2.4.3)

Eq. 2.4.3 indicates that solutions based on the dimensionless time {p can be ob-
tained from solutions based on the dimensionless time tp by simply replacing tp by
(k/ky)tp in real time domain. Since in our solutions we apply the Laplace trans-
formation to dimensionless time, tp, this operation can be accomplished through

the use of the following property of the Laplace transforms:
cF{cs) = L{F(t/c)}. (2.4.4)

Therefore, if we wish to obtain solutions defined in terms of dimensionless variables
based on kj, (or for k, = k), then the property of the Laplace transformation
given by Eq. 2.4.4 should be applied to the solutions presented in §§2.1 and 2.2.
As an example, let us consider the case of a horizontal well in an infinite reservoir.

Assuming that the well center is at the origin (z,p = ywp = 0) and using L = L /2
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where Ly, is the length of the well, the horizontal well solution given in Table 1 — A4

of Appendix A can be written as:

L qu
AP(ID, yD,ZD,ZwD’hDas) = 27['th3

([ 8o [T (oo - avBTR) 418

: (2.4.5)

+ E COSNTZpD COSNT 2y D

n=1

I e e

-1

In Eq. 2.4.5, s denotes the Laplace transform variable with respect to dimensionless

time, tp, based on k and zp, yp, zp, and hp are defined by

Zp = E k 24.6
PV (246)
2y [k
yp = I, ky, (2.4.7)
z
zZp = -};, (2.4.8)
and
2h [k
hp = —/—. A.
D . VE (2 4 9)
If we define the following dimensionless variables based on k),
k
ip = —kﬁzp, (2.4.10)
- k
D = —kin, (2.4.11)
hp = %hp, (2.4.12)
and also note that
h [k h ko k,vVk 2Rk
hp =20 5 2h ek, VE _ —t (2.4.13)

LyVk, L, k32 L,k

34



then we can rearrange Eq. 2.4.5 to write the following solution expressed in terms

of the dimensionless variables given by Eqs. 2.4.10 - 2.4.12:

Gu (k/kn)
m 2h/Lh) kh (k/kh) S

{/:11{0[ ——sf \/:cp—a kh/k) ’*‘yp} de

Ap(iD,gD,ZD,ZwDahD,S) =

(2.4.14)
+ Z COSNTZP COSNT 2y D
+1 n27r2 . 2 .
Ko [\/——sf 52 \[(xp - a\/kh/kz) + y%:l da},
D
where .
f(-f—s> _ (k/kn) sw (1 —w) +~/\ (2.4.15)
kn (k/kp)s(1—w)+ A
and '
* k
A= —A (2.4.16)
kn
Comparing Egs. 2.4.5 and 2.4.14, it can be shown that
= khp k — < k )] khp ~
Ap = —m—"— A =-——-F—/L{Ap(t , 2.4.17
P=h/Ln) ks [kh P\ % @h/Lu) o p(tp)} (24.17)

where the last equality follows from the relation given by Eq. 2.4.4 and {p is defined
by Eq. 2.4.3. Then, if we define § as the Laplace transform variable with respect

to tp, we can write the following relation:

____.___(Zh’;zf:) kh‘A';; (5). (2.4.18)

Using the relation given by Eq. 2.4.18 and Eq. 2.4.5, the horizontal well solution

Ap =

expressed in terms of the dimensionless variables based on k; can be written as

~ . qu
) “w ’h ’ = S

Ap(Ep, i, 2D, 2ups hp,8) = o

+1
([ o=y -]

-1

. (2.4.19)
+ Z COS NNZp COS NN Zy, D

n=1

[k, [\/Ef(g) + 22 (o - /BT gg,J da}.

- D
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The procedure outlined above can be applied to all solutions presented in §§2.1

and 2.2 to take into account the anisotropy of the formation in different forms.

2.5 Computational Remarks

In the preceding sections, we have developed solutions for a wide variety of
well-reservoir systems that are of interest in well testing. As already mentioned, in
some cases, the direct result of the analytical derivations may not provide a form
of the solution which is convenient for computational purposes. In fact, it is for
this reason that some of the Laplace domain solutions which were available in the
literature previously (for example, the solution for a vertically fractured well in an
infinite reservoir!®) did not find wide utility. One of the major contributions of
this section is to provide the means to compute the solutions presented in the pre-
ceding sections. In §2.6, we consider representative examples to demonstrate the
procedure to recast the solutions in forms that are convenient for computational
purposes. Here we consider some common components of the solutions that cause
computational problems and develop alternate forms that should be used in com-
putations. Specifically, in this section, we discuss the evaluation of integrals of the
form fj': Ko[f(z — a)]da and some of the slowly converging series for small values
of time (large value of the Laplace variable). The use of the alternate forms of these

integrals and series is demonstrated in §2.6.

1. Evaluation of the Integral fj: Ko [b\/(.'tp - a\/k/kz)2} da
The Bessel function Ky(z2) is real and positive when z > 0. If |zp| < av/k/k,,

we can write

/ Ko [b\/ (zp — a\/1€/7c2)2] do =

-a

zpvVks/k +a
/-a Ky [b(-‘L‘D - a\/’:ﬁ;)] da +/:; . K, [b(am_ zD)] da

b(a\/kfkz~2Dp)

Ko(u)du + /

0

1 blay/k/kz+zp)
NI /o

Ko (u)dujl . (2.5.1)
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Similarly, if |zp| > av/k/kz, we can write

/ ko [”\/(xD - a\/k/_kz)ﬁ] do =

-a

1 eol+a/iTi) e /b(lznl—o\/k/kz)
ujau —
bE/k, / ° 0

X |zp| = av/k/ks, then from Egs. 2.5.1 and 2.5.2, we have

Ko(u)du] .

-a

/+° K, [b\/(-'!JD - a\/k/—k;)z] da = E——i\/————m— /0205 K Ko (u)du. (2.5.3)

The following series expansion for f: Ko(u)du given by Ref. 27 can be used to
compute the right hand side of Egs. 2.5.1 - 2.5.3:

(k)2 (2k + 1)
= (z/2)%* (z/2)* N1
X_: M2(2k+ D2 ° Z(k' Z(2k + 1) gn

where « is Euler’s constant (y = 0.5772...). Note that the number of terms used for

/:Ko(u) ~(nZ +)z i—i”—@i
k=0 (2.5.4)

the convergence of the infinite series on the right hand side of Eq. 2.5.4 increases

as z becomes large. As £ — 0o, however, the following relation is known?7:

/0 ” Ko(u)du =

NN

(2.5.5).

We have found that, for z > 20, the right hand side of Eq. 2.5.4 approaches /2
for all practical purposes. For z < 20, the series on the right hand side of Eq. 2.5.4
converge fast.

An alternate form of the integral foz Ko(u)du can be written by using Eq. 2.5.5

as follows:

/0 ) Ko(u)du = % - Ki, (), (2.5.6)

where

Kiy(z) = / ” Ko(u)du. (2.5.7)
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Values of Ki;(z) can be obtained from the table given by Ref. 27 (Table 11.1 of
Ref. 27) or by numerical integration. By using Table 11.1 of Ref. 27, we can also
show that K1;(z) can be neglected compared to /2, for example, within 1% when

z > 3.6 and therefore, f: Ko(u)du =~ 7 /2 within 1% for z > 3.6.

I1. Computation of the Series

. COS NTZ COS NI 2y, n2m2 2

E = exp [—4/u + W2 + a“yp
= \/u + 22 4 g2

D

at Large Values of u for >0

We can write

2\ COS N2 COS N Zy, n2n2

E exp |—y/u+ —5— +a?yp| =
n3n3 2 h

n=14/U+ 53— ta D

D

2. cosnm(z — 2, 2. cosnm(z + 2z, n?n?
0.5 + exp [—4/u-+ +ayp| .

,,=1\/u+"—,:§ﬁ+a2 n=1\/u+-'i,;r:’;3+a2 k%
D
(2.5.8)

If we let u denote the Laplace transform variable with respect to 7, then we can
show that

= cosnrz n2x2

v T exp |~y [u+ T +a%yp | = £{F} (2.5.9)

oy \/u + 2% 4 g2 3

D

where £ denotes the Laplace transform operator and F is given by

F= 1 ex __y_%_ ex (—azr)icosmm:ex —nzﬂz’r (2.5.10)
TV P\ T4 )P P\TTRE ) >

n=1
Using Poisson’s summation formula given by Eq. 2.2.4 in §2.2, the right hand side
of Eq. 2.5.10 can be written as

2;) I= 212 2 (_lﬁz) (—a27)
o) 32 [ eomiipeg) o0 (H)or (e

2 /7T

(2.5.11)
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Taking the Laplace transform of Eq. 2.5.11, we obtain

exp (-—\/u + a2yp>
2Vu + a? .

(2.5.12)
Substituting the right hand side of Eq. 2.5.12 into Eq. 2.5.9 for L{F}, we write

£{F} = %? § Ko [\/(::—Zn)zth +ygm] -

n=-0o0

the following relation

o 2,2
cOsS NI n<m 2
E = exp —\/u-&- W2 + a“yp
n=1 \/u+g’:51r_+a2 D
D

oo - 2
hD I [ exp< vu-+a yD)
K z - 2n)% k2 + y2Vu + a? . (2.5.13
n;w 0 \/( D yD 2m ( )
Using the relation given by Eq. 2.5.13 in Eq. 2.5.8, we finally obtain
>\ COS N Z COS N7 Zy, n2x2
Z : exp | —4/u + —— % +a?yp| =
L\ Jut BE D
=+ o0
z {Ko [\/(z — 2y — 2n)2 RE +y3Vu + az}
n=—CC
exp (——\/u + a2yp>
+K [ :a-}—l?.'w—-Zn.zh2 + y? u+a2J - 2.5.14
o Ve VD + 5 it d (2:5.14)

Note that if u is large, u+n?72/h% +a? ~ u until n?72 /A2 + a2 becomes comparable
to u. Therefore, at large values of u, the partial sum of the series in the left hand side
of Eq. 2.5.14 will be changing even though several thousand terms are considered.
The series on the right hand side of Eq. 2.5.14, on the other hand, converges rapidly

since Ko(z) approaches zero rapidly as z becomes large.

ITII. Computation of the Series

o0 . . 2.2
SIN N2z SIN N2y, néw 2
Z 2t exp —-\/u + W2 + a“yp
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at Large Values of u for yn >0

We can write

sinnmzsinnrz n2n?
w 2 —
_S_ exp | —4¢/u+ 2 +a“yp| =
D

Ipn3
=iy fut S e
D

o~ cos 7 (2 — z,) o~ cosn7 (2 + 2,) nn2
0.5 Z == —Z exp | —4ju+ h% +a?yp| .

n=1 \/u+ e +a?2 = \/u-i~",:"2 + a?
Using Eq. 2.5.13, we obtain the following relation
oo . . 2.2
sinnwzsinnmrzy, n2n .
Z — exp —\/u+ 2 +a‘yp| =
sl \/u + 2 +a? D
D
e 5 A

n=-—0o

-Ko [\/(z + 2y ~2n)° k2 + 3V + az} } (2.5.16)

(2.5.15)

IV. Computation of the Series

= cos(2n — 1)Zzcos(2n — 1)% = (2n — 1)% =2
Z ~exp |—{/u 4+ ~—=1— +a2yp
D

2n—-2)3n3
n=1 \/u+£—ﬁ)———+ a?

at Large Values of u for yp >0

We can write

[%] 2
s{2n —1) Zzcos(2n—1 2n—1 2
E : ( ) 2% exp _\/u + _(__7_'1__)_7!’_ + a2yD —

n=1 \/u+£—%—:};1,)-L+ 2

O.S[i cos (2n —1) 5 (2 — zy) L i cos(2n—1) Z (z+zw)]
243

2n — 1)% #2
exp ——\/u + '(_WE)__ +a?yp | . (2.5.17)
D
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By similar arguments as explained above, we can show the following relation:

2n—1)Zz 2n — 1)% x2
cos(2n - 1)gz _\/H(_n_)__ﬂgyp _

r;\/u+ﬁ%igz—+az

+f (=1)" Ko [\/(“3—271)2 % +y%\/u+a2]. (2.5.18)

= - 00

Using Eq. 2.5.18 and Eq. 2.5.17, we obtain

o cos(2n — 1)Zzcos(2n —1)5z 2n —1)% 72
E & cosln )2wexp— u+—-——-————(n )W+a2yD =

o (Jut 32&—‘4—”— + a2 4hp

i:oo (-1 {Ko [\/(z ~ 2z, —2n)° B2 + y%m}

n=-—0oo

+Ko [\/(z + 2y —2n)°R2 + y3Vu + a2J } (2.5.19)

2.6 Computational Considerations

As mentioned before, even if solutions in terms of the Laplace transform vari-
able, s, are available, computations can be exceedingly difficult. First, difficulties in
computing integrals of the form ff: Ko [f (u — )] da for small values of f (u — «)
must be overcome. Second, in some cases, components of the solution converge
extremely slowly — in fact, in some cases, for certain time ranges the series behave
as if they are divergent series. Third, computation of double infinite Fourier series
can also pose problems. Thus, even though some of the solutions given in Tables
1-3 of Appendix A are available in the literature, these solutions have not found
wide utility. The developments given in §2.5 overcome most of the computational
problems and we believe represent an important contribution to the literature. In
this section, we examine some example solutions to briefly discuss computational is-
sues one will frequently encounter. Solutions presented in this section are expressed
in terms of the dimensionless pressure defined by Eq. 2.3.1 in §2.3. In all compu-

tations presented in this and the following sections, we used the Laplace inversion



algorithm suggested by Stehfest?. We have found that the Stehfest algorithm can
be successfully used to numerically invert the solutions presented in this chapter.
At this point, a remark on the use of the Stehfest algorithm appears to be
appropriate. The accuracy of the results obtained by using the numerical inversion
algorithm suggested by Stehfest is governed by a parameter denoted by N. Briefly,
the parameter N determines the number of terms to be considered in the computa-
tion of the series used to approximate the Laplace inversion of the subject function
(see Ref. 9 for details). Theoretically, the accuracy of the numerical inversion should
improve as the value of N increases. In practice, however, as N becomes too large,
the result suffers from rounding errors. Stehfest suggests that the optimum value
of N is approximately proportional to the number of digits used in computations.
The optimum value for N, however, should still be determined by examining the
variation of the results by the changes in the values of N. In our experience, as
a starting guess, N can be chosen as 8 for the inversion of infinite acting system
solutions and as 16 for the inversion of bounded system solutions. In many cases
however, variations do occur in the optimum value of N by the variations of the
behavior of the subject function from one time interval to the other. In dealing
with such functions, it is often useful to develop a procedure to test the sensitivity
of the results to the variations in the value of N (note however that insensitivity to
the value of N does not guarantee the correct numerical inversion; the result should
also be checked by other means). In obtaining the results presented in this chapter,
we used an algorithm to determine the maximum value of N in the range from 6
to 18 for which the minimum variation occured from the results computed by using

the next lower value of N.

1. Vertically Fractured Well, Infinite Reservoir For this well system, the so-
lution given in Table 1-A of Appendix A yields the following expression for the

Laplace transform of the dimensionless pressure, pp:

Pp = '2‘1'; [:1 Ko {\/;\/(‘-‘I:D - a)? + y%] da. (2.6.1)
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Here we have assumed an isotropic reservoir (k = kg = ky = k) with the well center
at the origin (zwp = yuwp = 0) and used L = L,,. Eq. 2.6.1 was also obtained in
Ref. 15 by superimposing line sources. Although it can be shown analytically that
the integral in the right hand side of Eq. 2.6.1 is bounded for all values of the
argument Ko|f(a)], computational problems may arise if yp in Eq. 2.6.1 is small.
More specifically, if we wish to compute the wellbore pressure or the pressure on
the fracture surface (yp = 0), then the argument of the integral in the right hand
side of Eq. 2.6.1 becomes unbounded as ¢ — zp. The numerical problems involved
in the evaluation of the integral in Eq. 2.6.1 are documented in Ref. 15. Houze et
al.1% outline an approximate procedure to compute the integral. They recommend
that the fracture length be divided into N equal segments and the integrand be
computed at each of these segments. The integral in Eq. 2.6.1 is then approximated
by the average value of N solutions. To obtain accurate results, particularly at early
times, as many as 100 segments are needed. They also note that segments must be
chosen to ensure that the center of any of the segments is not close to the pressure
measurement point (zp = 0 for the uniform-flux idealization and zp = 0.732 for the
infinite-conductivity idealization®); otherwise results will be erroneous. Numerical
problems, however, can be eliminated completely by using Egs. 2.5.1 - 2.5.3 given

in §2.5. Using Eq. 2.5.1, for example, the dimensionless pressure on the surface of

the fracture (|zp| < 1 and yp = 0) can be written from Eq. 2.6.1 as follows:

1 Vu(i-zp) Vu(l+zp)
Po (ool < Lyp = 0) = o= /0 Ko(z)dz+/0 Ko (2)dz| .

(2.6.2)

The integrals on the right hand side of Eq. 2.6.2 approach values between 0 as

|zp| — 1 and 7/2 as s — oo since?” [° Ko(u)du = 7/2. Any difficulties encoun-

tered in computing these integrals for large or small values of s can be eliminated

through the use of the relations given by Eqs. 2.5.4 and 2.5.5. Solutions discussed
below were obtained by this procedure.

As a first step, we computed well responses for the homogeneous reservoir case

by using u = s in Eq. 2.6.2. Values of the wellbore pressure, p,, p, obtained from Eq.
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2.6.2 are identical to that given in Table 1 of Ref. 10 for both infinite-conductivity
(zp = 0.732) and uniform-flux (zp = 0) idealizations. For the fractured reservoir
case, we obtained good agreement with the solutions of Yeh et al.33 and Davison34.

For completeness, we note that the Laplace transform of the pressure response
on the surface of the fracture (jzp| < 1 and yp = 0) is also reported by Kuchuk?8.

His solution is given by the following expression:

ﬁD =7l’(1 ;:s.'cD)
{K1 [(1 —.’tp)\ﬂs__l Lo [(1 —.’BD) \/Q +K0 [(1 —:CD) \/\q L1 [(1 - ID)\/E]}
+7I’(1'4::L'D)
{K1 [(1 +3D)\/3] Lo [(1 +-’ED) \/‘;] + Ko [(1+$D)\/;] L [(1 +ID) \/E]}
+-(l:§?-)-Ko [(1-=zp)+s] + Q—%EED_)KO [(1+zp)Vs].

(2.6.3)
Here Ko(z) and K;(z) are modified Bessel functions and Lo(z) and L,(z) are
modified Struve functions. Ref. 28 suggests that the infinite-conductivity fracture
responses be computed from Eq. 2.6.3 at zp = 0.74009714 instead of zp = 0.732 as
suggested by Ref. 10, and presents the form of Eq. 2.6.3 for the infinite-conductivity
case. Eq. 2.6.3 can be obtained from Eq. 2.6.2 by the relation3®

[ Kola)as = ZE [Ko(a)Los (o) + Ki(o) o)

= % [Ko(z)L1(z) + K1(z)Lo(z)] + zKo(z). (2.6.4)

We believe that, computationally, it is advantageous to use Eq. 2.6.2 instead of
Eq. 2.6.3. Furthermore, with the development given in §2.5 I, Egs. 2.6.1 and 2.6.2
provide the pressure distribution at all points in the reservoir.

Fig. 2.6.1 presents a typical set of infinite-conductivity vertical fracture re-
sponses in naturally fractured reservoirs. We computed the infinite-conductivity

responses from Eq. 2.6.2 (which is valid for uniform-flux fractures) at zp = 0.732 as
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suggested by Ref. 10. In Fig. 2.6.1, the dimensionless storativity, w = 1072 and the
dimensionless transfer coefficient, A, is the variable of interest. The top curve (Curve
A) represents the homogeneous reservoir solution (w = 1, A = 0). The bottom
curve (Curve B) also represents a homogeneous reservoir solution with ¢c; prod-
uct equal to the total system porosity-compressibility product, (Vée;)s + (Véci)m,
(w = 1072, A — oo). Characteristics typical of vertically fractured wells in natu-
rally fractured reservoirs are clearly evident. As expected, a log-log plot of p,p vs.
tp/w (where tp is based on fracture half-length; that is L = L., in Eq. 2.1.8) yields
a half slope line at early times manifesting the existence of the early linear flow pe-
riod. The responses possess a transition period during which they deviate from the
homogeneous reservoir solution (Curve A) and approach the solution corresponding
to A = oo (Curve B). This transition period is characterized by approximately con-
stant values of p,,p and is typical of responses predicted by the Warren and Root!8
model. At late times, all the responses show the characteristics of pseudoradial flow
period (during this flow period dp,p/dintp = 0.5). As the characteristics of these
solutions are well documented in Refs. 33 and 34, we will not discuss this aspect

here.

11. Horizontal Well, Infinite Reservoir Problems involved in computing well

responses for horizontal wells can also be readily resolved by the methods outlined
in §2.5. If we consider an isotropic reservoir (k = k; = k,, = k,) with the well located
at (0, 0, zy,p), then the solution given in Table 1 — A of Appendix A for this case
(with L = L, /2) can be written as

1

o= / Ko [ﬁ\/(zp - a)? +y123] do
1 oo
- E COSNTZp COSNT 2y D (2.6.5)

+1
/ K [\/u + n272L% \/(:rp - a)? + y%] da.

~1
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In Eq. 2.6.5, zp and Lp are defined respectively by
z
== 2.6.6
z2p =4 (2.6.6)

and

(2.6.7)

To the best of our knowledge, the solution given by Eq. 2.6.5 has not been
reported until now. As in the case of vertically fractured well solution presented
above, the computation of the wellbore responses by the right hand side of Eq.
2.6.5 can be a formidable problem. Note that the solution given by Eq. 2.6.5
assumes a line source well (r, — 0). In Chapter III, it is shown that wellbore
pressures can be computed by assuming yp = 0 and 2p = 2zyp + rup, Where
rwD = (rw/h). Therefore, in order to compute the pressure responses along the
well (|zp] < 1,yp = 0 and 2p = 2yp + rwp), Eq. 2.6.5 should be recast in the

following form by using Eq. 2.5.1 of §2.5:

Pp (|zp] < 1,yp =0,2p = zyp + Twp) =

1 Vu(1-zp) Vu(l+zp) _
/ K, (z)dz+/ Ko (2)dz| + F(zp, 2, 2up, Lp),
0

2s\/u

0
(2.6.8)
where
1 & COSNAZp COSNTZy D
? ITD,ZD 2w L = - el
(@020, 200, o) = 5 2, = 7=ty
(2.6.9)

[/‘/u-}»n’w’L?,(l—zp) Vutn?in3li (1+zp)
0

Ko(z)dz + /

0

Ko(z)dZJ .

Note that F is the difference between the pressure drop for a horizontal well and that
for a vertically fractured well (see Eq. 2.6.2). That is, F is the pseudoskin function
for a horizontal well (this aspect will be discussed in detail in Chapter III). The
integrals involving Ko(z) can be computed along the lines already discussed. One
major obstacle still remains. Although it appears innocuous, the series appearing

in the right hand side of Eq. 2.6.9 converges extremely slowly for large values of
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s (small times). This difficulty, however, can be eliminated as follows. Using the

relation®?

/z Ko(u)du = 1 - Kii(2), (2.6.10)

where K1 (z) = f Ko(u)du, we rewrite Eq 2.6.9 as

COSNTZp COSNAZy D
F (zDszwD,LD) - Z

s &~ u+n2n2L}
{ v+ 17."’7r2L2 (1 - zp)] + K1, [\/u +n272L% (1+ I:D)] }

(2.6.11)

In Eq. 2.6.11, F, is given by

— T s COS NI Zp COS N2y D
Fl (ZD,ZwD)'——"" E : \/—-—2—2115-
nel u+nemeLlp

- (2.6.12)
Computation of Ki;,(z) is straightforward (see remarks given in §2.5 following
Eq. 2.5.7). Since Ko(z) approaches O at large values of z, Ki;(z) = f Ko(u)du
approaches zero at large values of z. Therefore, the series on the right hand side of
Eq. 2.6.11 converges rapidly for large values of s. Convergence problems associated
- with the series on the right hand side of Eq. 2.6.12 for large values of s are eliminated

as follows: First note that

cosnnwz
Zl v L{G}, (2.6.13)

where G is given by

1 ©o
G=—7= Z cos nxzexp (—n?7?L} ) (2.6.14)
VAT &=

and £ denotes the Laplace transform operator with respect to 7 with u being the

Laplace transform variable. Using Poisson’s summation formula?? given by

it

fn=-—00

s 'r) cos mr-eé—} , (2.6.15)

we can show that (details are given in §2.5)

cosnmz |z — 2n| > 1
E E K, ——, 2.6.16
1 Vu+ n21r2L§ ° ( Lp Ve 2/u ( )

n=-00
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Thus Eq. 2.6.12 may be writen as (see Eq. 2.5.14)

+oo
Fi(2p,2wp,Lp) = E [Kg(l D D n[\/E)

L
2Los oz P (2.6.17)
4K |2p + zep —2n[Vu\] 7
0 Lp 25\/u’

Computations indicate that the right hand side of Eq. 2.6.17 converges rapidly.
Eq. 2.6.17 is extremely important to compute the wellbore pressures of horizontal
wells. The series on the right hand side of Eq. 2.6.12 is convergent; yet, if s is large
(u is large), then \/u + n272L% ~ /u until n?72L% becomes comparable to u and
the series on the right hand side of Eq. 2.6.12 behaves like the divergent series
Yoo ,cosnmzp cosnTzy,p. Therefore, at large values of s,\the partial sum of the
series given by the right hand side of Eq. 2.6.12 will be changing significantly even
after considering several thousand terms. On the other hand, unless s is extremely
small (very late times ), the series on the right hand side of Eq. 2.6.17 converges
very rapidly since Ko (z) approaches zero rapidly as z becomes large. Therefore, for

large values of s, Eq. 2.6.8 can be written in the following form:

Pp (lzp| < 1,yp =0,2p = 2yp + rup) =

1 Vu(l-zp) Vu(l+zp)
25 /0 K, (2)dz + /0 K, (z)dz

1 *f [Ko (IzD LK 2nlﬁ) LK, (|zD + LE znw)]

oo .
1 E COSNT2Zp COSNNZy, D
n=1

x
B 2s\/u T s Vu+ n21r2LD§
{Ki1 [ u+n?n2L2 (1- zp)] + Ki, [\/u +n272L% (1 +xp)] }
(2.6.18)

We tested the solutions given by Egs. 2.6.8 and 2.6.18 for homogenous reservoirs
(v« = s). We found excellent agreement between the values computed from Egs.
2.6.8 and 2.6.18 by using Stehfest algorithm® and our results compﬁied from the

real time solution reported in Ref. 5 and Chapter III.
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We now consider horizontal well responses in naturally fractured reservoirs.
Figs. 2.6.2 and 2.6.3 present typical horizontal well responses in naturally fractured
reservoirs for the case where the dimensionless storativity, w = 10~2. The variable
of interest is the transfer coefficient, A. The responses shown in Fig. 2.6.2 corre-
spond to the case where Lp = 5 and the responses shown in Fig. 2.6.3 correspond
to the case where Lp = 100 (Lp is the dimensionless horizontal well half-length
defined by Eq. 2.6.7). In both figures, the well is assumed to be located mid-
way between the top and the bottom boundaries of the reservoir (z,,p = 0.5) and
the dimensionless wellbore radius, r,p = 2 x 1073. As in Ref. 5 and Chapter
ITI, we assumed that the infinite-conductivity responses can be computed from the

uniform-flux solutions (Egs. 2.6.8 and 2.6.18) at zp = 0.732.

The resp’onses shown in Figs. 2.6.2 and 2.6.3 display characteristics typical
of horizontal wells and naturally fractured reservoirs. Curves A and B in Figs.
2.6.2 and 2.6.3 represent the responses in homogeneous reservoirs corresponding
respectively to w = 1, A = 0 and w = 1072, oo respectively. At early times,
the responses follow the homogeneous reservoir solution corresponding to A = 0
(Curve A) and display the characteristics of radial flow in the vertical plane typical
of horizontal wells (see Ref. 5 and Chapter III). During this time period, for all
practical purposes, the influence of the matrix system is negligible (the responses are
independent of A) and the responses are governed by the porosity-compressibility
product of the fracture system, (Véc,);. The time at which the solutions deviate
from the A = 0 solution (Curve A) depends on the magnitude of A; the larger
the magnitude of A, the earlier the deviation time. Following a transitional period
characterized by approximately constant values of p,, p, typical of the Warren and
Root® model, the responses in naturally fractured reservoirs ultimately merge with
the homogeneous reservoir response solution with system porosity-compressibilty
product equal to (Vée;); + (Vécr)m (Curve B). The late time responses shown in
Figs. 2.6.2 and 2.6.3 display the pseudoradial flow behavior in the horizontal plane
during which the logarithmic derivative of the pressure responses, dp,,p /dIn(tp /w),

attain the constant value of 0.5 (see Ref. 5 and Chapter III). As mentioned earlier,
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detailed discussion of the responses is outside the scope of this section. Our objective
in displaying Figs. 2.6.2 and 2.6.3 is to merely highlight the utility of our solution
procedure.

The two examples considered above have been chosen to not only demonstrate
the advantages of the solutions presented in this chapter but also to discuss and solve
some of the problems encountered by us® and the others!®>. These two examples
also clearly demonstrate the fact that recasting the analytical solutions involving
infinite series and singular functions in a form suitable for numerical evaluations is as
equally important as obtaining the solution itself. Our approach for computing the
vertically fractured well solution given by Eq. 2.6.2 provides definite advantages over
that given by Eq. 2.6.1 since it eliminates the need for the approximate integration
procedure suggested by Ref. 15. Similarly, the form of the horizontal well solution
given by Eq. 2.6.18 is essential for efficient and accurate numerical evaluation of
the well response particularly for large values of s (small times).

If note is made of the computational remarks in §2.5, then one can numerically

compute pressure responses from all solutions given in Table 1 of Appendix A.

ITI. Vertically Fractured Wells, Bounded Reservoirs In general, the main

problem that must be overcome is that the bounded reservoir solutions will not
converge rapidly during the transient period. To solve this problem, bounded reser-

voir solutions must be first written in the form:
.A_I;:K;;n! +—A_I;b, (2.6.19)

where Z;,.M- is the solution given in Table 1 of Appendix A for the appropriate well
in an infinite reservoir and Ap, represents the terms due to the bounded nature
of the reservoir. Solutions for the infinite reservoir case can be computed along
the lines given above. Second, the expression for K;-)b should be such that it con-
verges rapidly for small times. Here we consider two examples for fractured wells
in bounded reservoirs.

Let us consider the case of a fully penetrating vertical fracture in a closed, cylin-

53



drical, isotropic (k = k, = k, = k,) reservoir. The pressure drop along the surface
of the fracture (|zp| < 1,yp = 0) can be written from Table 2 — B of Appendix A
(with L = L, ) as

1 +1

Pp = % . [Ko (FfoVu) + To (;D}'x/fzfzjl\/(sl)ﬁ) d

a. (2.6.20)

In Eq. 2.6.20, r.p is the dimensionless drainage radius and 7p is given by

D = \/(ID —a)? +y3. (2.6.21)

Eq. 2.6.20 can be also written in the following form:

+1

= = Ky (repy/u) 3
Pp =PpD ins + m/ I [\/ax/(zp - a) ] da, (2.6.22)

-1

where Pp ;s is given by Eq. 2.6.1. Note that at large values of u (early times), the
ratio of Bessel functions, K; (rep+/u) /I; (rep+/u), approaches zero and the second
term on the right hand side of Eq. 2.6.22 does not contribute to the solution.
Also as u — O (late times) and/or @ — zp, Iy [\/ﬁm] remains bounded
and therefore the integral on the right hand side of Eq. 2.6.22 can be numerically
evaluated. We have found, however, that the accuracy of numerical evaluations can

be further improved by computing the integral in Eq. 2.6.22 in the following form:

+1 1 1
/ I [ﬁ\/(zp - a}zlda = / I (Vulzp — af) da + / Io (Vlzp + af) de.
-1 0 0
(2.6.23)
Similar remarks apply for the computation of the other solutions in Table 2 of

Appendix A.

We now consider a fully penetrating vertically fractured well in a closed,
isotropic (k = k, = k, = k,) reservoir with a rectangular drainage region. Solution

for the pressure distribution for this case has been obtained in §2.3 and is given by
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the following expression:

7o (2D, yp) = 7r [ch VU (Yep — |yp — Yup|) + ch Vulyep — (¥0 + yup)]

ZeDS Vu sh Vuyep

2:1: ZwD z
eD E -sm km cos kr cos kn
I.D ZeD ZeD

chyfu+ & (ch — lvp = vupl) + chyfu+ L kon = [yep — (yD + YuD)]

yut k;g:—’sh, [u + %11;—,1/213

The coordinate system for Eq. 2.6.24 is chosen to be at the bottom left hand

(2.6.24)

corner of the reservoir. The location of the well is determined by z,p and y,p
and the length of the sides of the rectangular drainage region is defined by z.p and
Yep- ch{z) and sh(z) denote the hyperbolic cosine and hyperbolic sine functions
respectively.

Note that the ratios of hyperbolic functions on the right hand side of Eq. 2.6.24
may cause computational problems when their arguments approach zero or infinity.
The ratios of hyperbolic functions in Eq. 2.6.24, however, can be written in the

following form:

chy\/a(yep — 9p) - exp ( \/—yD) +exp[~+/a (2y.p — yD)]
sh+/ayep — exp (—2v/av.p)

The computation of the right hand side of Eq. 2.6.25 can still be difficult if \/ay.p

(2.6.25)

becomes very small since the denominator of this expression approaches zero. If we

use, however, the relation given by the following expression3®

[ —exp( 2\f-ycp)] =1+ i exp (—Zm\/aycp) , (2.6.26)

then Eq. 2.6.25 can also be written as

ch\/fh(\y;‘_:;c—p ¥p) ={exp (-vaip) + exp [-v/a (2yep — ﬁb)]}

(2.6.27)

[1 + i exp (—2m\/5yep)] .

m=l



The right hand side of Eq. 2.6.27 can be used to compute the ratio of the hyperbolic
functions for both small and large arguments.

If the relations given by Eqs. 2.6.25 — 2.6.27 are used to compute the ratio
of hyperbolic functions, ch (a) /sh (3), at large values of the arguments of the hy-
perbolic functions, the pressure distribution can be computed using Eq. 2.6.24 for
times tp4 > 1072, where tp 4 is the dimensionless time based on the drainage area

and is given by

tpa =tp/Ap, (2.6.28)

where Ap = A/L? = xeye/Lif

For smaller values of time, we write Eq. 2.6.24 in the following form:

Pp =Pp iny T PDb (2.6.29)

where P, ;,,; is the solution for a fractured well in an infinite reservoir given by Eq.
2.6.1 and pp, represents the contribution of reservoir boundaries. The expression
for pp, is obtained as follows: Using Eq. 2.6.27, we can recast Eq. 2.6.24 in the

following form:

Pp =Pp1 + Ppb1 + Ppoas (2.6.30)
where
2% ex vV — Yy
Pp: =—Zl sinkn cos kn =2 cos kr Z22 p( u+alyp —y D[)
Sioik ZeD ZeD Zop Tore

(2.6.31)

Bpo 2252875 {exp [V (yp + ywp)] + exp [-v% [24ep — (¥D + yuD)]]
+ exp (—\/E!yp - ywbl) + exp [—\/17 (2yep — |lyp — waI)]}

[1 + i exp (—2mﬁycp)] ,

(2.6.32)
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and
sin kn—=1- cos kw ER cos kn ZuR
LeD TeD I,

o = 2351 :
Ppuy2 sk:lk +a

{{exp [VaF2 (s + sun)] + exp [-VETa 2300 ~ (4 + vu)]

+exp [—\/u_+_5(2yeo — lyp — wal)]} [1 + i exp (‘2”” ut ay‘D)]

m=1

+ exp (—\/m!yp - wa[) i exp (—meyeD) } (2.6.33)
m=1

In Egs. 2.6.31 and 2.6.33, a = k2n2/z2,. We note that pp, given by Eq. 2.6.31

can be written as

©  rzwotl cos kn—'ﬂ cos k'rr—J’—

2 + — w d
up—1 \[m exp( vu lyD y D|> Zz,,

(2.6.34)

Pp1 =

II

Using Eq. 2.5.14 given in §2.5 and making the change of variable a = z,p - 7,

we can write Eq. 2.6.34 in the following form:

+1 4o 2 2
S Y A {Ko [Vieo — 200 ~ 2heco - @ + (4> - o)V
-1l k=-oo

+Kp [\/(zp + zyp — 2kz.p — a)2 + (yD - wa)z\/Ei' }da

_7exp (=Valyp = yup))

.6.35
Z.ps\/u (2 )

Note that Eq. 2.6.35 can be written as
PD1 = PD ins + PDba> (2.6.36)

where Pp ,,,; is the vertical fracture solution in an infinite reservoir given by

_ 1 +1
PD ing = %s /_1 Ko [\/(lp - ZTwD — a)2 + (yp — ywp)z\/;] da, (2.6.37)
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and Pp,3 is given by

- 1 [+ 2 2
Ppbs = 5‘;/ Ko \/($D +zwp — @)” + (¥p — Yuwp)*Vu| da

-1

+-2-1; g/jl{ffo [\/(3D — Zup — 2kzep — @)® + (vp - wa)zﬁ}

-

+Ko [\/(ID + zup — 2kzep — @)® + (yp — yup) Vi

-

;
+Ko [\/(ID — Zup + 2kz.p — @)% + (yp — Yup)*Ve

+ Ko [\/(zp + zyp + 2kzep — a)2 + (yp — ywp)zﬁ] }da

_mexp(=vulyp — yup|)

TepSy/U

(2.6.38)

Therefore, the pressure distribution due to production from a vertically fractured

well in a closed rectangular reservoir is given by
PD = PD iny + PDb> (2.6.39)
where Pp ;s is given by Eq. 2.6.37 and pp,, is given by
Pps = Ppot + Ppvz t Ppss- (2.6.40)
In Eq. 2.6.40, Ppy1» Ppp2s 8nd Ppps are given respectively by Eqgs. 2.6.32, 2.6.33
and 2.6.38. Integrals appearing in Eq. 2.6.38 can be computed along the lines

suggested in §2.5 for yp = yup. For example, for |zp —z,p| < 1, yp = yup (along

the fracture surface), using the relations given by Egs. 2.5.1 and 2.5.2 in §2.5, Eq.



2.6.38 can be written as

1 Vu(zp+zwp+1) Vu(zp+zup—1)
Ppba = / Ko (2) dz -—/ Ko (2) dz
0

25\/u 0

o Vu(2kz.p~2p+zwp+1) Vu(2kz.p-zp+zwp~1)
+) / Ko(z)dz—/ Ko (2) dz
k=11"0

(1]

Vu(2kz.p+zp~zuwp~1)

Ko (z)dz — / Ko (2) dz

Vu(2kz.p+zp—zwp+1)
+ /
0 0

Vu(2kz,p~zp~2yp~-1)
Ko (z)dz — / Ko (2)dz

ﬁ(kaep-zv-zmp+l)
<),
0 0
Vu(2kz.p+zp+zwp—1)
K, (2) dz} }

Ko (2) dz——/

Vu(2kz.p+zp+zwp+l)
+ /
0 (]

n
Zepsyu
(2.6.41)

Expressing the solution in this form has two distinct advantages. First, con-
vergence problems for small times are eliminated; second the need to “patch” the
infinite reservoir solutions and the bounded reservoir solutions is eliminated since
Egs. 2.6.29 and 2.6.40 can also be used for the transient period.

Table 2.6.1 presents the dimensionless pressure, p,, p, for a uniform-flux vertical
fracture located at the center of a closed homogeneous reservoir as a function of
dimensionless time, tps (Eq. 2.6.28). In Table 2.6.1, Ap is the dimensionless
drainage area (Ap = A/L? ,) and can be considered to be the measure of fracture
penetration in the lateral direction. Four values of Ap are considered; Ap = 4,
16, 100, and 400. Dimensionless pressures presented in Cols. 1, 3, 5, and 7 are for
vertical fractures in cylindrical reservoirs (Ap = nr2,) computed from Eq. 2.6.22
and the dimensionless responses presented in Cols. 2, 4, 6, and 8 are for vertical
fractures located at the center of square drainage regions (z:,p = y.p; Ap = a:ZD)
computed from Eqgs. 2.6.24 and 2.6.29. Dimensionless pressures presented in Table
2.6.1 for square drainage regions are in excellent agreement with those given by
Ref. 10. As expected, at early times excellent agreement is obtained between the
dimensionless pressures for cylindrical and square drainage regions. At late times,

dimensionless pressures for cylindrical drainage regions are slightly lower than those
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TABLE 2.6.1

UNIFORM-FLUX VERTICAL FRACTURE IN A BOUNDED RESERVOIR

Ap=4 Ap =16 Ap =100 Ap = 400
tpa
PwD PwD PuwD PuD PuwD PwD PuD PwD
CIRCLE { SQUARE | CIRCLE | SQUARE | CIRCLE | SQUARE | CIRCLE | SQUARE
1.0 x 104 0.0354 0.0354 0.0709 0.0700 0.1773 0.1773 0.3545 0.3545
1.5 x 10™4 0.0434 0.0434 0.0868 0.0868 0.2171 0.2171 0.4340 0.4340
2.0x 1074 | 0.0501 0.0501 0.1003 0.1003 0.2507 0.2507 0.5007 0.5007
3.0x 107*{ 0.0614 0.0614 0.1228 0.1228 0.3069 0.3070 0.6105 0.6103
4.0x 1074 | 0.0709 0.0709 0.1418 0.1418 0.3545 0.3545 0.6299 0.6999
5.0x 104 0.0793 0.0703 0.1585 0.1585 0.39C3 0.3963 0.7756 0.7757
6.0x 107* | 0.0868 0.0868 0.1737 0.1737 0.4340 0.4340 0.8414 0.8413
8.0x 10~* | 0.1003 0.1003 0.2005 0.2005 0.5007 0.5007 0.9515 0.9513
1.0x 1072 o0.1121 0.1121 0.2243 0.2243 0.5588 0.5588 1.0417 1.0417
1.5 x 1073 0.1373 0.1373 0.2746 0.2746 0.6790 0.6790 1.2145 1.2145
2.0x 1072 | 0.1585 0.1585 0.3171 0.3171 0.7756 0.7757 1.3427 1.3427
3.0x 107 | 0.1042 0.1942 0.3883 0.3883 0.9261 0.9261 1.5204 1.5294
4.0x 1073 | 0.2243 0.2242 0.4482 0.4482 1.0417 1.0417 1.6650 1.6630
5.0x 1072 | 0.2507 0.2507 0.5007 0.5007 1.1355 1.1355 1.7716 1.7716
6.0 x 1073 | 0.2746 0.2746 0.5477 0.5477 1.2145 1.2145 1.8594 1.8594
8.0x 1073 | 0.3171 0.3171 0.6297 0.6298 1.3427 1.3427 1.9990 1.9990
1.0x 1072 | 0.3545 0.3545 0.6999 0.6999 1.4447 1.4447 2.1080 2.1080
1.5x 1072 | 0.4340 0.4342 0.8414 0.8414 1.6344 1.6344 2.3073 2.3073
2.0x 1072 | 0.5008 0.5013 0.951% 0.9515 1.7716 1.7716 2.4494 2.4494
3.0x 1072 | 06116 0.6140 1.1182 1.1183 1.9676 1.9676 2.6505 2.6505
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TABLE 2.6.1 (Cont.)
UNIFORM-FLUX VERTICAL FRACTURE IN A BOUNDED RESERVOIR

tha Ap=4 Ap =16 Ap = 100 Ap = 400
PvD PwD PwD PwD PuwD PwD PuD PuD
CIRCLE | SQUARE | CIRCLE | SQUARE | CIRCLE | SQUARE | CIRCLE | SQUARE
4.0x 10"t 0.7031 0.7002 1.2435 1.2442 2.1084 2.1086 2.7937 2.7040
5.0x 1072 | 0.7860 0.703% 1.3454 1.3469 2.2174 2.2201 2.9043 2.090¢8
6.0 x 1072 0.8625 0.8708 1.4279 1.4355 2.3070 2.3140 2.9057 3.0016
8.0x 1072 | 1.0038 1.0127 1.5857 1.5892 2.4699 2.4732 3.1584 3.1018
1.0x 107 | 1.1202 1.1458 1.7149 1.7273 2.6027 2.6136 3.2018 3.3025
1.5 x 107! 1.4444 1.4652 2.0392 2.0502 2.9281 2.9381 3.6173 3.6273
2.0x 1074 1.7597 1.7801 2.3519 2.3655 3.2420 3.2537 3.9312 3.9429
3.0x107% | 2.3876 2.4085 2.9827 2.9940 3.8700 3.8823 4.5502 4.5715
4.0 x 107! 3.0155 3.0369 3.6103 3.6224 4.4985 4.5106 5.1877 5.1908
5.0 x 101 3.6433 3.6652 4.2383 4.2507 5.1271 5.1389 5.8163 5.8281
6.0x 1071 | 4.2741 4.2035 4.8667 4.8790 5.7555 5.7672 6.4447 6.45064
8.0 x 107! 5.4815 5.5501 6.1232 6.1356 7.0120 7.0239 7.7012 7.7131
1.0x107° | 6.7747 6.8068 7.3798 7.3923 8.2686 8.2805 8.9579 8.9697
1.5x107°} 9.9256 9.9484 10.521 10.534 11.410 11.422 12.099 12.111
2.0x107°| 13.068 13.090 13.663 13.675 14.552 14.564 15.241 15.253
3.0x 107% | 19.351 190.373 19.946 19.959 20.835 20.847 21.524 21.536
4.0x107°} 25.634 25.656 26.229 26.242 27.118 27.130 27.807 27.819
5.0x107°§ 31.018 31.940 32.513 32.525 33.401 33.413 34.091 34.102
6.0 x 107° | 38.201 38.223 38.796 38.808 39.685 39.696 40.374 40.386
8.0 x 107% | 50.767 50.789 51.362 51.375 52.251 52.263 52.040 52.952
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for square drainage regions.

IV. Horizontal Well, Bounded Reservoir The objective of considering this ex-

ample is to discuss the computation of “double infinite Fourier series” that are typ-
ical of wells with limited entry (partially penetrating wells, horizontal wells, etc.).
Since many unsuccessful experiences have been reported concerning the use of so-
lutions involving double or multiple infinite series, we include an example of this
kind. (One of the advantages of Newman’s method discussed by Gringarten and
Ramey?® is that the computation of multiple infinite series is avoided.)

As shown in §2.3 (Eq. 2.3.8), the dimensionless pressure for a horizontal well
in an isotropic (k = k, = k; = k) rectangular drainage region with sealed top and

bottom boundaries is given by

Pp =Pps +Fy, (2.6.42)

where Pp; is the fully penetrating vertical fracture solution given by Eq. 2.6.24 (or
2.6.29) and F, is given by

-F1=

E COSNTZp COS NK 2w D
n=1

chvu + a(yep — |Yyp — Yuwp]) + ¢hvVu + alyep — (Yp + Yup)]
Vu+a sh\/u + ayep

+ - E COSNT2Zp COSNT 2y D Z —sinkw

ZeDS

(2.6.43)

TyD I
cos kr =22 cos kr =2
ZeD ZeD ZeD

chvu + b(y.p — lyp — ywp|) + ch\/u + blyep — (VD + Yup)]
Vu + b shv/u + by.p

]

where a = n272L%, b = n?n2L2 + k?x2/z2), and 2p and Lp are defined by
Eqgs. 2.6.6 and 2.6.7 respectively. In Eq. 2.6.42 the bottom left hand corner of the
reservoir is assumed to be the origin. The location of the well center is determined
by zZwp, Yuwp, and z,p. The measures of the sides of the rectangular drainage
region are z.p and y.p. ch(z) and sh(z) denote hyperbolic cosine a.nd hyperbolic

sine functions respectively.
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Points pertinent to the computation of the fracture solution, Ppy, have been
discussed above. Similar to the computation of the fracture solution, Pp; (Egs.
2.6.24 and 2.6.29), we have found that for tp4 > 1072, F, can be computed from
Eq. 2.6.43 without difficulty provided that the relations given by Egs. 2.6.25 -
2.6.27 are used to compute the ratio of hyperbolic functions, ¢k () /sh (8), when
the arguments of the hyperbolic functions become large.

We now consider the computation of F; for small times (tpa < 1072). Using

the relation given by Eq. 2.6.27, we can write F; as

= 2T = COSNT2Zp COSNT 2y p (
F, = exp | —y/u + n?n2L2 -
! Z.p$8 nX=:1 1/u+n27r2L% P D|yD wa’
+T2 +.F—1,1 +f52, (2.6.44)
where

sin km—L— cos knEwR cos ky ZB-
XeD ZeD TeD

=1
COSNTZpD COSNTZy D E I

33
n=1 k=1 \/u +n2n2L% + 1‘;5’-';
e

My
©

I
» |
[~]e

k272
exp | —y/u+n?72L% + p lvb — yup| |, (2.6.45)
eD

oo
Foy = 2n Z cosnmzp Cos n";wD e=Vutn?n?LE (yp+yup)
ZepS S Ju+n2a2l}

+e"\/u+n=’|”L:> [2yeD"(yD+wa)] + e-\/ u+ﬂ’ﬂ”1—f>(2yen—|yn—ywp!)]

o0
[1 + E exp (—-Zm\/u + n27r2L2DyeD>]
m=1
o0
+e~Vutn*mLlLlyp-vun] E exp (_2,7“ [u + nz,TzL%yeD) }, (2.6.46)
m=1

and

oo
Fpp = — E COS NTZp COS N 2y
8

©o : 1 x Lo .
T e 2D ZwD
Z 1 sin k Z. cos k7 z. cos kn Ze
k
n=1 k=1

\/u +n2n2Lp + £

Zep
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{[ —\/;+n’"21‘:>+%’-’3(yp+va) -\/u'i'ﬂ’"’L:D'f":' 252 2yep~(yp+yup))
e e +e

- \/u+n=n’L},+“5’3 (2yeb_lyb_ywbl)]
“+e eD

> k272
1+ E exp | —2my[u + n?72L% + ——y.p
m=1 TeD

-~ futninaL3 +Lﬁ1|yp—vmpl k272
+e \f Z exp | —2my[u + n?m2L% + ——vy.p | -
m=1 IeD
2.6

(2.6.47)
Consider now F, given by Eq. 2.6.45. We can write F; as
— 4 & b zwotl X cos kwﬂﬂ cos n =2
Fo=- COSNTZp COSNT 2y p —— / ZeD “;"2
S st 22D Joup=1 i yfutn?n?L3 + B2
k272
exp | —y/u+n2n2L% + 2 lvp — vup! } dzlp. (2.6.48)
€

Using the relation given by Eq. 2.5.14 in §2.5 and making the change of variable
o = Typ — T, p, We can put F, in the following form:

(> o]
Fo=- E €COSNTZp COSNTZywp
s

n=1

+1 +oo
/ Z Ko [\/(ID ~zup ~ 2kzep — @) + (yp — wa)z\/u + nzsz%jI

-1 oo

+Kp [\/(:rp + Twp — 2kTep — @) + (yp - wa)z\/u + n27r2L%] }da

COSNTZp COSNT 2y D
z:eps E == exp (— u+ nzﬂzL%IyD - ywnl) . (2.6.49)

- Vu+t n27r2LD§

Then we can write

—— — -— COSNA2Zp COSNTZy D
Fo=F+4Fp3 — exp(-— u+n2r2L%|yp — D),
zensnzzl Vu+n?n2l% ol vor|

(2.6.50)
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where
1 [+ ]
F =~ E COSNTZp COSNTZy D
s
" n=1 (2.6.51)
Ko \/(:z:p ~zwp — a)’ + (yp - wa)2\/; + nzﬂzL%] da,
-1
and

(o o]
- 1
Fys = 3 E COSNT2Zp COSNT 2y D

n=1

+1 7 . >
K, \/(zp-!—xwp—a) + (yp — Yup) \/u+n27r2L2D} do
-1 L

— [* [ 2 2
+ Z / . K, L\/(:1:1; ~zyp — 2kz.p — &) + (yp — YuD) \/u + nngLzD]
k=1""

+ Ko {\/(ID + Zyp — 2kz.p — a)2 +(yp — wa)z\/u + n27r2L2D]

+Ho [\ﬂzp — zup + 2kz.p — @)* + (vp - wa)z\/u + n27r2L%]

+Ko [\/(zp + Zyp + 2kzp — )’ + (yp — ywp)z\/u + n%r'—’L%} }da}.

(2.6.52)
From Egs. 2.6.44 and 2.6.50, we obtain
Fy =F + Fy, (2.6.53)
where
Fo=Fo1 + Foo + Fus (2.6.54)

and F, Fy1, Fpp, and Fps are defined respectively by Egs. 2.6.51, 2.6.46, 2.6.47, and
2.6.52. In Eq. 2.6.53, the function F is the pseudoskin function for a horizontal well
in an infinite reservoir. The function F; physically represents the influence of the
reservoir boundaries on the pseudoskin function, F. Then, basically this procedure

involves writing F; in a form similar to Eq. 2.6.19.



To compute the integrals appearing in Egs. 2.6.51 and 2.6.52 at yp = yup, the
relations given in §2.5 can be used. For example, for |zp —z,p| < 1and yp = yu.p,

using Eqs. 2.5.1 and 2.5.2, Egs. 2.6.51 and 2.6.52 can be written respectively as

COSNT2p COS N2y D

3
Vu+nn2l3

1 oo
F(zp,zup,Lp) = - >
n=1

Vu+tall-(z2p-zwp)] Vu+ta|l+(zp=~zwp)] (2'6'55)
/ Ko(z)d2+/ Ko(z)dz s
0 0
and
- _1 i COSNTZp COS N2y D
Ppu3 S — m
Vuta(zp+zwp+1) VeFa(zp+zup—1)
/ Ko (2)dz — / Ko (2) dz
(4] 0
oo Vuta(2kz.p~zp+zwp+1) \/ﬁ;(%zep—zpﬁ-zwp—l)
+Z / KO(Z)dZ“‘/ Ko(z)dz
k=1 0 0
Vu+ta(2kzep+zp-zup+1) Vu+ta(2kz.p+ap—zyp—1)
+/ Ko(z)dz—/ Ky(z)dz
0 0
Vu+a(2kzep—ap—2wp+1) Vu+ta(2kz.p-zp-zwp~1)
+/ Ko(z)dz-/ Ko(z)dz
0 0
Vu+ta(2kz.p+zp+zup+1) Vuta(2kz.p+zp+zep—1)
+/ Ko(z)dz—-/ Ko(2)dz| p, (2.6.56)
0 0

where @ = n272L%. In light of the remarks following Eq. 2.6.9, using Egs. 2.5.6
and 2.5.14, we finally obtain the following alternate forms of the functions F and

Fy3 to be used for small values of time for |zp — zwp| < 1and yp = yup:

+oo
_ 1 |zp — zwp — 2nl\/17 lz2p + 2up — 2n[ﬁ
~ 2Lps z [Ko ( Lp ) + Ko ( Lp

L= - ]

|

©0
1 Z COSNT2Zp COS NT 2y D
n=1

{Kil [M[l — (zp - pr)]] + K1, [\/u_+_a[1 + (zp - z.,,p)]} } (2.6.57)
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and

[ o]
_ COSNMZp COSNT 2y D
PDb3 = § ,

Vvu—+a

{ s [Vt + 2+ )] - s [VEF el + 200~ 1)

+ i Ki, [\/u +a(2kz.p —zp + Zup + 1)]
k=1

—-Ki; {Vu+a(2kz.p —zp + zup — 1)

+Ki; {Vu+a(2kz.p +zp — zyp + 1)J

Q

—-Ki; |Vu+a(2kz.p +zp —z,p — 1)

[}

|
|
|
+Ki, {\/&T—(Zklep —ZIp—zyp+ 1)}
—Ki, [m (2kZep ~ Zp — Zwp — 1)]
[V

+K1; [Vu 2kIeD +ID+IwD+1)]

~Ki, [\/u F a(2kZep + Tp + Tup — 1)]} } (2.6.58)

In practical terms, correspondents have suggested to us that boundary effects
may not be ignored when tests in horizontal wells are analyzed because horizontal
well lengths are comparable to the dimensions of the reservoir. Thus the computa-
tional techniques suggested above should be extremely useful.

Tabulations of horizontal well responses computed with the aid of Egs. 2.6.42
and 2.6.53 for all times (infinite acting and boundary-dominated flow periods) are
given in Table 2.6.2. The well is assumed to be located at the center of a homo-
geneous (u = s), closed square drainage region (ZeD = YeDs TwD = YuD = Zep /2,
zyp = 0.5). The dimensionless horizontal well half-length, Lp = 10, and the di-
mensionless wellbore radius, r,p = r/h = 2 x 1073, The dimensionless time, tp 4,
used in Table 2.6.2 is defined by Eq. 2.6.28 |with Ap = (2z./ Lh)2]. The responses
shown in Table 2.6.2 are for the uniform-flux case; that is, we computed well re-

sponses at zp = 0, yp = 0, and 2p = zyp + ryp (see Ref. 5 and Chapter III for
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details). Also shown in Table 2.6.2 are the responses computed from the real time
solution obtained by using the source functions of Ref. 3. The appropriate solution

is given by

pp = / 1+2 Z exp (— 5
0 n=1 yeD

YeD YeD

) YuwD Yo
Tcosnw cosnmw
ZeDYeD

[ 2z.p w1 n?n? \ . 1 ZTwD zZp
14— Z —exp | ———7 |sinn7w cosnmw cos nir (2.6.59)
e T.p ZeD ZeD ZeD

F oo nng
1+2 Z exp <-— )
L n=1 hD

The responses computed by using the Laplace domain solution (Eq. 2.6.42) and the

r) COS N7 2y COS nwzp] dr.

real time solution (Eq. 2.6.59) are in excellent agreement for all times and for all
reservoir sizes considered (z.p = 2, 4, 10, and 20). (Unlike Eq. 2.6.59, however, Eq.
2.6.42 can be readily extended to solve more complicated problems.) Early time
responses given in Table 2.6.2 are also in excellent agreement with infinite reservoir
system responses noted in Ref. 5 and in Chapter IIl. Results for horizontal wells in
bounded reservoirs are not discussed in the literature. The results given in Table
2.6.2 are intended to serve as a reference to other researchers.

In the subsequent sections of this chapter, we will consider further applications
and extensions of the solutions presented in the previous pages. This will include
obtaining asymptotic forms of our solutions by using the properties of the Laplace
transformation technique and the extension of the solutions to situations that in-
corporate wellbore storage and skin effects and to the case where production is at

a constant wellbore pressure.

2.7 Asymptotic Approximations

One well documented advantage of obtaining solutions by the Laplace transfor-
mation technique is that it is possible to readily obtain solutions that are useful for
small and large values of time. The principal advantage of the asymptotic solutions
is that they provide information on the structure of the solutions and thus are use-

ful for correlating purposes. Of immediate importance to our work, the asymptotic
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UNIFORM-FLUX HORIZONTAL WELL IN A CLOSED SQUARE

TABLE 2.0.2
Lp =10
ZuwD = 0.5

rop =2 x 1073

z.p =12 z.p=4 z.p = 10 z.p = 20
lpa
PwD PuD PuwD PuwD PuwD PuD PuD FubD
Eq. 2.6.42 | Eq. 2.6.59 | Eq. 2.6.42 | Eq. 2.6.59 | Eq. 2.6.42 | Eq. 2.6.50 | Eq. 2.6.42 | Eq. 2.6.50
1.0 x 104 0.2505 0.2505 0.2897 0.2897 0.3961 0.3961 0.5733 0.5733
1.5 x 107 0.2608 0.20608 0.3057 0.3057 0.4359 0.4359 0.6529 0.6529
2.0x 1074 0.2684 0.2684 0.3191 0.3191 0.4695 0.4605 0.7196 0.7105
3.0x 10" 0.2801 0.2801 0.3416 0.3416 0.5258 0.52:8 0.8293 0.8293
4.0x 10" 0.2897 0.2807 0.30606 0.3606 0.5733 0.5733 0.0187 0.0188
5.0 x 1074 0.29081 0.2981 0.3774 0.3774 0.6152 0.6151 0.0945 0.9945
6.0 x 107* 0.3057 0.3057 0.3925 0.3925 0.6529 0.6529 1.0602 1.0602
8.0 x 10™¢ 0.3191 0.3191 0.4194 0.4194 0.7196 0.7195 1.1704 1.1703
1.0 x 1073 0.3309 0.3309 0.4430 0.4430 0.7775 0.7776 1.2605 1.2605
1.5 x 1073 0.3561 0.3561 0.4934 0.4934 0.8979 0.8979 1.4333 1.4333
20x 1073 0.3774 0.3774 0.5359 0.5359 0.9945 0.9945 1.5617 1.5016
3.0 x 107? 0.4130 0.4130 0.6071 0.6071 1.1450 1.1450 1.7482 1.7482
4.0 x 1073 0.4430 0.4430 0.6670 0.6670 1.2605 1.2605 1.8838 1.8838
5.0 x 1072 0.4695 0.4G95 0.7196 0.7195 1.3544 1.3544 1.9904 1.9904
6.0 x 1073 0.4934 0.4034 0.7665 0.7665 1.4333 1.4333 2.0781 2.0782
8.0 x 107 0.5359 0.5359 0.8485 0.8486 1.5617 1.5616 22178 2.2178
1.0 x 1072 0.5733 0.5733 0.0187 0.9188 1.6636 1.6635 2.3268 2.3268
1.5 x 10™2 0.6530 0.6530 1.0602 1.0602 1.8531 1.8532 2.5261 2.5262
2.0x 10~32 0.7202 0.7202 1.1704 1.1703 1.9504 1.9504 2.6681 2.6683
3.0x10"? 0.8328 0.8329 1.3372 1.3372 2.1866 2.1865 2.8695 2.8694
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TABLE 2.0.2 (Cont.)
UNIFORM-FLUX HORIZONTAL WELL IN A CLOSED SQUARE

Lp =10
z,p =05

rep = 2 x 107°

zep =2 z.p= 4 z.p = 10 z.p =20
lpa
FuD PwD PuD FwD PuD FuwD FuD Pul
Eq. 2.6.42 | Eq. 2.6.50 | Eq. 2.6.42 | Eq. 2.6.50 | Eq. 2.6.42 | Eq. 2.6.50 | Eq. 2.6.42 | Eq. 2.6.57
4.0x 1072 0.9280 0.9280 1.4631 1.4631 2.3274 2.3275 3.0128 3.0i2¢%
5.0 x 1072 1.0124 1.0124 1.5658 1.5658 2.4388 2.4389 3.1254 3.1257
6.0 x 1072 1.0808 1.0896 1.6543 1.6544 2.5326 2.5328 3.2203 3.2205
8.0 x 1072 1.231% 1.2316 1.8078 1.8081 2.0017 2.6021 3.3803 3.380¢
1.0 x 107 1.3646 1.3646 1.9461 1.9461 2.8325 2.8325 3.5213 3.5214
1.5 x 107! 1.6842 1.6841 2.2692 2.2600 3.1572 3.1570 3.84€5 3.84C1
2.0x10"! 1.9993 1.9990 2.5846 2.5844 3.4732 3.4726 4.1619 4.1618
3.0x 107! 2.6274 2.6274 3.2131 3.2129 4.1011 4.1011 4.7880 4.7903
4.0 x 107! 3.2558 3.2557 3.8411 3.8412 4.7203 4.7294 5.4185 54180
5.0 x 107¢ 3.8842 3.8840 4.469%4 4.4€05 5.3578 5.3577 6.0470 €.0400
6.0 x 10°* 4.5124 4.5124 5.0078 5.0979 5.08C02 5.98¢1 6.6753 6.6753
8.0 x 107¢ 5.7692 5.7600 6.3544 6.3545 7.2428 7.2427 7.0318 7.9319
1.0x107° 7.0254 7.0256 7.6115 7.6111 8.4905 8.49903 0.1887 0.1885
1.5 x 107° 10.168 10.187 10.753 10.753 11.640 11.641 12.330 12.330
2.0 x 107° 13.309 13.300 13.895 13.804 14.783 14.783 15.472 15.472
3.0 x 107° 19.592 19.552 20.179 20.178 21.067 21.066 21.755 21.755
4.0x107° 25.876 25.875 26.462 26.461 27.350 27.349 28.038 28.038
5.0 x 10~° 32.159 32.158 32.745 32.744 33.635 33.632 34.322 34.321
6.0 x 10~° 38.439 38.442 39.024 39.027 39.018 39.915 40.605 40.604
8.0x10™° §1.012 £1.008 51.594 51.593 52.479 52.482 53.171 53.171
1.0 x 104 63.578 63.574 64.162 64.160 65.048 65.048 ©5.738 65.737
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expressions derived here enable us to compute shape factors and effective wellbore
radii for many systems of interest. As a direct result of the long time approximations
of vertically fractured well and horizontal well solutions in cylindrical coordinates,
expressions to compute the shape factors for vertically fractured wells and horizon-
tal wells in cylindrical reservoirs are obtained. Most interesting {and surprising),
the closed form expressions we present for the shape factors for vertical wells and
vertically fractured wells in rectangular drainage areas are much simpler than those
given in the literature. We also present an expression to compute the shape factor
for a horizontal well in a closed rectangular drainage volume. These expressions
are extremely useful for computing stabilized inflow equations for various systems
of interest.

Before proceeding further, we make note of the fact thaf we examine responses
in a naturally fractured reservoir. Thus, we first note the asymptotic forms of the
function f(s) given by Eq. 2.1.23. As s becomes large, it can be shown that the
function f(s) approaches w sufficiently fast and therefore we can write the following:

lim

s—+oof(s) =w (2.7.1)

Similarly for small values of s, the function f(s) can be approximated, by

lim

oyl @ =1 (2.7.2)

We will employ the relations given by Egs. 2.7.1 and 2.7.2 in the following examples.

1. Short Time Approximations As noted in §2.6, solutions for bounded reser-

voirs can be expressed in the following form:

Pp =Ppins + PDb» (2.7.3)

where Pp,,,; is the appropriate solution for an infinite reservoir and pp,, represents
the terms due to the boundaries of the reservoir. Once the bounded system solu-

tions are written in the form given by Eq. 2.7.3, it can be easily shown that the
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contribution of the term pp, representing the influence of the boundaries is negligi-
ble at early times (s — oo0). For example, examining the appropriate relations given
in §2.6 (Egs. 2.6.22, 2.6.40, and 2.6.54), we can decide that 5, = f [Ko (am)]
and since lim;—o Ko(z) = 0, Pp, = 0. Therefore, the short time approximation
of the bounded system solutions are obtained in the same fashion as in the case of
infinite system solutions. An alternative approach to obtain the short time approx-
imations of the solutions for rectangular drainage areas is discussed in Appendix
C. This approach basically involves replacing the ratios of hyperbolic functions
appearing in the solutions given in Table 3 of Appendix A and then approximat-
ing the resulting expression for small values of time. Here we will only examine
the procedure to obtain the short time approximation of the solutions for laterally
infinite resevoirs. We will consider two examples: a fully penetrating vertically
fractured well and a horizontal well in an isotropic reservoir with impermeable top
and bottom boundaries. We will assume that the center of the well is at the origin
(fuD = yuwp = 0).

We first examine the short time approximation of the vertically fractured well

solution given by Eq. 2.6.1 and repeated below for convenience.

Pp = -éls- /-‘:1 Ko [\/E\/(:rp —a)’ + yf)] da. (2.7.4)

Using the integral representeation of Ky(z) given by??

Ko(z) = %/Ooo exp ( £~ -f—) -d-g [R(z?) > 0], (2.7.5)

and y
o&

/+1exp [_ (2 _4?)%];: \/\;r_;f [erf(l ;;}E_\/E + e,fﬂ_‘%%_\/i] . (2.7.6)

Eq. 2.7.4 can be put in the following form:

Pp = ~— / exp (— £exp(v :/é’) [erf-(-}—-tz—%lﬁ+e (1—23\5/{)\/—] \(/2??7)

-1
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In order to obtain a short time approximation, we evaluate Eq. 2.7.7 as s — oo.

By using Eq. 2.7.1, we first replace u by sw in Eq. 2.7.7. Also noting that
lim erf(1+zp)\/.sw f(1—::13)\/.'511)

S — 00 2\/? + er 2\/2 =ﬁ’ (27.8)
where
2 for |zp| <1,
B=4q1 for [zp|=1, (2.7.9)

0 for |zp|>1,
we can approximate Eq. 2.7.7 as s — oo by the following expression:
V7B /°° wsy?, d¢
Pp = — exp(~¢&)exp | — . 2.7.10
Pp 45 o Y ( E) p 4£ \/‘l_l.)-zg ( )

Evaluating the integral in the right hand side of Eq. 2.7.10, we obtain

Pp = Z\/——% exp (—|yp [vws) . (2.7.11)

Applying the inversion theorem for the Laplace transformation to Eq. 2.7.11, we
finally obtain the following short time approximation for the vertical fracture solu-

tion:

_5 vV exp | — v — erfc _lvol
”D“z[ mtp /v p( 4tDD/w) 2w ¥P| f(z\/t]?{&)]' (2.7.12)

For w =1, Eq. 2.7.12 is identical to the short time approximation given by Ref. 10

for vertically fractured well solution (the expression in Ref. 10, Eq. 10 contains a
misprint).

We now consider the short time approximation of the horizontal well solution
given by Eq. 2.6.5. We can write the solution given by Eq. 2.6.5 in the following
form:

Pp =FPps + F, (2.7.13)

where P, is the vertically fractured well solution given by Eq. 2.7.4 and F is given
by
F=

LR

Z COSNTZp COSNT 2y D
n=1 (2.7.14)

.

+1
/ Ko [\/u +n2n2L% \/(::D - o)+ y%J da.

-1

[= o]
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In Eq. 2.7.14, zp and Lp are defined by Egs. 2.6.6 and 2.6.7. The short time
approximation of p; has been obtained above and is given by the right hand side
of Eq. 2.7.11. To obtain a short time approximation for F we first replace u by sw
in Eq. 2.7.14 in accordance with Eq. 2.7.1. Using Egs. 2.7.5, 2.7.6, and 2.7.8, we
can approximate F as s — oo by the following expression:

o0
— nf
F = e E COSNTZp COSNTZyp

n=1

[ (ws+n?1L3) h s
A exp exp 4¢ \/(w.s-{—nz?‘rzL%)E.

where § is defined by Eq. 2.7.9. Evaluating the integral in the right hand side of

(2.7.15)

Eq. 2.7.15, we obtain

©O
- Zrz_ﬂ_ Z COSNT2p COSNT 2y, D exp (“lyDl ws + n27r2L2D> . (2.7.16)
s

2,272
o Vws+n2w2Ls,

If we now use the relation given by Eq. 2.5.14 in §2.5, we can recast Eq. 2.7.16 in

the following form:

F= b '*f K, \/(z ~ zup —2n)% /L2 + y2 Vws
—.4LDS,;=__°° 0 D wD DT Y

2 n3
+ Ky [\/(ZD +zyp —2n)° /L% + y%\/ws] } o exp (—|yp|vws) .
(2.7.17)
Substiuting the short time approximation of oy, given by the right hand side of Eq.
2.7.11 and the short time approximation of F given by Eq. 2.7.17 into Eq. 2.7.13,

we obtain the following short time approximation for the horizontal well solution:

[
o = g “g_;w{xo (Voo — 2u — 207 123 + 53]

(2.7.18)

+Ko [\/ (20 + zwp — 2n)* /L3 + y%JrTs] }

For large s, we can also assume that

Ko [\/ (20 % zup — 20)2 /L2 + y%\/t;)_s] < K, [\/ (zp — 2p)? /L3 + 3 Jsz] ,
(2.7.19)
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for n > 0 (physically, this assumption means that the influence of the top and
bottom reservoir boundaries is not felt). Therefore, using the assumption stated
by Eq. 2.7.19, we obtain the following short time approximation for the horizontal

well solution:

Pp = 4IisK° [\/(ZD — 24p)* /L3 + v} Vws | . (2.7.20)

Applying the inversion theorem of the Laplace transformation to Eq. 2.7.20, we ob-
tain the following expression in real time domain describing the short time pressure

response of a horizontal well:

(2.7.21)

oo = B Ei [_ (20 — zup)* /L% +y%].

- 8Lp 4tD/w

For w = 1 (homogeneous reservoir), the short time approximation given by Eq.
2.7.21 is identical to that obtained in Refs. 37, 38, and 5 by using the source
function approach of Gringarten and Ramey. The short time pressure behavior of

horizontal wells will be discussed in Chapter III in detail.

II. Long Time Approximations, Infinite Reservoirs Here we derive the long

time approximations for vertical wells, vertically fractured wells, and horizontal
wells in reservoirs with impermeable top and bottom boundaries. Although the long
time approximations of vertical well and vertically fractured well solutions are well
known, and the long time pressure behavior of horizontal wells in infinite reservoirs
will be discussed in detail later in Chapter III, this information is presented here
mainly to help develop some of the ideas in the following parts of this section.

We first consider the long time approximation of the vertically fractured well
solution given by Eq. 2.7.4. For small s (late times), replacing u by s as indicated
by Eq. 2.7.2, and using the following approximation for the Bessel function Ko(z)

suitable for small arguments

Ko (avz) = —In(e"ay/z/2), (2.7.22)
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where 7 is Euler’s constant (7 = 0.5772...), we can write
Ko(fpV/s) = —In (e7FpV/s/2) . (2.7.23)

Using Eq. 2.7.23 in Eq. 2.7.4 and evaluating the integral, we obtain the following
expression in Laplace domain describing the long time pressure behavior of vertically

fractured wells in infinite reservoirs:

1 1 v, 14+0(zp,yp)
= —— —In4 - — , 2.7.
pD 23 ln3+ 23 n S -+ R ( 24)

where o(zp,yp) is defined by
o(zp,yp) = 0.25{(:59 —1)In [(:cD - 1)2 + y%]

2yp
- 1)1 [ 1)? 2]_2 tan—s——ea— 3,
(zp+ ) In|(zp + 1) +yp YD arc anz%+y%_1

and is the pseudoskin factor defined by Eq. 22 of Ref. 10. Evaluating the Laplace
inverse of the expression given by Eq. 2.7.24, we obtain the following long time

approximation for the vertically fractured well solution:
pp = 0.5 (ln tp + 0.80907) +1+40 (:cD,yD) . (2.7.26)

where tp is the dimensionless time based on the fracture half length, L;,. Eq.
2.7.26 is identical to the long time approximation given by Eq. 14 of Ref. 10.

If we replace fp by rp in Eq. 2.7.4, we obtain the solution for a vertical
well. Using Eq. 2.7.23 (with fp replaced by rp) in the resulting form of Eq. 2.7.4
and applying the inversion theorem of the Laplace transformation, we obtain the

following well-known long time approximation for the vertical well solution:
pp = 0.5(Intp + 0.80907) — Inrp. (2.7.27)

where tp is based on the wellbore radius, r,,.
To obtain a long time approximation for the horizontal well solution given by

Eq. 2.7.13, we assume that s is small enough that \/u + 7127r2LD§ ~ nrLp (where
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we use Eq. 2.7.2 to replace u by s for small s). Then the appropriate approximation

for F (Eq. 2.7.14) for small values of s is given by

_ 1 -] “+1
F= 3 Z COSNTZp COSNTZyw D / Ko [mrLD \/(J:D - 0)2 + y%} da. (2.7.28)
n=1 -1

Using the long time approximation of the fracture solution given by Eq. 2.7.24 and
the long time approximation of F given by Eq. 2.7.28 in Eq. 2.7.13 and then apply-
ing the inversion theorem of the Laplace transformation to the resulting expression,
we obtain the following approximation describing the long time pressure behav-
ior of horizontal wells in an infinite reservoir with impermeable top and bottom

boundaries:
pp = 0.5 (Intp + 0.80907) + 1 + o (zp,yp) + F (zp,¥D, 2D, 2wp, Lp), (2.7.29)

where o(zp,yp) is defined by Eq. 2.7.25 and F(zp,yp,2p,2wp,Lp) is given by

e o]
F(zp,yp,2D,2up,Lp) = Z COSNTZp COSNTMZyp
n= (2.7.30)

+1
/ K, [mrLD \/(zp -a)’ + y%j] da.

-1

Computational issues involved in the evaluation of the function F has been discussed
in §§2.5 and 2.6 and will not be repeated here. We note, however, from Eqgs 2.6.11
and 2.6.12 given in §2.6 that for the evaluation of the wellbore responses (jzp| <

1,yp =0,2p = zyp + ryp), F can be written as

1 = cosnt (zyp + ryp) cOSNT2,,
F(lzp| < 1,yp =0,2p = 2yp + Twp) = 5— ) _ (zwp D) D
L‘D n=1 n
1 i cosn7 (2yp + ryp)COSNT2Zyp
{Kﬁ [n7Lp (1+ zp)] + K4y [n7Lp (1 - zD)]}_ (2.7.31)

(In obtaining the form of F given by Eq. 2.7.31, we replaced u+n2?x2L% by n?n?L%

in Eqgs. 2.6.11 and 2.6.12 as discussed above and then applied the inversion theorem
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of the Laplace transformation to the resulting form of Egs. 2.6.11 and 2.6.12.) Using

the relations3®

cos N7z, p cosni(2yp + rup) = 0.5[cosn7 (22, p + ryp) + cosnnry,pl (2.7.32)

and

>, cos kz 1 1
==-n—: <z <2 7.
1:2—:1 k 21n2(1—cosz)’[ z < 2n] (2.7.33)

we can write Eq. 2.7.31 as

F(lzp]|<1,yp =0,2p = zyp + ryp) =
(2.7.34)

1 m 7
— —1In [4sin— (2z24p + rwp) sin —rwp] - ¢ (zp,0,24p,7wp,LD),
2Lp 2 2

where

(e o)
1 cosnm (2yp + Typ) COSNT 2y p
¢ (2p,0,2up,*wD,Lp) = E
nLp

n
n=1

{Kil [nmLp (14 zp)] + K¢y [nmLp (1 - xp)]}.
(2.7.35)
Eq. 2.7.34 defines the pseudoskin factor for a horizontal well and is discussed in
detail in Chapter III.

Prats® and Prats et al.%° showed that the behavior of infinite-conductivity
vertical fractures can be represented by that of an unstimulated vertical well with
wellbore radius equal to one-quarter of the length of the fracture. The expression
for the equivalent wellbore radius, r!, I for vertically fractured wells can be obtained

by rearranging the long time approximation given by Eq. 2.7.26 as follows:

Ls, (2.7.36)

wp = 0.5 (Intp + 0.80907) — 1 ,
PuD (Intp + ) nr;!exp[1+a(zp,0)]

where {p is the dimensionless time based on the equivalent wellbore radius, re I

that is,

2
. L
ip =tp (—,ﬂ) . (2.7.37)
wa
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Comparing Eq. 2.7.36 with the late time response of a vertical well given by Eq.
2.7.27, we can decide that the long time performance of a vertically fractured well
can be represented by that of a vertical well with the equivalent wellbore radius,
T, s> given by

Tws = Lz, exp[~1-0(zp,0)]. (2.7.38)

The concept of equivalent wellbore radius can also be extended to horizontal
wells. Rearranging Eq. 2.7.29 and using Eqs. 2.7.34 and 2.7.35, we can write
Pop = 0.5 (Infp + 0.80907)
(Ln/2)® [4sin7 (24p + 242)sin 7 (£u2)] Lo (2.7.39)

1

- 0.51n

v Zexp[2(1+0-p))
where o and ¢ are given by Eqgs. 2.7.25 and 2.7.35, respectively, and {p is the

dimensionless time based on the equivalent wellbore radius, r! ,; that is,

- Ly \?
tp =tp (27_’ h) . (2.7.40)
w

Comparing Eq. 2.7.39 with the response of a vertical well (Eq. 2.7.27), we can
decide that a horizontal well is equivalent to a vertical well with the equivalent

wellbore radius given by

. Ly/2
Twh =
exp(l+o—¢p

A
] [4 sinm (zwp + %—2) sin nr—'uz—lz] e (2.7.41)

To our knowledge, the expression given by Eq. 2.7.41 has not been reported in the

literature.

IT1. Long Time Approximations, Cylindrical Reservoirs Here we derive the

long time approximations for vertically fractured wells and horizontal wells in closed
cylindrical reservoirs. Although it is well known, the long time approximation of
the vertical well solution is also presented here for continuity.

We first consider the long time approximation of the vertically fractured well
solution given by Eq. 2.6.20 and repeated below for convenience.

+1 fpvu) K (repJu
Pp = -21—8/_1 [Ko (Fovu) + o DI:/;)',IZ\/(E)D\/_)J da. (2.7.42)
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In Eq. 2.7.42, r.p is the dimensionless drainage radius and rp = \/(zp - cz)2 + 3.
The long time approximation of Eq. 2.7.42 can be obtained by evaluating it at the
limit as s — 0. Following Ref. 16, if we neglect the terms of the order of z% In z and
higher, then we can approximate the Bessel functions in Eq. 2.7.42 by the following

relations when their arguments become small:

Ko (avz) = —In (e"a/z/2), (2.7.43)
K; (avz) = a\l/E + a‘f (ln e"azﬁ - -12-) , (2.7.44)
Iy (av/z) = 1+ a%z/4, (2.7.45)
and 3.3/2
I (a/2) = a‘f + 2 126 (2.7.46)

In Egs. 2.7.43 and 2.7.44, ~ is Euler’s constant (v = 0.5772...). Using Eqs. 2.7.43 -

2.7.46 and Eq. 2.7.2, we can write the following expression as s — O:

S P (Fpy/3) K1 (rem/i)] -

s—0 I (repV/5) (2.7.47)
2 ro 3 7 o
5 +In—--4 =
T.p$S rp 4 2rcD

In obtaining the right hand side of Eq. 2.7.47, we have neglected the terms of the
order s3/2. Substituting the right hand side of Eq. 2.7.47 in Eq. 2.7.42 yields the

following relation as s — O:

-2 1 3\ , 1+o(zp,yp) , 6(zp,yp,"eD)
Po=aats (lnr,D ) + - + - . (2.7.48)
where o is defined by Eq. 2.7.49 and
2 1 3 _ -1 3
6 (zD’yD’reD) = D -+ (ID + ) (:L'D ) . (2749)

erD 12r3D
Applying the inversion theorem for Laplace transformation to Eq. 2.7.48 and defin-
ing

ip

4 = .7.50
DA 7"3[) ’ (2 )
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we obtain the following long time approximation for the pressure distribution in
a closed cylindrical reservoir produced via a fully penetrating vertically fractured

well:
pp =27tps+Inr.p —3/4+1+0(zp,yp) + 6 (zD,yp,TeD) - (2.7.51)

The general solution for a vertically fractured well in a closed cylindrical reser-
voir given by Eq. 2.7.42 and its long time approximation given by Eq. 2.7.51 have
not been reported in the literature. If we compare the numerical values obtained
from Eq. 2.7.51 with those given in Table 2.6.1 (Cols. 1, 3, 5, and 7) at late times,
we obtain identical values.

We now consider the long time approximation of the horizontal well solution
in an isotropic closed cylindrical reservoir. The general solution is obtained from

Table 2-E of Appendix A by using L = L, /2 and is given by
Pp =Pps + F + Fu, (2.7.52)

where Pp;, is the vertically fractured well solution given by Eq. 2.7.42 and F and
Fy are defined respectively by

[> o)
F(zDastzD,zstLD)z E COSNTZp COSNTM 2y D

n=1 (2.7.53)

+1
/ Ko (FD\/u + n27r2L2D> da,

-1

|

and

oo

Fy(zp,¥p,2D,2uwp,LD,Tep) = S E COSNT2p COS T2,
n=1

. /"’1 Io (;D \/m) K, (npﬁﬁ%) o (2.7.54)
-1 I (Tcpm)

In Eqs. 2.7.53 and 2.7.54, r.p is the dimensionless drainage area and fp =
2
\/(:rD —a)’ +y%.
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The long time approximation of the fracture solution, ppy, has been obtained
above and is given by the right hand side of Eq. 2.7.51. The long time approxima-
tions of the functions F and F are obtained by first replacing u by s in accordance
with Eq. 2.7.2 and then assuming that s is small enough that s+n?n%L% = n?72L2.
Evaluating the Laplace inversion of the resulting expressions, we obtain the follow-

ing long time approximations for F and F} in real time domain:

F(zp,yp,2D,2wD,Lp) = Z COSNTZp COS N2y D Ko (nmLptp) da,
n=1 -1
(2.7.55)
and

[~ o]
Fy(zp,¥D,2D,2wD>LD,Tep) = Z COS NTZp COS NT 2y,

=1 (2.7.56)
4 /“ Iy (nmLpfp) K\ (n"rLDTeD)da

-1 I1 (mrLDreD)

Note that the function F defined by Eq. 2.7.55 is the pseudoskin factor for a hori-
zontal well in an infinite reservoir (see §2.7 II). Using Egs. 2.7.51, 2.7.55, and 2.7.56
in Eq. 2.7.52, we obtain the following long time approximation of the horizontal

well solution:
pp =2ntpa+Inr.p —3/4+1+0(zp,yp) +6(zp,yp,7ep) + F + Fp. (2.7.57)

In Eq. 2.7.57, tp4 is defined by Eq. 2.7.50.

Due to their simplicity, Eqs. 2.7.51 and 2.7.57 can also be used to define the
shape factors for vertically fractured wells and horizontal wells at the center of a
cylindrical reservoir. In the following, we shall derive the appropriate expressions
for the shape factors for vertically fractured wells and horizontal wells in closed
cylindrical reservoirs.

If we replace fp in Eq. 2.7.42 by rp, then we obtain the solution for a fully
penetrating vertical line source well in a closed cylindrical reservoir. Substitution
of Eq. 2.7.47 (with ¥p replaced by rp) in Eq. 2.7.42 and evaluation of the inverse

Laplace transform of the resulting expression yields the following well-known long
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time approximation for a vertical well:

D
2"319

pp =27mtpa +1In 2 —3/4 + (2.7.58)
D

In Eq. 2.7.58, tp, is defined by Eq. 2.7.50. (In this case, the reference length,
L = r,, where r,, is wellbore radius.) When considering wellbore responses (rp = 1),
assuming that r.p > 1, we can neglect the last term in the right hand side of Eq.

2.7.58 and write the following well-known expression:
Puwp = 27tps +Inr.p ~ 3/4. (2.7.59)

We will now derive the expressions for the shape factors for the systems under
consideration. The long time expression for the wellbore response of vertical wells

(Eq. 2.7.59) can be written as*!

4A

Pwp = 2mtpa +0.51n m

(2.7.60)

Here A is the drainage area, v is Euler’s constant (y = 0.5772...), C4 is the shape
factor which depends only on the geometry of the drainage area and the location
of the well within the drainage area (for a vertical well in a circular reservoir,
L =r, and C4 = 31.62). Eq. 2.7.60 also implicitly assumes that v/A/r, is
large. By analogy to Eq. 2.7.60 the dimensionless pressure on the surface of a fully
penetrating vertical fracture {{zp| < 1,yp = 0) can be written from Eq. 2.7.51 as

4A62[1+a(zp,0)+6(:cp.0.r,p)}

C7CAL21

Pup =2mtps +0.51n (2.7.61)

10,39.40,42

In many instances , an effective wellbore radius, r/ has been defined

by
ry = L., exp[—1—0(zp,0)] (2.7.62)

and used in combination with Eq. 62 with L = r], to determine the productivities
of vertically fractured wells. As noted in Ref. 10 and shown above (see Eq. 2.7.38),
however, the effective wellbore radius formula given by Eq. 2.7.62 can be rigorously

established only for fractured wells in infinite reservoirs during the pseudoradial flow
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period. Comparison of Eqs. 2.7.51 and 2.7.60 suggests that, during pseudosteady

flow period, the effective wellbore radius, r;,, should be defined by
tw =Lz, exp{-1—-0(zp,0) — 6 (zp,0,r.p)]. (2.7.63)

Eq. 2.7.63 indicates, as noted in Ref. 10, that the eflective wellbore radius, r, , is a
function of the fracture penetration ratio, L., /r., during pseudosteady flow period.
If we wish to preserve the definition of the effective wellbore radius, r , given by
Eq. 2.7.62 during the pseudosteady flow period, then it is possible to define a shape
factor, C4y, for fractured wells as in Refs. 43 and 44. In this case, by combining
Egs. 2.7.61, 2.7.62, and 2.7.63, the shape factor for a vertically fractured well, C,¢,

can be related to that for a vertical well, C4, by the following relation:
Cay =Caexp[-26(zp,0,r.p)]. (2.7.64)

For small ratios of fracture penetration in the lateral direction, L., /r., 6 — 0 and
we have Cy4 &~ C4*°. Eq. 2.7.64 is the defining equation for the shape factor for a
vertically fractured well in a closed cylindrical reservoir.
By similar arguments, we can write the horizontal well solution given by Eq.
2.7.57 as follows:
4Ae2[1+0(zp.0)+6($p,0,r¢p)+F+Fb]

e1C4 (L1 /2)?

PuD =27ips +0.51n (2.7.65)

Eq. 2.7.65 suggests that the effective wellbore radius for a horizontal well during
pseudosteady flow period be defined by

!

v = —Li'lexp [-1-0(zp,0) -6 (zp,0,rep) — F — Fp). (2.7.66)

If we wish to preserve the definition of the effective wellbore radius determined in
§2.7 II from pseudoradial flow equations given by

o= Lh/2 [
Y exp(l4+o-—p)

e
4sin7 (z.,,p + rl;i) sin WMTD] o
(2.7.67)

= -Li’lexp[-—l -o(zp,0) - F],
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then we can can define the shape factor for horizontal wells in closed cylindrical

reservoirs by the following relation
Can = Caexp|-26 (zp,0,r.p) — 2F}, (2.7.68)
where C4 is the shape factor for a vertical well. The shape factor expressions given

by Eqs. 2.7.64 and 2.7.68 have not been reported in the literature.

IV. Long Time Approximations, Rectangular Drainage Areas Here, we

limit our discussion to obtaining long time approximations for vertical wells, ver-
tically fractured wells, and horizontal wells. We then derive expressions for shape
factors for these three well configurations. For discussion, assuming isotropy, the
pressure distributions in a closed rectangular drainage area produced via a vertical
well, a vertically fractured well, and a horizontal well are given, respectively, by (see

§2.3)

iDv = HT
TwD
g
z s { T
=P =P (2.7.69)
ch,/u+ (yeD - lyp —wa])+ch\/u+ [yeD — (vp + Yuwp)]
?
Vut 5 shyfut v
+ - E —sinkm cos kn D coskr D
z z z
eD eD eD (2.7.70)
chy/u+ 52 (yeD — |lyp — yup!) + Ch\/u'f [yeo - (Yp + Yuwp)]
\/u+-':-:-5-’;? sh u+:5-;—yep
and
Pon =Pps + F1, (2.7.71)
where

E COSNMZp COS N2y p
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chvu +a(yep — lyp — Yup|) + chvu + alyep — (yp + Yup))
Vu + a shv/u + ayep

[« 2] ©0

1
-+-g Z COSNT2Zp COSNTM2Zy D E‘sin kn coskm TwD cos km ID
§ = - Z.p Zep Zep
n=1 k=1
chvu + b(y.p — lyp — Yup|) + chVu + bly.p — (yp + wa)] (2.7.72)
\/u + b shvu + by.p
with a = n?72L% and b= n?x2L% + k?n2%/z2),. In Egs. 2.7.69 - 2.7.71, subscripts

v, f, and h refer to vertical well, vertically fractured well, and horizontal well

respectively, and HT is given by

n {ch\/ﬂ[yeo ~ (yp + ywp)] + AU (¥eD = YD — Yup])

HT = P \/I-l- sh\/ayep } (2.7.73)

If we note that36

coskz 7 ch a(m — ) 1

k2 k2 + a2 = 2a  shar T 242’ [0 <z < 2], (2.7.74)
then we can write
1 [ch\/E(yeD — 3713)] _ 2 i coskn o 1 (2.7.75)
NG shy/t YeD YeD u+ &2 k’ 2 uyep .

Using Eq. 2.7.75, we can recast Eq. 2.7.73 in the fol]owmg form:
®  cos mrl¥e=¥unl | cog mpiRtiun

27 27
HT = + Z YeD —= Y2 (2.7.76)
ZeDYeD SU ZeDYeD S me1 U+ —y'r;—

For small s, replacing u by s (see Eq. 2.7.2) and s + @ by s (that is, neglecting s

compared to a) and noting the relation®

2 2

o0
coskx = T =z
=242 [0< 2 < 27, 27.77
Y =G -G+ bsesam (2.1.77)

we can obtain an approximation for HT given by Eq. 2.7.73 when s is small as

follows:
2
HT = —
ZeDYeD S
2yep v 1 ( lyp — Yuwp| yp + yv.uD)
+ — | €OS mn ———————— -+ €0S M ——————
LEN.L mgl m? YeD YeD (2.7.78)

2 27%D (_1__ Yo yf;-f‘.%fn)

+
Z.pYeps?  ZepsS \3  VYep 2y%,

86



Similarly, when s is large, replacing u + @ by s in Egs. 2.7.69, 2.7.70, and 2.7.72
and then applying the inversion theorem of Laplace transformation to Eqgs. 2.7.69 -
2.7.72 and Eq. 2.7.73, we obtain the following long time approximations for vertical

well, vertically fractured well, and horizontal well solutions given respectively by:

YeD (_1_ YD +yfp+yﬁ.D>

PDy = 27tpa + 27

Zep \3  YeD 2y%,
i 1 L ED . Zup ch kr (.up;lf:zb;up_l) + ch kn [yeD‘(::DD'fwal
— ¢os 7r c
— k co TeD ZeD sh kwi-i-'g- ’
(2.7.79)
vep (1 yp , v5+ yip)
Dy = 27tpa + 2n—— (— - +
PDy Zep \3  YeD 2y2,
2 1
£ZeD Z = sin k7r—D cos k7r .o 2 cos kn::;
ch kn (wm) +ch kn [yen—!yp+ywp\]
2eP Ze2 (2.7.80)
sh kw%ﬁ’;— ’ e
and
PDr = pps + F1, (2.7.81)
where
2 1
F, = Z — COSNT2Zp COSNT 2y D
xeDLD n=l n
¢h nwLp (yep — |yp — Yuwp|) + €k n7Lp [yep ~ (YD + YuD)]
shnrLpyep
1 sin kTr—-— cos k7r—-'*11 cos ki 2B
+4 Z COSNTZp COSNM 2y D Z ‘/. eD
n=1 k-l b
chvb (yep — [up — Ywp|) + ¢hvb |vep — (YD + Yup)]
, (2.7.82)
Sh\/l;ch

with b = n?72L% + k%72 /2%,. In Eqs. 2.7.79 - 2.7.80, tp4 is the dimensionless
time based on drainage area {tps = tp/Ap =tp/(ZeDVeD))-

The long time solutions given by Eqgs. 2.7.79 and 2.7.80 can be computed with-
out difficulty if the relations given by Eqgs. 2.6.25 - 2.6.27 are used to compute the
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ratio of hyperbolic functions when their arguments become large. The convergence
of the series in Eq. 2.7.82, however, is slow. Note that it is also possible to obtain a
long time approximation for the function F; from the relation given by Eq. 2.6.53
in §2.6 IV (this only requires that u + @ be replaced by s in Eq. 2.6.53). This pro-
cedure yields the following alternate expression for F} to be used for computational
purposes:

Fy = F + Fyy + Fyz + Fs. (2.7.83)

Expressions for F, Fy1, Fp2, and Fp3 are given respectively by

o0
F= Zcos NT2p COSNT 2y D
n=1
+1 > -
/ Ko [mrLD\/(zD —zZyp — @)  + (YD — YuD) ] da, (2.7.84)
-1
2 1
Fy = Z — COSNTZp COS N2y D
ICDLD n=1 n

{ [e—nﬂ’LD(yp+uwD) + e—nﬂLD(2yev—lyp—ymD|) + e—nﬂLD(deD-(yD+ymD)]j|

[1 + Z exp (——2mn7rLDyeD)j‘

m=1
©0
+e-merlyp'!le| Z exp (—2mn7rLDyeD) s (2.7.85)
m=1

o >, 1sinkr—L- cos kr E2 cos kx Zuk
Fppo=4 E COSRTZp COS N2y D Z — L 22 £

k 2n2] En?

n=1 k=1 n“m“Lp + z:p

e

- /n:,,zL;.,,.k;’,ﬁ(ypq.y,D) - n’«’L§,+‘;’g'—’-[2yep"(yD+ymn)]
e eD + e eD
-, /n3n3L3 +53;33(2y¢n-lyp—vwnl) > 252
+e V Pres 1+ z exp | —2m nzsz% + o YeD
m=1

2
TeD

—‘/n’«’L’ +8522 jyp-yup| & 2n2
+e o™ e, WPTIER Eexp -2m 1127r2Lf)+k7r yep | ¢ (2.7.86)

2
I.D

m=1
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and
[> o)

Fpa = E COSNTZp COS N2y D
n=1

+1 7 . ,
Ko mrLD\[(z:D +zZwp — @)° + (YD — YuwD) } da
-1 !

o +1 -
+ E/ {Ko nrLp\/ (zD — Zwp — 2kZ.p — &) + (yp — wa)z}
=/ i

+ Ky {nﬂ'LD \/(ID + Zuyp — 2kz.p — 0)2 + (yD - wa)Z:l

+K, [mrLD \/(:D ~ Zyp + 2kz.p — @) + (yp - wa)Q]

+Ko [mrLD \/(zp + zyp + 2kz.p — a)2 + (yp — wa)Q} }da}. (2.7.87)

To compute the functions F and Fp3 given by Eqgs. 2.7.84 and 2.7.87 respectively
at yp = ywp, the relations given by Egs. 2.5.1 — 2.5.3 in §2.5 I are useful. Our
computations indicate that the use of the relation given by Eq. 2.7.83 to compute
the function F; improves the speed of the computations remarkably.

To our knowledge, the only source that reports long time approximations for
pressure distributions in closed rectangular reservoirs produced via a vertically frac-
tured well and a vertical well is Ref. 43. Solutions given by Eqgs. 2.7.79 and 2.7.80,
however, are considerably simpler than the ones given in Ref. 43. The long time
approximation of the horizontal well solution given by Eq. 2.7.81 is new and no
other approximation has come to our attention in the literature.

Egs. 2.7.79 — 2.7.81 can also be used to obtain expressions for the shape factors
for vertical wells, vertically fractured wells, and horizontal wells. If we assume that
the long time pressure behavior can be described by Eq. 2.7.60 and let C define

the shape factor for the appropriate well type, we can write

4A
e7CL?’

Puwp = 27lps +0.51n (2.7.88)

Combining Eq. 2.7.88 with Eq. 2.7.79, 2.7.80, or 2.7.81 and noti;ig the appro-
priate characteristic length, L (L = ry, Lg,, and L, /2 for vertical well, vertically



fractured well, and horizontal well, respectively), we obtain the following shape fac-
tors in a rectangular drainage region for a vertical well, C4, for a vertically fractured
well, Cay, and for a horizontal well, C45, respectively:

4A .p {1 2 4+ y2
InCs =In 2-—47ry—D<--—yD YD j’wD)
erg, zep \3 ¥ 2¥ip

ch kn (lﬂ?;lﬂﬂ—"m) +ch kn [yeb-iyv+ywo!J

f: l cos k7r cos kﬂ'zWD ZeD ZeD

= K ZeD ZeD sh k2 :
(2.7.89)

4A 1 2 2

InCsq, =1In ——4 &P_(,_ Yp +yD+2wa)

e Lz Zep \3  Yep 2y2,,

D coskm ID

ZeD ZeD

ch knm (mz:l..;wp;y_m_l) +ch kr [yep—!:pp+ywpl]

, - 7.
sh kw%ﬂ?- ) (2.7.90)
e
and
44 . 1 2 4 42
InCuap=1In 2_47ryD (__ YD +yD Qwa
e’ (Ln/2) Zep \3  YeD 2yZp
4.1:.,1) z ~ sin kﬂ’-— cos k1r wD cos ki xp
ZeD Z.p
ch kn (lﬂ?;lélpfllﬂ) + ch kn [!eb"!:bp"'ywb!]

, : - 2F 2.7.9
sh kn 12 1, (2.7.91)

where F) is defined by Eq. 2.7.82 or 2.7.83.

From Eq. 2.7.89 we conclude that the shape factor for a vertical well in a rect-
angular drinage region is a function of the well location, z,p /z.p and y, p /v.p, the
wellbore radius (in the form zp /z.p,yp/Z.p), the aspect ratio of the drainage area,
YeD/Z.D, and the dimensionless drainage area, Ap = A/r2. Similarly, Eq. 2.7.90
indicates that the shape factor for a vertical fracture is a function of the well location
in the drainage area, z,p /z.p and yy,p/z.p, the fracture penetration%i'n the lateral

direction, 1/z.p = L., /z., the aspect ratio of the drainage area, y.p/z.p, and the
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dimensionless drainage area, Ap = A/L? ;- The horizontal well shape factor given
by Eq. 2.7.91 depends on the location of the well, Ty p /Zep, YwD /TeD 2wD, the well
penetration in the lateral direction, 1/z.p = L;/(2z.), the dimensionless wellbore
radius, ryp = 7y [h, the aspect ratio of the reservoir, y.p/z.p, the ratios of the
reservoir height to the areal dimensions, z.p Lp and y.p Lp, and the dimensionless
drainage area, Ap = A/L? ;- Shape factors for other boundary conditions may also
be derived along the same lines.

In Table 2.7.1, we present the shape factors, computed by Egs. 2.7.89 - 2.7.91
for vertical wells, vertical fractures, and horizontal wells located at the center of a
closed square drainage region. Ap in Table 2.7.1 is the dimensionless drainage area
defined by Ap = A/L? (L =r,, L.,,and L /2 for vertical wells, vertical fractures,
and horizontal wells respectively). Shape factors for vertical fractures and horizontal
wells are given for both uniform-flux and infinite-conductivity idealizations. The
horizontal well half length considered in Table 2.7.1 is Lp = 5 and the dimensionless
wellbore radius is ryp = 2 x 1073, It is assumed that the horizontal well is located
midway between the top and bottom boundaries of the reservoir (z»p = 0.5). The
shape factors for vertical wells and vertical fractures presented in Table 2.7.1 .are in
very good agreement with those presented in Ref. 43. Until now, no information
has been published in the literature regarding the shape factors for horizontal wells.
Since horizontal well lengths can be comparable to the dimensions of the drainage
area, the use of Eq. 2.7.60 with an effective wellbore radius, r| , determined from
pseudoradial flow equations may lead to erroneous results. The use of the correct
expression for the shape factor for horizontal wells presented in Eq. 2.7.91 is thus
extremely important.

The shape factor expressions presented above can also be used to obtain pro-
duction rates for wells producing at a constant pressure in a bounded reservoir. The

appropriate relation is given by

141.2¢(t)p
gD = et
kh(p; — puy)
1 2ntpa )
= exp | ———22 2.7.92
0.5In 3¢ p( 0.5In grs / (2.7:92)

91



TABLE 2.7.1
SHAPE FACTORS FOR WELLS AT THE CENTER
OF A CLOSED SQUARE DRAINAGE REGION

Vertical Vertical Fracture Horizontal Well*
Ap ell Uniform- Infinite- Uniform- Infinite-
Flux Conductivity Flux Conductivity

4.0 x 10° 15.475 3.1525 3.1525 1.3173 1.3173
1.6 x 10! 25.532 3.9008 6.3485 1.6337 2.6527
1.0 x 102 29.931 4.1357 7.3957 1.7281 3.0003
4.0 x 10° 30.640 4.1684 7.5491 1.7417 3.1544
1.0 x 104 30.872 4.1687 7.6062 1.7419 3.1782

*2.p =05

Twh = 2x 10_3

Lp=5




where C is C4, Cay, or C4qh, and L is the appropriate charateristic length.

2.8 Applications

As noted before, one of our objectives in obtaining the Laplace transformation
of pressure distributions for a wide variety of conditions is that it is possible to read-
ily extend constant rate solutions to more complicated boundary conditions such
as the inclusion of wellbore storage effects or the study of variable rate production;
for example, constant pressure production. Here we consider the application of the
solutions derived in §§2.1 — 2.3 to obtain some new solutions. Specifically, we con-
sider wellbore storage effects and variable rate production for vertically fractured
wells and horizontal wells. It is not our intention to document the characteristics
of the solutions in great detail. Our objective is much more limited; we only wish
to demonstrate the utility of our suggestion and present results in tabular form for

some cases to enable others to verify the accuracy of their solutions.

I. Wellbore Storage and Skin Effects In 1949, van Everdingen and Hurst!®

showed that the response of a well with storage and skin can be obtained from

the following relation:
S-ﬁD + S
s+ Sps?(spp + S)°

In Eq. 2.8.1, pp is the response of a well without storage and skin (in Laplace

space), S is the skin factor, and Sp is the dimensionless wellbore storage constant

defined by

5.6155

Sp = 2nde hL2’

(2.8.2)

where S is the unit storage factor and L is the appropriate characteristic length.

Two asymptotic cases of Eq. 2.8.1 are noteworthy. As s — oo (small times),

Eq. 2.8.1 yields

1
Pup = . 2.8.3
PuD 8251) ( )
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and its Laplace inversion is given by

PuD = tp/Sp. (2.8.4)
As s — 0 (late times), the following relation is obtained from Eq. 2.8.1:

Pup = Pp + 1:—, (2.8.5)
of which the Laplace inversion yields

PuD = pp + S. (2.8.6)

With the aid of a Laplace inversion routine, such as the one suggested by
Stehfest®, Eq. 2.8.1 has been successfully used in the literature to compute the
responses of wells with storage and skin where analytical expressions are available
for the Laplace transform of the responses without storage and skin, 5. Here we
consider two examples: vertically fractured well and horizontal well responses under
the influence of wellbore storage and skin.

Vertically Fractured Wells Although vertically fractured wells are very common in

practice, due to difficulties involved in obtaining the Laplace transform of vertically
fractured well solution given by Ref. 10, Eq. 2.8.1 has not been directly applied to
vertically fractured wells. Ref. 12, for example, uses a finite difference procedure
to compute the responses of vertically fractured wells with wellbore storage effects.
Ref. 11 presents a generalized procedure which, for all practical purposes, is a
finite difference representation of Duhamel’s principle. The dimensionless pressures
documented in Ref. 11 are obtained by discretizing the constant rate solution in
time. With the expectation that wellbore storage would only affect the early flow
behavior, Raghavan!? obtained analytical expressions for the response of vertically
fractured wells during storage-dominated flow period. As noted earlier, an analytical
expression for the Laplace transform of the fracture solution given by Ref. 10 is
presented in Ref 28. Kuchuk?® has also suggested that Eq. 2.8.1 can be used to

obtain the responses with storage and skin.

94



We shall now consider the computation of wellbore pressure responses using
Eq. 2.6.1 for a homogeneous reservoir. In this case, we have f(s) = 1; that is,

u = s, and the pressure distribution is given by

1 +1
Polleol < 1w =0 =g [ Ko[Veveo—aP|de.  (287)

We computed the responses of uniform-flux (zp = 0) and infinite-conductivity
(zp = 0.732) vertical fractures with storage effects by using the Stehfest algorithm®
to numerically invert the Laplace space solution given by Egs. 2.8.1 and 2.8.7. Table
2.8.1 presents results for the uniform-flux case for Sp = 1.0 and S = 0. Results
obtained by using Eq. 2.8.7 are documented in Col. 2. In Cols. 3 and 4, solutions
obtained by Refs. 11 and 13, respectively, are documented. Results from all three
sources presented in Table 2.8.1 are in good agreement. In Table 2.8.2, we document
results for the infinite-conductivity idealization for the Sp = 1072 and S = 0 case.
Our results are presented in Col. 2, those presented in Ref. 12 (the finite difference
solution) are given in Col. 3, and the results obtained from the approximate solution
of Raghavan!® are documented in Col. 4. The agreement between the responses
obtained in this study and from the solution given by Ref. 13 is very good (note
that the linear flow assumption used by Ref. 13 does not hold at late times and
thus responses for late times are not shown in Col. 4 of Table 2.8.2). Responses
computed.in Ref. 12 appear to be significantly lower than the responses computed
in this study and those obtained from the solution of Ref. 13 at early times. At later
times, agreement between the results of Ref. 12 and our study is better. Similar
results are obtained for other values of Sp when we compare our results with those
documented in Ref. 12.

Fig. 2.8.1 presents a typical set of dimensionless pressure responses, p,p, of
infinite-conductivity vertical fractures vs. dimensionless time, t. The skin factor
considered in Fig. 2.8.1 is S = 0 and the variable of interest is the dimensionless
storage constant, Sp. As expected from Eq. 2.8.4, at early times, the dimensionless
response curves depict a unit slope line on log-log coordinates (this behavior is

evident for large values of Sp in Fig. 2.8.1; for small values of Sp this behavior
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TABLE 2.8.1
UNIFORM-FLUX VERTICAL FRACTURE
WITH WELLBORE STORAGE

S =00
Sp =10
tp PuD PuwD PuwD
This Study Ref. 11 Ref. 13
1.010 x 1074 1.0054 x 1074 1.0095 x 10~4 1.0042 x 1074
2.014 x 1074 2.0005 x 1074 2.0105 x 10™4 1.9088 x 1074
3.004 x 104 2.9799 x 104 2.9895 x 104 2.0778 x 10~¢
4.015 x 10~4 3.9773 x 10™4 3.9866 x 104 3.9749 x 10-4
6.050 x 1074 5.9800 x 1074 5.9889 x 104 5.9769 x 10~%
1.007 x 1073 9.9243 x 1074 9.9330 x 10™4 0.9204 x 1074
2.009 x 1073 1.9666 x 1073 1.9672 x 1073 1.9660 x 10~3
3.027 x 1073 2.9490 x 1073 2.9495 x 1073 2.9483 x 10~3
4.005 x 1073 3.8868 x 1073 3.8872 x 1073 3.8860 x 1073
6.034 x 1073 5.8175 x 1073 5.8176 x 10~3 5.8164 x 1073
1.005 x 10-2 9.5866 x 1073 9.5866 x 10~3 9.5850 x 1073
2.003 x 1072 1.8756 x 1072 1.8754 x 10~2 1.8753 x 10~2
3.019 x 10™2 2.7852 x 1072 2.7849 x 10~2 2.7848 x 10-2
4.034 x 1072 3.6772 x 10~2 3.6769 x 1072 3.6769 x 10~2
6.019 x 10~% 5.3788 x 10™2 5.3784 x 10~2 5.3785 x 1072
1.002 x 10~ 8.6833 x 1072 8.6832 x 10~2 8.6840 x 10~2
2.018 x 107? 1.6517 x 107 1.6515 x 10™!? 1.6544 x 107!




TABLE 2.8.2
INFINITE-CONDUCTIVITY VERTICAL FRACTURE
WITH WELLBORE STORAGE

S=0.0
Sp = 0.001
tp PwD PwD PuwD
This Study Ref. 12 Ref. 13

1.0 x 106 6.6671 x 10~4 5.6025 x 10~4 6.6663 x 10~ 4
1.5 x 107°° 9.2786 x 10™4 8.2249 x 1074 9.2775 x 1074
2.0 x 10~¢ 1.1656 x 10~3 1.0579 x 1073 1.1654 x 10™°
3.0x 10-° 1.5024 x 10~° 1.4754 x 1073 1.5022 x 10~°
4.0 x 1076 1.9734 x 1073 1.8491 x 1073 1.9732 x 1072
6.0x 10~° 2.6446 x 10°° 2.4987 x 10°° 2.6444 x 10~°
8.0 x 10-¢ 3.2332 x 1073 3.0722 x 10°° 3.2330 x 1073
1.0 x 1078 3.7645 x 1073 3.5925 x 1073 3.7643 x 10~°
1.5 x 10°% 4.9240 x 1073 4.7060 x 10~° 4.9239 x 10°°
2.0 x 1075 5.9226 x 10~° 5.6733 x 10°° 5.0226 x 103
3.0x 10"% 7.6255 x 1072 7.3119 x 1073 7.6258 x 10™°
4.0x 1075 0.0788 x 10™° 8.7179 x 10~3 0.0705 x 10~°
6.0 x 10~% 1.1530 x 10™2 1.1084 x 102 1.1541 x 10 °
8.0 x 107% 1.3627 x 10™32 1.3105 x 10™2 1.3617 x 10°2
1.0 x 1074 1.5474 x 10~ 1.4903 x 10™2 1.5257 x 10~2
1.5 x 1074 1.0418 x 1072 1.8696 x 10~ 7 1.0241 x 10-2
2.0x 1074 2.2753 x 1072 2.1011 x 1072 2.2500 x 1072
3.0 x 1074 2.8359 x 10~2 2.7200 x 10~2 2.8232 x 10™?
4.0 x 1074 3.3001 x 10™2 3.1862 x 10~2 3.2082 x 10°2
6.0 x 10~4 4.1039 x 1072 3.0482 x 102 4.0049 x 10~2
80x 10~4 4.7743 x 1072 4.5003 x 10~2 4.7665 x 10~2
1.0 x 1079 5.3654 x 10™2 5.1576 x 10~2 5.3583 x 10~2
1.5 x 1073 6.6240 x 1072 6.3578 x 1072 6.6179 x 1072
2.0x 107° 7.6847 x 10™2 7.3695 x 10~ 7.6799 x 10~2
3.0x10°3 9.4651 x 10~2 9.0568 x 10™2 0.4614 x 10~°
40 x 10™° 1.0966 x 10~} 1.0473 x 10~* 1.0963 x 10~?
6.0 x 1077 1.3477 x 107} 1.2860 x 10™1 1.3483 x 1072
8.0 x 102 1.5577 x 10! 1.4866 x 10~} 1.5607 x 102
1.0 x 10~ 1.7407 x 102 1.6629 x 1073 1.7478 x 10~}
1.5 x 10~2 2.1216 x 107} 2.0333 x 1072 2.1461 x 10™?
2.0 x 10°2 2.4330 x 10™!? 2.3418 x 107! 2.4820 x 107!
3.0 x 1072 2.9332 x 104 2.8490 x 1072 -

4.0x10°2 3.3358 x 10~ 3.2676 x 107} -

6.0 x 1072 3.9773 x 1071 - -

8.0 x 1072 4.4913 x 1072 - -

10 x 1072 4.0280 x 107} - -
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exists at times earlier than those considered in Fig. 2.8.1). At late times, all the
response curves merge to follow the responses corresponding to the case for Sp = 0.
This behavior is also predicted by Eq. 2.8.6. The appropriate expression describing
the pressure response at late times has been obtained in §2.7 (Eq. 2.7.26) and is
given by

pp = % (Intp + 2.80907) + 0 (zp,yp) , (2.8.8)

where o(zp,yp) is defined by Eq. 2.6.25 Using Eq. 2.8.8 in Eq. 2.8.6 and rear-

ranging the resulting expression, we obtain the following result:

PuwD X -;— (ln-ts£ + 2.80907) + % In[Sp exp (25)] + 0 (zp,0). (2.8.9)
D

Eqgs. 2.8.4 and 2.8.9 indicate that the pressure response curves for different values
of Sp should merge to yield a unit slope line at early times on a log-log plot of p,, p
vs. tp/Sp. At the end of the storage-dominated flow period, pressure responses
for different values of Sp exp(2S) would deviate from the initial unit slope line and
when the pseudoradial flow is established, the pressure responses would be uniquely
determined by tp/Sp and Sp exp(2S) (see Eq. 2.8.9). The pressure responses
shown by the unbroken lines of Fig. 2.8.2 clearly demonstrate this behavior for
the special case of S = 0. Three values of Sp are considered; Sp = 0.005, 0.05,
and 0.5. The derivative responses, dp,,p/dIntp vs. tp/Sp, shown by the dashed
lines of Fig. 2.8.2 merge with the pressure response curves at early times and
also display a unit slope line (see Eq. 2.8.4). When pseudoradial flow is attained,
the derivative responses assume the constant value 0.5 as indicated by Eq. 2.8.9.
The shape of the derivative response curves during the transitional period between
the storage-dominated and pseudoradial flow periods is dictated by the value of Sp.
Characteristics of the derivative responses are also discussed in Refs. 46 and 47. The
third set of curves (chain dotted curves) in Fig. 2.8.2 are the responses plotted in
terms of the Chow* pressure group, pyp/(2dp,p/dIntp). Chow’s approach is also
discussed in Refs. 5 — 8. The advantage of Chow’s approach is that the ordinates
of the field curve and the type curve are identical since p,p/(2dpyp/dIntp) =

Apyjs/(2dpys/dint). Thus, type curve matching becomes easier since the vertical
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axes of the field data plot and the type curve can be aligned, and the field data
curve may then be shifted horizohtal]y until the best match is obtained. Details are
discussed in Chapter IIl and in. the references listed above. As expected from Eq.
2.8.4 and displayed by the chain-dotted lines of Fig. 2.8.2, the responses in terms of
the Chow pressure group attain the constant value of 0.5 at early times for all values
of Sp. At the end of the storége—dominated flow period, the responses deviate from
the constant value 0.5 and at the onset of the pseudoradial flow period they merge
with the corresponding pressure response curve since 2dp,,p/dIntp = 1.
Horizontal Wells The second example we consider is horizontal well responses with
storage effects. We assume that the well produces an isotropic (k = k, = k, = k.)
and homogeneous reservoir (u = s). The pertinent solution for horizontal well re-
sponses in absence of storage and skin effects, p, is given by Eq. 2.6.8 (or Eq.
2.6.18 for use at especially early times). We computed the horizontal well responses
with storage effects by using Eq. 2.6.8 in Eq. 2.8.1. Figs. 2.8.3 and 2.8.4 present
horizontal well responses for Lp = 5 and 100, respectively, under the influence
of wellbore storage for an undamaged (S = 0) well. In both figures, the well is
assumed to be located midway between the impermeable top and bottom bound-
aries (z,p = 0.5) and the dimensionless wellbore radius, rup = 2 x 1073, Three
values of dimensionless storage constant, Sp, are considered; Sp = 0.5, 0.05, and
0.005. The unbroken lines are the dimensionless pressure responses, p,p vs. tp/Sp,
the dashed lines correspond to logarithmic derivative responses, dp,p/dIntp vs.
tp/Sp, and the chain-dotted lines are the responses in terms of the Chow pressure
group, pwp /(2dpup/dIntp). The characteristics of horizontal well responses shown
in Figs. 2.8.3 and 2.8.4 are qualitatively similar to those of vertically fractured wells
discussed in connection with Fig. 2.8.2 and will not be repeated here.

In Refs. 5 and 38, it is noted that the differences in the late time responses
of long horizontal wells (Lp > 4) and vertically fractured wells are negligible. If
wellbore storage effects dominate early time responses, then differences in the two
solutions will be obscured even further. Early time responses of long horizontal wells

and vertically fractured wells under the influence of wellbore storage are shown in
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Fig. 2.8.5. Both the horizontal well and vertically fractured well are assumed to have
infinite-conductivity and to be undamaged (S = 0). The horizontal well half-length,
Lp = 100, the dimensionless wellbore radius, r,p = 2 x 10”3, and z,p = 0.5 (well
is located midway between the top and bottom boundaries). We present results
in terms of the logarithmic derivative principally because differences can be more
readily highlighted. For Sp = 0.5, not unexpectedly, the derivative responses for
long horizontal wells and vertical fractures are essentially identical for all times. For
smaller values of Sp, the horizontal well responses and vertical fracture responses
are initially identical (see Eq. 2.8.4). The fractured well responses deviate from the
unit slope line earlier indicating that, all conditions being identical, the storage-
dominated flow period for fractured wells ends earlier than that for horizontal wells.
When pseudoradial flow conditions are attained, the two responses again become
indistinguishable.

The examples considered above clearly demonstrate the utility of the solutions
developed in this chapter. Both examples, vertically fractured well and horizon-
tal well solutions with wellbore storage, are very common in practice and the use
of Laplace domain solutions developed in this chapter eliminates the difficulties
involved in obtaining convenient and reliable solutions for an otherwise very com-
plex problem. The procedure discussed here can also be used to compute slug test
responses®®. In the following, we consider another complex problem - production
at prescribed pressure - for which the appropriate solutions can be conveniently

obtained if Laplace domain solutions are available.

I1. Production At Prescribed Pressure Here we consider a specific case of the

variable rate production problem - production at a prescribed pressure. By us-
ing Duhamel’s principle (superposition theorem), van Everdingen and Hurst!® have
shown the following relation in Laplace domain between the wellbore pressure re-

sponses under constant rate production condition, p,p, and the rate responses
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under constant pressure production condition, gp:

- - 1
Pupip = 3 (2.8.10)

In Eq. 2.8.10, p,,p and §p are defined, respectively, by
2rkh—

Pup = Apwys (8), 2.8.11
Pup =~ Bpas (2 (2811)

and
_ _ d(s)m
9D = SrkhApu;’
Using the relation given by Eq. 2.8.10 and the Laplace domain solutions for 5,

(2.8.12)

developed in §§2.1 - 2.3, the rate responses, ¢p, for a variety of wells can be obtained
without difficulty.

Fig. 2.8.6 shows dimensionless reciprocal rate responses, 1/gp, vs. dimen-
sionless time group tp/w for an infinite-conductivity vertically fractured well in
an isotropic (k = k, = k, = k,) naturally fractured reservoir. To compute the
responses shown in Fig. 2.8.6, we used the dimensionless pressure solution given
by Eq. 2.6.2 (at zp = 0.732) and Eq. 2.8.10. These responses correspond to di-
mensionless storativity, w = 10~2 and the dimensionless transfer coefficient, A, is
the variable of interest. Since our intent is to show the use of our solutions, de-
tailed discussion of the responses shown in Fig. 2.8.6 is outside the scope of this
section. We only note that these responses do display all the characteristics of ver-
tically fractured wells and naturally fractured reservoirs. They display the linear
flow behavior, typical of vertically fractured wells at early times, a transition period
characterized by approximately constant values of ¢p, typical of the Warren and
Root!® model, and ultimately pseudoradial flow.

The procedure outlined above can be applied to various well types considered
in this chapter. For those who wish to compare their results obtained by using
the solutions presented in this chapter, we include a table of horizontal well rate
responses in homogeneous and naturally fractured reservoirs. To compute the re-
sponses given in Table 2.8.3 we used the horizontal well pressure response solution
given by Eq. 2.6.8 (at zp = 0.732). Pertinent information on the well and reservoir

properties is presented in Table 2.8.3.
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INFINITE-CONDUCTIVITY HORIZONTAL WELL

TABLE 2.8.3

Lp=5
ZywD = 0.5
rvdp =212 1073

gD
tp/w HOMOGENEOUS |NATURALLY FRACTURED RESERVOIR, w = 1072

RESERVOIR, w =1 =1 A= 10° = 10%
1.0 x 1074 2.6603 2.6604 2.6652 3.0622
1.5 x 10™4 2.5204 2.5204 2.5358 3.0216
2.0 x 10~¢ 2.4437 2.4438 2.4516 2.0043
3.0 x 10™¢ 2.3320 2.3321 2.3426 2.0899
4.0x107% 2.2585 2.2586 2.2718 2.9831
5.0 x 10~4 2.2045 2.2047 2.2200 2.0781
6.0 x 10~4 2.1622 2.1624 2.1799 2.9736
8.0 x 107* 2.0086 2.0988 2.1206 2.0649
1.0 x 1073 2.0517 2.0520 2.0777 2.9565
1.5 x 1073 1.9715 1.9719 2.0068 2.9356
2.0x107? 1.0178 1.9182 1.0616 2.9154
3.0x 1073 1.8431 1.8438 1.9031 2.8769
4.0 x 1073 1.7884 1.7892 1.8643 2.8406
5.0 x 1073 1.7436 1.7446 1.8357 2.8066
6.0 x 1073 1.7051 1.7063 1.8134 2.7745
8.0 x 1073 1.6405 1.6422 1.7811 2.7159
1.0 x 10™2 1.5875 1.5897 1.7593 2.6637
1.5 x 1072 1.4861 1.4895 1.7289 2.5562
2.0 x 1072 1.4116 1.4163 1.7146 2.4735
3.0 x 10~2 1.3056 1.3129 1.7029 2.3556
4.0 x 1072 1.2308 1.2407 1.6081 2.2756
5.0 x 10~% 1.1736 1.1859 1.6951 2.2170
6.0 x 1072 1.1273 1.1421 1.6927 2.1717
8.0 x 1072 1.0558 1.0754 1.6882 2.1045
1.0 x 107! 1.0014 1.0257 1.6838 2.0558
1.5 x 10™* 0.9055 0.9409 1.6729 1.9734
2.0 x 1071 0.8402 0.8859 1.6621 1.0184
3.0x 107} 0.7532 0.8178 1.6413 1.8426
4.0 x 107! 0.6962 0.7775 1.6215 1.7875
5.0 x 107! 0.6552 0.7512 1.6025 1.7426
6.0 x 10~} 0.6241 0.7331 1.5842 1.7042
8.0 x 1071 0.5792 0.7104 1.5500 1.6399
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INFINITE-CONDUCTIVITY HORIZONTAL WELL

TABLE 2.8.3 (Cont.)

rep =2z 1073

qD
tpfw HOMOGENEOUS |NATURALLY FRACTURED RESERVOIR, w = 1072
RESERVOIR, w =1 A=1 A = 10% A= 10%
1.0 x 10° 0.5480 0.6973 1.5184 1.5871
1.5 x 10° 0.4984 0.6819 1.4493 1.4859
2.0 x 10° 0.4681 0.6757 1.3016 1.4116
3.0 x 10° 0.4309 0.6708 1.3002 1.3056
4.0 x 10° 0.4078 0.6685 1.2306 1.2300
5.0 x 10° 0.3914 0.6667 1.1752 1.1736
6.0 x 10° 0.3789 0.6651 1.1207 1.1274
8.0 x 10° 0.3606 0.6620 1.0583 1.0558
1.0 x 10* 0.3476 0.6590 1.0037 1.0014
1.5 x 10! 0.3260 0.6514 0.0074 0.9056
2.0 x 10! 0.3122 0.6441 0.8419 0.8402
3.0 x 10! 0.2946 0.6302 0.7547 0.7532
4.0 x 10* 0.2831 0.6171 0.6975 0.6962
5.0 x 10! 0.2748 0.6048 0.6564 0.6552
6.0 x 10! 0.2684 0.5932 0.6251 0.6241
8.0 x 10} 0.2588 0.5720 0.5800 0.5792
1.0 x 102 0.2523 0.5550 0.5509 0.5503
1.5 x 102 0.2405 0.5168 0.5007 0.5003
2.0 x 102 0.2327 0.4871 0.4700 0.4698
3.0 x 102 0.2225 0.4455 0.4325 0.4324
4.0 x 10? 0.2158 0.4183 0.4092 0.4091
5.0 x 102 0.2108 0.3692 0.3927 0.3926
6.0 x 102 0.2069 0.3849 0.3801 0.3801
8.0 x 10? 0.2011 0.3646 0.3617 0.3617
1.0 x 10° 0.1968 0.3505 0.3486 0.3486
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CHAPTER III

HORIZONTAL WELL PRESSURE ANALYSIS

A review of production performance over the past few years, conclusively estab-
lishes the advantages of horizontal wells and drainholes*®. Drainholes are normally
drilled from existing vertical wells and extend 100 feet to 500 feet in either direction.
Horizontal wells involve the drilling of new wells and are usually 1000 feet to 2000
feet long. Both completions, like fractured wells, are intended to provide a larger
surface area for fluid withdrawal and thus improve productivity. These completions
have been found to be effective in () some naturally fractured reservoirs, (1) reser-
voirs wherein gas and/or water coning problems preclude the efficient operation of
vertical wells, (1i7) thin reservoirs, and (iv) reservoirs with high vertical permeabil-
ity. Disadvantages of these completions include high drilling costs and the inability
to produce contigious zones separated by imperméable layers via a single wellbore.

For purposes of modeling well behavior, horizontal wells and drainholes can
be treated similarly. Thus, unless specifically stated, the term horizontal well will
include both types of completions.

To be a commercial method of completion, at least for primary recovery, hor-
izontal well productivity must be comparable to the productivity of a vertically
fractured well. It is not sufficient to compare horizontal well productivity with
unstimulated vertical wells. Similar observations have been made in Refs. 1 and
2. Thus, in this work responses for vertically fractured wells are used as a ba-
sis for comparison. (A horizontal well may be viewed as a fracture with limited
height, however, this does not imply that horizontal well productivity will never be

comparable to that of a vertically fractured well.)
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The transient behavior of horizontal wells and the characteristics of response
curves have been considered in Refs. 5, 37, 38, and 50. The central new results of
this chapter concern the development of analytical expressions and correlations for
the pseudoskin factor, and the development of new methods of analysis to determine
formation properties and well characteristics. In particular, we discuss new applica-
tions of the derivative approach suggested by Chow* — the pressure normalized by
its derivative. In this chapter, we refer to this method as the normalized pressure
procedure. Although it is probably the oldest derivative method, Chow’s approach
was not known in the petroleum engineering literature until recently. Here we re-
strict our discussion to the applications of Chow’s procedure to analyze the pressure
responses of horizontal wells and vertically fractured wells as in Ref. 5. The proce-
dure suggested by Chow, however, has a much broader range of applicability (see

also Refs. 6 - 8).

3.1 Problem Formulation

The mathematical model considered here is identical to that examined in Refs.
37 and 38. We consider the flow of a slightly compressible fluid to a horizontal
well of length Ly in a homogeneous reservoir of height k. The well is assumed to
be parallel to the top and bottom boundaries. Gravity effects are considered to be
negligible. The well is assumed to be located at any location, 2, , within the vertical
interval and is considered to be a line source (Fig. 3.1.1). Two boundary conditions
on the well surface are considered — infinite-conductivity and uniform-flux. The
consequences of using these boundary conditions are discussed in §§3.3 and 3.7.

The solution for pressure distribution in the reservoir has been obtained in Refs.
37 and 38 by using the source function approach of Ref. 3. Assuming anisotropy in

the three principal directions, z, y, and z (that is, k, # ky # k. and k; # k), the
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solution given by Eq. A — 6 of Ref. 38 can be written as

pD xD’yD,zD,zwDaLD,tD) =

VL[ [ e o [ (R)]

d
[1 +2 Z exp (—nzvrszD'r) COS N Zp COS nwzwp] il

7

Here pp is the dimensionless pressure at any point in the reservoir and tp is di-

rn=1

mensionless time based on one-half the well length, L, /2. pp and tp are defined

by the following equations:

kh
pp (zp,¥D, 2D, 2wp, LD,tp) = m i — P (2,9, 2, 2w, L, t)] (3.1.2)
and
0.001055kt
Ip = = 3.1.3
¢Ctl$Li ( )

Dimensionless distances zp and yp are based on the well half length, Ly, and zp is
based on formation thickness, h. The center of the well is assumed to be at (0,0, z,,).

Thus, zp, yp, and zp are defined by the following relations, respectively:

_ 2 |k (3.1.4)
Ip = Lh k 1.
2y |k
.UD = Lh ky, (3.1.5)
and
z
= —, 3.1.6
2p =4 (3.1.6)

The symbol Lp denotes the dimensionless well half length and is given by the

following relation:

Ly [k,
= 222 (3.1.7)

D
In Egs. 3.1.1 - 3.1.7, k;, k,, and k, denote the permeabilities in z, y, and =z
directions, respectively. k is an arbitrary constant and it may be chosen as the

permeability of an equivalent isotropic system (k = {/k,;k,k.) or it may be chosen
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as the equivalent horizontal permeability (k = y/kzky). Its definition is dictated
by the system under study. In the rest of this chapter, we will define k as the
equivalént horizontal permeability; that is, k = \/lTky . Note that the dimensionless
well half length, Lp, incorporates the anisotropy of the formation. If the formation
is isotropic, and Lp is 0.5, then the surface area available for fluid production is
identical to that of a fully penetrating vertical well.

Note that the solution given by Eq. 3.1.1 is different from that given by Eq. 9
of Ref. 38. Eq. 9 of Ref. 38 can be obtained from Eq. A — 6 of the same reference
if k; = k, and therefore their work assumes that the reservoir is isotropic in the

horizontal plane.

3.2 Asymptotic Approximations

In Chapter II, we derived a solution in Laplace domain for the same problem
considered here (see Table 2.2.1 and Eq. 2.6.5). There we also noted short and
long time approximations for the pressure distribution (see Eqs. 2.7.21 and 2.7.29).
Short and long time approximations for the pressure distribution can also be derived
from the real time solution given by Eq. 3.1.1 by using the methods outlined in

Refs. 3 and 10.

I. Short Time Approximation Using the short time approximations for the
source functions® used to conmstruct the solution given by Eq. 3.1.1, the short

time approximation for the pressure distribution has been obtained in Ref. 38 and

is given by
B k .| (20— 20)" /L% + 4%
,Zwp>Lp,tp) = ———/ —Ei | - ,
PD(-’BD,yD,ZD ZyD,Lp D) 8Lp \/ &, 1 4tp
(3.2.1)
where

2 for |zp| < Vk/ks,
ﬁ = 1 for I_'L'DI = \/k/kz, (3.22)
0 for |zp|> \Vk/ks.
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The duration for which Eq. 3.2.1 is valid is a function of zp, 2p, 2wp, and Lp. The

duration of this flow period, the initial radial flow period, is given by the following
equation®®:
63 /20,
tp <min{ (2p + 2zep)’ / (20L3), (3.2.3)

[(2p + 2wp) — 2]* / (20L3,).
Here ép = \/k/k; — |zp| if |zp| < Vk/[kz, and bp = 24/k[k, if |zp| = \/k/ks.
These expressions are approximate and the actual times for which Eq. 3.2.1 is
valid can be determined only via computations. If we assume three dimensional
anisotropy (k; # ky # kz), then the counterpart of Eq. 3.2.1 in dimensional form

is given by the following expression for |z| < Lj/2:

Vkyk: Ly [pi — p(|z| < La/2,y,2, 2w, )] _ —lEi _yzkz + (2 — zw)2 ky
141.2¢Bu 2 4(0.0002637n,7,1)

(3.2.4)
Here n; = k;/ (¢c:p), where j = z or y. Eq. 3.2.4 suggests that the early time
response will be identical to that of a vertical well in a formation with thickness
equal to Lj; that is, the well behaves as if it is located in an infinite reservoir of
height L, (infinite-acting radial flow). This flow period has been identified in Refs.
37, 38, and 50. If this flow period can be identified on a well test, then it is possible
to determine \/7‘77‘: from the slope of the semilog straight line. An examination
of Egs. 3.2.1 - 3.2.4 indicates that this initial radial flow period ends when the
effect of the closest physical boundary (the top or the bottom reservoir boundary)
is felt or when flow across the well tips (z = +Lj/2) affects the pressure response.

Detailed information on the duration of this flow period is given in §3.7.

II. Long Time Approximation In §2.7, we obtained a long time approximation

for the pressure distribution (Eq. 2.7.29) by using the Laplace domain solution
for the problem under consideration (Eq. 2.6.5). A long time approximation for
Eq. 3.1.1 has also been obtained in Ref. 38 by using the procedure outlined in
Ref. 3. As discussed in Chapter II, in many cases, the procedure given in Ref. 3

does not yield closed form expressions for the long time approximations of solutions
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(the result of this procedure is usually in the form of a fairly complicated integral
as in the case of the long time approximation of Eq. 3.1.1 reported by Ref. 38).
Here we obtain the long time approximation of Eq. 3.1.1 by using the properties
of Laplace transforms. Our objective in rederiving the long time approximation
already obtained in §2.7 (Eq. 2.7.29) is to briefly demonstrate a procedure that can
be also used to obtain the Laplace transform of some of the solutions constructed
by using the source function approach of Ref. 3.

We first note that the dimensionless pressure for the horizontal well given by

Eq. 3.1.1 can be written as
?o (zp,YD,2D,2wp, Lp,tp) = pps (2D, YD, D)

+F' (zDa stzDazwD,LD,tD) ’ (32.5)

where pp; is the dimensionless pressure drop due to production from a fully pene-

trating vertically fractured well and is given by!°

S E [ [ ) (T o) [y ()] &

The function, F', is defined by

F'(zp,yp,2D,2wD,Lp,tp) =

\/— | k / [2 Z exp (—n?n%L% 1) cosnrzp cos nrzwp] (327

B A [ WA

The long time approximation for the vertically fractured well solution, pp;y,
(Eq. 3.2.6) has been obtained in Ref. 10 (Eq. 14 of Ref. 10) and is given by the

following expression:

1
PDf = 3 (Intp + 2.80907) + o (zp,yp), (3.2.8)
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where

oap.30) =025 (a0 ~ VETE:) [ (0 - V)" 44

2 2y
— (SL‘D + \/k/kx) In [(zo + vV k/kz) +y2D} ~ 2D arctgz% + 9% ka/kz }

(3.2.9)
Kq. 3.2.8 is valid when
2
25 (a0 ~ VTR:)” + 3],
tp > max 2 (3.2.10)
5 ((ID + \Vk[kz)" + y%} )
Using the relation
(\/k/k + zD) (\/k/kz ~zp) | _
N 27
Vk/ky, [T - \/k k
/ [ zp = ay/k/k) ] (3.2.11)
we can write the function F' (Eq. 3.2.7) as
F'(zp,yp,2D,2up,Lp,tp) = 1 icosmrzp COSNT 2, D
’ 3 b ? 2 — w
oo —ay/kk) + 93| d
/ / exp (—n?r?L%7) exp { (zo - 41/ ) tvb -;_Zda. (3.2.12)
-1 Jo

Taking the Laplace transform of Eq. 3.2.12 with respect to ¢{p, we obtain

— 1 &2 +1 .
F's) =~ Z COSNTZp COS NN Zy D / K, <rD\/s + n27r2L123> da, (3.2.13)
$ -1

n=1

where —F_;(s) is the Laplace Transform of F’ and 7p is given by

2
b = (zo - k/kz> + vh- (3.2.14)

If
s <0.0172L%, (3.2.15)



or accordingly when
100
D> ——r (3.2.16)
n2L%’°
we can assume that s + n272L% ~ n272L% and thus the long time approximation
of F' is given by
+1

o
F'(s—>0) = % Z COS N Zp COS N 2y D K, (fpnnLp) de. (3.2.17)

n=1 -1

Letting F denote the long time approximation of the function F’ and evaluating

the inverse Laplace transform of Eq. 3.2.17, we obtain the following expression:

oo +1
F(zp,yp,2D,2wp,Lp) = E COS NTZp COS NN Zy D K, (fpnwLp) da.

n=1

(3.2.18)
Using Eqs. 3.2.8 and 3.2.18 in Eq. 3.2.5, the long time approximation for the

horizontal well dimensionless pressure can be written as

1
PD (a:D,yD,zD,zwD,LD,tD) = -é' (lntD + 2.80907)
+o0(zp,yp) + F (zp,YD,2D,2uwpD,Lb), (3.2.19)
when
100/ (rLp)?,
2
tp > max { 25 [(-’CD +Vk/ks)" + y%] ; (3.2.20)

25 (20 — VATR:)" + 1) -

It must be emphasized that the restrictions given by Eq. 3.2.20 are approximate;
different arrangements of Eq. 3.1.1 and the use of different approximations during
the course of derivations will lead to the expression given by Eq. 3.2.19, but Eq.
3.2.20 would be different. Our calculations indicate that the time restrictions given
by Eq. 3.2.20 provide the highest order of accuracy, especially in computing the
pseudoskin factor (see §3.4).

Eq. 3.2.19 indicates that at long times a semilog plot of pp vs. tp will be a
straight line with slope equal to 1.151 — the pseudoradial flow period. If data during
this flow period are available, then formation permeability, k or \/EE; in case we
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consider anisotropy in the z-y plane, can be determined. Formation permeability, k,
can also be obtained by type curve matching. If k; were known, and the initial radial
flow period can be analyzed to obtain \/l?:;l?; , then the possibility to determine k.,
k, and k, exists. Eq. 3.2.19 also permits us to obtain an analytical expression for

the pseudoskin factor (see §3.4).

3.3 Computation of Well Responses

Without loss of generality, in the following, we assume that the formation is
isotropic. As mentioned earlier, in this study we model the horizontal well as a line
source. First we note the similarity between the short time approximation for the
horizontal well solution given by Eq. 3.2.1 and the line source approximation for a
vertical well in an infinite reservoir. Then by analogy to vertical well solution, we
can decide that the line source approximation of a horizontal well of finite radius is

acceptable when

tp > 25 [(zp — zop)? /L% + y?,] . (3.3.1)

which is satisfied for most practical applications of well testing. We also note from
Eq. 3.3.1 that if we define a circle with the origin at yp = 2p — z,p = 0 and the

dimensionless radius

rp = V(20 ~ 2up)® /L% + v} = 2ru/Ln, (3.3.2)

where r,, is the radius of the horizontal well, then the pressure drop calculated
at any point on the circumference of this circle will be the same at early times.
This suggests that we define the dimensionless wellbore radius, r, p, from Eq. 3.3.2
and calculate the well responses at rp = ryp. It is not obvious from the long
time approximation of horizontal well solution (Eq. 3.2.19), however, that this
definition of the wellbore radius would be correct for all times. But one can readily
decide that when the line source assumption for the finite radius horizontal well
becomes acceptable, then the error introduced in the definition of wellbore pressure

measurement point would not have a major impact on the accuracy of the results.
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Our computations for dimensionless pressure defined by Eq. 3.1.1 proved that the
dimensionless pressure never changes more than 0.005 along the circumference of
the wellbore defined by Eq. 3.3.2.

In Refs. 37 and 38, wellbore pressures are computed at the point 2p = 2z, p and
yp = ryp. Eq. 3.3.2 and the discussion following it, however, indicates that the
point yp =0 and (zp — zwp) /Lp = rwp could also be chosen to compute wellbore
responses. Numerical computations prove that the wellbore pressures computed at
zp = zwp and yp = ruwp and (zp — 24p) /Lp = ruwp and yp = 0 are essentially the
same. In this work, we use both definitions to compute wellbore responses. Mainly

3738 we choose the point

for the purpose of comparison with the published datal
2p = zyp and yp = ryp to compute the well responses when we present our results.
As will be shown in §3.4, however, use of the point zp = zyp +rwpLp and yp =0
for the evaluation of the analytical expressions for the long time approximation and
the pseudoskin factor is more advantageous. In this case, for convenience we define

the dimensionless wellbore radius by ryp: = rupLp. Note that, in terms of real

variables, r,p and ryp. are defined respectively by

rop = —ru | K (3.3.3)
wD = Lh kya D
and
Tw kz
TwDz = 7'wDLD - _h— E (334)

Therefore, there exists a simple conversion between the results computed at r,p
and r,p..

The fact that the wellbore pressure is computed at a finite radius, r,, has
ramifications which deserve consideration. The vertical fracture solutions given in
the literature ignore the existence of the wellbore. It is possible to compute the
response of a vertically fractured well at zp = 0, yp = 0 and specify the pressure
at this point to be the wellbore pressure. (Mathematically this implies that it is
possible to compute pressures on the source and that these solutions are bounded

for all values of time.) For the horizontal well case, however, since it is assumed
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to be a line source, it is not possible to compute pressure drops on the source.
Pressure drops have to be computed at some finite radius, r. Thus consideration
must be given to two factors in the analysis of the results. First, the horizontal well
solutions are a function of the variable, r,,. (This is also true for fractured wells and
is usually ignored.) Second, since the vertical fracture solutions and the horizontal
well solutions are not computed at the same point, it can be shown that in some
cases the productivity of a horizontal well will exceed that of a vertically fractured
well, all other conditions being identical. This unrealistic result is obtained mainly
because of the locations at which the pressure drops are computed and should not
be construed to imply that horizontal well productivity can be greater than that
of a vertically. fractured well. Other considerations (reservoir heterogeneity, fluid
contacts, etc.) may result in horizontal well productivity being higher than that of
a vertically fractured well.>! It should be noted that the latter consideration cannot
be avoided even if we assume that the horizontal well has a finite radius.

The next consideration in the computation of the well responses is the rep-
resentation of the horizontal well by the uniform-flux or the infinite-conductivity
idealization. It should be realized that the method of sources and sinks® used to
construct the solution given by Eq. 3.1.1 assumes that the flux distribution along
the well surface is uniform. To compute well responses for the uniform-flux case, we
assume that zp = 0. This solution should be applicable to drainholes that extend
equal distances on either side of the vertical well. The uniform-flux solution does
not appear to be appropriate for analyzing horizontal well responses. If we assume
that the uniform-flux solution is valid for the horizontal well case, then we should
assume that the pressure at |z| = Lj /2 would represent the wellbore pressure. Note
that the uniform-flux solution, Eq. 3.1.1, predicts that pressure will vary along the
length of the well and the pressure is the lowest at the well center (zp = 0). Al-
though the method of sources and sinks® used to develop Eq. 3.1.1 provides no
information regarding the ultimate extraction of fluid once fluid enters the vertical
fracture or horizontal well, the assumption that pressure is measured at the tip

should imply that fluid from the reservoir is extracted at this point. This assump-
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tion will result in the unrealistic implication that fluid can move from a region of
lower pressure (z = 0) to that of higher pressure (|z| = L /2).

It was shown in Refs. 52, 53 and 3 that the response of infinite-conductivity
wells can be closely approximated by using the solutions for uniform-flux wells.
In §3.5, we will present a discussion of the procedure to compute the infinite-
conductivity well responses by using the uniform-flux well solution. To set the
stage for this discussion, we first derive an analytical expression for the horizontal

well pseudoskin factor.

3.4 Pseudoskin Factor and Effective Wellbore Radius

In this section, we obtain analytical expressions for the horizontal well pseu-
doskin factor and effective wellbore radius. These expressions are extremely useful
to determine the long term productivity of horizontal wells and to compare the per-
formance of horizontal wells to that of vertically fractured wells and unstimulated

vertical wells.

I. Pseudoskin Factor As stated before, for a horizontal well to be a commercial

method of completion, its productivity must be comparable to the productivity of a
vertically fractured well. Therefore, the pseudoskin factors considered in this work
are based on the appropriate vertically fractured well solution; that is, we define
the pseudoskin factor as the additional pressure drop caused by the fact that a
horizontal well is a partially penetrating fracture at the limit. Here we will present
a simplified formula to evaluate the pseudoskin factor at the well location.
Consider the long time approximation of the horizontal well solution given by
Eq. 3.2.19. In light of the discussion on the computation of wellbore responses
presented above (§3.3) , if we choose the point yp = 0, zp = zyp + rwpDz to
compute the wellbore pressures, then the dimensionless wellbore pressure, pyp, is

defined by

Pwp = 0.5 (lntD + 2.80907) + 0o (ID,O) + F(.’BD,O, zwD,erz,LD) . (3.4.1)
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If we note that the first two terms on the right hand side of Eq. 3.4.1 define the
pressure drop on the surface of a vertically fractured well!?, then the function F

defines the pseudoskin factor for a horizontal well:

[ o]

F(zp,0,zwp,Twpz D) = E cosnm(zyp + rwp:) COSNTZyp
n=l

/+1 Ky [mer\/(zD - a\/E/Tz)Z] da. (3.4.2)

-1

As noted in Chapter II, evaluation of the integral in the right hand side of Eq. 3.4.2
can pose dificulties. These difficulties, however, can be avoided if we follow the lines
suggested in §§2.5 and 2.6. Using the relation given by Eq. 2.5.1, we can recast Eq.
3.4.2 in the following form:
F( lzpl < \/k_/k—x,o ZuwD,TwDz, Lp) =

cos n7(zwp + TwDz) COSNT 2y D
rLp \/HE ,?; n (3.4.3)

nwLp (y/k/ka+zp) nwLp (y/k/ka—2p)
[ /; Ko (u) du + /0

Ko (u) du| .

Note that the case for |zp| > 1/k/k; can also be handled in a similar fashion by
using Eq. 2.5.2. In §2.5 I, we also showed that

/ Ko (w)du=1 ~ Kiy (2), (3.4.4)
0
where

Kiy (z) = / Ko (u) du. (3.4.5)
Then, Eq. 3.4.3 can be also written as

F (‘:CDI < Vk/kz,o,zwDaerzaLD) =

Z cos n7 (2D + fwDz) COSNT 2y D

LD,/k/kz — n

(P(-'BD y0,2wD s TwDz LD),
(3.4.6)
where

cosnm |2 +r cCoSnmwz
W(xp,o,zwD,Ttz,LD) ( w D tz) wD
7!'L V k/k:z: n=1 n
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{Kil [n7Lo VTR, + zp)| + Kix |n7Lo (V/E/ka - zp)] } (3.4.7)
If we write

COS N2y p COSNT(ZywD + Twpz) = 0.5 [cos n (224D + rwpz) + cosnmry,p,] (3.4.8)

and use the relation®®
o
1
Yy = k1 . jo<z<an], (3.4.9)
=k 2 2(1—cosz)

then we can write Eq. 3.4.7 as
F (IxD| S vV k/k:noazwDaerzaLD) =

— EE\IT-TZ In [4sin-72E (224yp + rwpz)sin '72—r1'tz] - (zp,0,2up,TwDz, LD) -
(3.4.10)

To our knowledge, the expression for the horizontal well pseudoskin factor
given by Eq. 3.4.10 has not been reported in the literature. As will be discussed
later in detail, our computations indicate that for L D\/Em > 5, the pseudoskin
factor, F, becomes negligible and the differences between the late time responses
of vertically fractured wells and horizontal wells vanish for practical purposes. In
physical terms, the logarithmic term in the right hand side of Eq. 3.4.10 represents
the contribution of the early time radial flow period in the vertical plane (see Eq.
3.2.1) to the pseudoskin factor. Similarly, the terms denoted by ¢ (Eq. 3.4.7)
represent the contribution of the three dimensional flow period between the early
time radial flow and late time pseudoradial flow periods.

In §2.5 I, we noted that Ki;(z) can be neglected compared to 7/2 within 1 %
when z > 3.6 (see the discussion following Eq. 2.5.7). Then the function ¢ becomes
negligible compared to the first term on the right hand side of Eq. 3.4.6, within
1 %, when

(3.4.11)

3.6
o 2 ik o))

When the condition given by Eq. 3.4.11 holds, we can approximate the horizontal

well pseudoskin factor by

F [|:cD| < \ﬁc_/_l;::,o,zwp,rwpz,LD >1.15/ (\/Hk:—— izD|)] ~
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1
" 2Lp\/kJk,

There is field evidence®® that most horizontal well lengths would satisfy the condi-

In [4 sin g (22wD + rwps) sin -725r,,, Dz] . (3.4.12)

tion stated by Eq. 3.4.11 and therefore the use of the approximate relation given

by Eq. 3.4.12 would be satisfactory for the computation of the pseudoskin factor.

I1. Effective Wellbore Radius To obtain a comparison between vertical well and
horizontal well productivities, it is often useful to define an effective wellbore radius
which is the wellbore radius of an unstimulated vertical well to yield the same
productivity as that of a horizontal well. The concept of effective wellbore radius was
used by Prats®® and Prats et al.%° to show that the behavior of infinite-conductivity
vertical fractures can be represented by that of an unstimulated vertical well with
wellbore radius equal to one-quarter of the length of the fracture. In §2.7 II, we
extended this idea to horizontal wells in isotropic reservoirs (see Eq. 2.7.41). If we
consider three dimensional anisotropy (k; # k, # k.), then combining Egs. 3.4.1

and 3.4.10, we can write the following expression:
pwp =0.5 (Inip + 0.80907)

(Ln/2)? [4sin7 (z4p + T222)sinw (m)]ﬁ@ (3.4.13)

~0.51n 2
r' 2exp[2(1 + 0 — )]
where tp is the dimensionless time based on the equivalent wellbore radius, ri,; that
is,
. Ln \?
tp=1 . 4.
D D (ZT:”> (3 4 14)
The late time response of an unstimulated vertical well is given by
pwp = 0.5 (Intp + 0.80907). (3.4.15)

Comparing Eq. 3.4.13 with Eq. 3.4.15, we can decide that a horizontal well is

equivalent to a vertical well with wellbore radius given by

b [ka
. Ly/2 . T re |kz) . 7 ky |2V ™
r ] 4sin 7| 2w + oA 5 s gr e\ . (3.4.16)

"’=exp(1+a—<p 2\ ky
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Note from Egs. 3.4.11 and 3.4.12 that for Lp > 1.15/(\/k/kz — |zp|), we have
¢ =~ 0 and Eq. 3.4.16 can be written as

Lyp/2 R r k,\ . =« k.
v ] T Tw (22 LR . . (3.4.17
Tw p(110) [4 sin (z,,, + > ky) sin o S ( )

Note also from Eq. 3.4.10 that as Lp — oo, F — 0; horizontal well pressure

response approaches the vertically fractured well response, and Eq. 3.4.16 yields

. _______expL(’i/i 7 (3.4.18)
where 1 + ¢ = 1 and In2 for uniform-flux and infinite-conductivity conditions,
respectively. Eq. 3.4.18 defines the effective wellbore radius for a vertically fractured
well (see Refs. 39, 40, 42, and 10). A similar expression to that given by Eq. 3.4.17
has been obtained in Refs. 54 and 55 by using an approximate solution for long

horizontal wells.

3.5 Computation of Infinite-Conductivity Well Responses

In obtaining the solution given by Eq. 3.1.1, we assumed that the flux distribu-
tion along the surface of the horizontal well (or drainhole) was uniform (uniform-flux
well idealization). As discussed in §3.3, however, the conductivity of horizontal wells
would be close to infinity and hence the pressure distribution, instead of the flux
distribution, would be uniform along the well surface (infinite-conductivity well). It
is shown in Refs. 52, 53, and 3 that the solution for the infinite-conductivity ideal-
ization can be obtained from the uniform-flux solution by dividing the well length
into small segments each with uniform flux per unit area and then adjusting the
strength of the source in each segment so that the resulting pressure distribution
would be approximately uniform along the well. In most well-reservoir systems of
interest, the pressure dro‘p can be shown to be independent of the flux condition
on the well surface initially (for example, during the linear flow period in fractured
wells and radial flow period that is concentric with the well axis in partially pen-

etrating wells and horizontal wells). Subsequently, for infinite-conductivity wells,
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the flux distribution becomes a function of time and ultimately it stabilizes along
the well length. Gringarten et al.1? noted that once the stabilized flux distribution
is attained, then it is possible to find a point along the axis of a uniform-flux well at
which the pressure drop created by a uniform-flux well and an infinite-conductivity
well would be the same. This point is usually referred to as the equivalent pressure
point and is used to obtain wellbore pressures of infinite-conductivity wells by using
the solutions developed under the uniform-flux well assumption. A similar proce-
dure can be used for all times; however, in this case the equivalent pressure point
would be a function of time. Ref. 10 suggests that the use of the stabilized flux
distribution (and therefore the equivalent pressure point obtained during stabilized
flow period) for all times would not introduce significant error.

In the following, we summarize the procedure to obtain the stabilized flux
distribution and to determine the equivalent pressure point for horizontal wells.
The development presented below is similar to that given in Ref. 10 and additional
details can be found in the quoted reference.

For discussion, if we assume that the reservoir is isotropic in the horizontal

plane (k; = k), then we can write the solution given by Eq. 3.1.1 as

pp = pps + F', (3.5.1)

where pp; is the vertically fractured well solution given by

pp; = \/—/ [ (—1—4—;—/_—5-2+erf(12—\/_ )} [e p( i%)] %, (3.5.2)
F'= l/‘i_;/otv [ Zexp 2L%7) cosnmzp cosnwzwp}

[erf-(—l—é_%/—{}-)--}- 1= 2D) N )] [exp( 3"11:)] j/; (3.5.3)

Using the relation given by Eq. 3.2.11, the vertically fractured well solution, ppy,

and

can also be written as

+1 — )2 42
pps = —0.25 / Ei [—(“’ o) + yD] da. (3.5.4)
-1 4tp

127



If we replace the Ei(—z) function in the right hand side of Eq. 3.5.4 by its logarith-
mic approximation suitable for small values of its argument (large times), then we

can write the long time approximation of the fracture solution as

+1

t

pps = 0.25 / In D —— +0.80907| da. (3.5.5)
-1 (zp — )" + 43

In §3.2, we showed that the long time approximation of the function F* is given by

oo +1
F = Z COS nTZp COS mrz,,,D /_1 Ko [mrLD \/(:::D - a)2 + y%] da. (3.5.6)

n=1

Using the relations given by Egs. 3.5.5 and 3.5.6 in Eq. 3.5.1, the long time

approximation of the horizontal well solution can be written as

+1 to 1
pPp = / In 5 +0.80907
-1 (zp — )" + 3 )

+ Z cos nwzp cos Nz, p Ko [mrLD \/(:L'D - t:t)2 + v }da. (3.5.7)

n=1
If we divide the half length of the well, L, /2, into M equal segments, then the
pressure drop due to production from the m** uniform-flux element extending from

(m—1) L/ (2M) to mL;/ (2M) is given by

m/M $
D
PD = / {0.25 [ln( — +0.80907]
(

m—1)/M Tp — a)’ +y5
oo
+ Z COSNTZp cOs N2y p Ko [mrLD \/(zp - oz)2 + y%] }da, (3.5.8)
n=1
where g,, is defined by
;L
gm = 2 - B, (3.5.9)

In Eq. 3.5.9, g, is the strength of the differential flux elements (or point sources)
located along the flux element (and assumed to be constant for the flux element)

and g is the production rate from the total length of the horizontal well.
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Due to symmetry with respect to the center of the well (assumed to be at
zp = 0), we consider another flux element extending from — (m — 1) L,/ (2M) to

—mLy/ (2M) that yields a pressure drop given by

-m/M tp
pp = —qm/ 0.25 |In 5 +0.80907
~(m-1)/M (zp — )" +4p

n=1

+ Z COS NI 2p cos N7 2y p Ko [n'/rLD \/(:z:D — a)2 + y%} }da. (3.5.10)

The pressure drop due to mutual production from the m** flux elements in the
positive and the negative z direction is then obtained by superposing Eqs. 3.5.8

and 3.5.10 and is given by the following relation.

m/M -m/M tp
PD = Gm / —/ 0.25 |In 5 > + 0.80907
{(m-1)/M —(m-1)/M (.’ED —_ a) + Yp

+ Z COSNTZp COS NI 2y p Ko [mrLD \/(IED — oz)2 + y%] }da. (3.5.11)

n=1

If we note that

m/M -m/M m/M (m~1)/M
- da = - d 3.5.12
U(’""”/M /-(m-l)/M] el U—m/M /;(m—l)/M:| flejde (3512

and define
m M tp
PDm = / 0.25 {In —— +0.80007
-m /M (xD - a) + ¥p
(o o)
-+ Z cosnmzp cos nzy p Ko [mrLD \/(xD - oz)2 + y%] }da, (3.5.13)
n=1 ]

then Eq. 3.5.11 can be written as

PD = gm (PDm — PDm-1) - (3.5.14)

Finally, considering all the flux elements along the well, the resulting pressure drop

can be formulated as
M

Pp = Z dm (po - PDm—l) N (3.5.15)

m=1
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and the resulting production rate from the total length of the well, ¢, is given by
M -~
q= Em:l (QmLh/M) or

M
Y tm=M. (3.5.16)
m=1

If we now choose g¢,,, in Eq. 3.5.15 such that pp would be approximately constant
along the surface of the well, then Eq. 3.5.15 gives the pressure distribution due
to production from an X‘/inﬁnite-conductivity hofizontal well. In order to obtain g,,
to be used in Eq. 3.5.15, we impose the condition along the well surface (yp = 0,
2D = Zyp + TwD2; see §3.3) that the pressure drop measured in the middle of the
mt* flux element be equal to that in the middle of the (m + 1)** flux element; that

is

27 -1 27 +1 .
PwD ($D= JZM >=wa ($D= 12M> []=1,M—1]. (3.5.17)

Note from Eq. 3.5.13 that

2
m — PDm-1 =— (Intp + 2.80907 ;
PD PDm-1 M (Intp + ) +o(zp,yp) (3.5.18)

+F(ID,yD,zDazwD’LD)

where
m m\2
o(zp,yp) =0-25{ (xn - —]\;I—) In [(ZD - -ﬁ) + y%]
m m\2
= (o+37) 10| (20 + 37) +3b
m— 1 [ m — 1 2 2-
+ | zp + M In|{zp + YE +Yp
m — 1 [ m— 1 2 2 ]
—lzp — Y Inl{zp— % +yp
—2yparctan 2D zzD t y% + = z—l }
”m— 3 m haad
M (ch+ - ) (B +ub - 5l + 24l
(3.5.19)
and

oo

Fn(zp,YD,2D,2wp,Lp) = Z COSNTZp COS NT 2D

n=1



m /M (m-1)/M 2
- K, [mrLD \/(zD —a)’ + yf—,} da. (3.5.20)
—m/M J=(m-1)/M

Then the condition given by Eq. 3.5.17 can also be expressed in the following form:

M
Z dm [U(ZD,O) + Fm(zDaO, ZwD;TwDaz LD)],;D=2.21'§1 =
m=1
y (3.5.21)
Z Im [G(ZD,O) + Fm(zDaOazst TwDz)> LD)L;D—_:%L [J. =1,M - 1].
m=1
Using the additional condition that
M
Y m =M, (3.5.22)

m=1

the system of equations given by Egs. 3.5.21 and 3.5.22 can be solved to obtain
the stabilized flux distribution, g,,. (To avoid difficulties in computing the function
F,, given by Eq. 3.5.20 at yp = 0, relations given by Egs. 2.5.1 — 2.5.3 should be
useful.)

Once the stabilized flux distribution, g¢,,, is obtained, Eq. 3.5.15 can be solved
to obtain the wellbore pressure of an infinite-conductivity horizontal well. To find
the equivalent pressure point, we compute the pressure distribution along the surface
of a uniform-flux horizontal well from Eq. 3.2.19. The equivalent pressure point
is then found to be the point at which the uniform-flux and infinite-conductivity
solutions yield the same pressure drop.

In Refs. 5, 38, and 50, the infinite-conductivity responses are computed from
the uniform-flux solution at the equivalent pressure point zp = 0.732. Justification
for this value of the equivalent pressure point is based on the work of Gringarten et
al.'® who showed that the uniform-flux solution can be used to compute the response
of a well intercepted by an infinite-conductivity vertical fracture if zp = 0.732. To
investigate the basis of the assumption made in Refs. 5, 38, and 50, let us consider

the long time approximation of the horizontal well solution given by

Pup = Pps + F(2p,0,24p,TwDz, LD), (3.5.23)
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where pp;y is the long time approximation of the vertically fractured well solution

and F is the pseudoskin factor for a horizontal well given by (see §3.4):

1 . in ¥
F(zp,0,2wp,TwDz,Lp) = — E In [4sm§ (224D + rwps) sin -2—wa3] (3.5 24)

— QO(:BD,O, zwD’erz,LD)'

In Eq. 3.5.24, @ is defined by

1 f: cosnT (2yp + TwpDz) COSNT2Zy D
7l’LD n

na=l

@(zD,O, zwDaerZ’LD) =

{Kil [nwLp (1 + zp)] + Kty [nwLp (1 — zp)] ¢
(3.5.25)
In §3.4, we discussed that if Lp > 5, then the pseudoskin factor, F, is negligible
and therefore the long time responses of vertically fractured wells and horizontal
wells are practically the same. This result suggests that the equivalent pressure
point zp = 0.732 for a vertically fractured well can also be used for long horizontal
wells (Lp > 4). In §3.4, we also showed that the function ¢ becomes negligible if

Lp >1.15/(1 — |zp|) and the long time response of a horizontal well is given by

Pwp [Lp > 1.15/(1 — |zp|)] = pps — -2—-L1—; In [4 sin—;E (2zwp + rwpz) sin er-rwpz] .
(3.5.26)
Note that the second term in the right hand side of Eq. 3.5.26 (the horizontal well
pseudoskin factor) is independent of flow in the z direction. This suggests that the
point zp = 0.732 obtained by Ref. 10 for vertically fractured wells can be used as
the equivalent pressure point for horizontal wells if Lp > 1.15/(1 — |zp|).

In this work, as in Refs. 5, 38, and 50, we use the point zp = 0.732 to compute
the infinite-conductivity well responses by using the uniform-flux well solution given
by Eq. 3.1.1. The equivalent pressure point for horizontal wells is also obtained
in Ref. 56 by computing the stabilized flux distribution as outlined before in this
section. Ref. 56 presents the equivalent pressure points for the range of horizontal
well lengths 2.5 < Lp < 20. The values of the equivalent pressure point given

in Ref. 56 appear to be in conflict with our observations presented above that
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based on the investigation of the analytical expression for the pseudoskin factor, for

Lp > 1.15/(1 - |zp|), zp = 0.732.

3.6 Pressure Derivative Analysis

The advent of sensitive pressure gauges makes it possible to use the pressure
derivative as a practical method of analysis. In this section, we present an alternate
approach to analyze well test data via the derivative method. This approach involves
plotting Ap/ [28 (Ap) /3 Int] with respect to time. To our knowledge, this procedure
was first presented in the groundwater literature in 1952 by Chow*. This method
has a wide range of applicability and should improve our ability to analyze data,
particularly with regard to heterogeneous reservoirs. In this chapter, we refer to
Chow’s method as the normalized pressure procedure. The normalized pressure
procedure should eliminate some of the nonuniqueness problems often encountered
in type-curve matching pressure data; for example, data affected by storage and
skin, fractured well and horizontal well responses. This method is also extremely
useful in identifying semilog straight lines, particularly if producing times are short.
In this work, however, we restrict our attention to the problem under consideration
and consider applications to three cases: the exponential integral solution, the
horizontal well solution, and the vertically fractured well solution. Applications
of this procedure to other situations can also be found in Refs. 6 — 8. In the
following, we first examine the line source well solution to discuss the basis of Chow’s
procedure. This development is similar to that presented by Chow*. We then
examine the applicability of this method to the horizontal well solutions. Since we
compare horizontal well responses with that of vertically fractured wells, a discussion
of the vertically fractured well case is also presented. For simplicity, throughout the

following discussion, we assume that the reservoir is isotropic in the horizontal plane

(km = ky)-
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1. The Line Source Solution The line source well solution is given by

1_. rZ
pD ("DatD)=—'2‘El g K (3.6.1)

Taking the derivative of pp with respect to Intp and dividing both sides of Eq.
3.6.1 by 2(3pp/31Intp), we obtain

PD = Lo (12 )mi (-2 (3.6.2)
2(3pp/alntp) 2 4tp 4tp )’ e
If
1'2
-2 <o.01, (3.6.3)
4tp
then
SN (3.6.4)
exp yre =1, .6.

within 1 %. When the condition given by Eq. 3.6.3 is satisfied, the exponential
integral function, Ei(—z), can be replaced by the logarithmic approximation within

1 %. Thus, we can write

PpD 1 tp
~pp == [In-2 +0.80907 ). 3.6.5
2(@pp/dlntp) PP T 3 (nr% + ) (3.6.5)

Egs. 3.6.1 — 3.6.5 teach us the following. First, if the semilog straight line exists,
then a plot of Ap/ (20Ap/d1Int) vs. logt should be a straight line with slope equal
to 1.151. Thus, this procedure permits us to identify the semilog straight line in a
straightforward manner, should it exist. If we consider the dimensional form of Eq.

3.6.2, we obtain

Ap 1 r2 r?
=—= —Ei|—). 3.6.6
2(0Ap/dInt)  2°°F (4nt) ' ( 4t (3.6.6)
Comparing Eqgs. 3.6.2 and 3.6.6, it is clear that when (rz/nt) = (T%/tp), the left
hand sides of the functions given by Eqs. 3.6.2 and 3.6.6 are equal. This indicates
that it is possible to prepare a type curve based on Eq. 3.6.2 and use it to match

data in the conventional way. In this case, we would plot Ap/(28Ap/d1nt) vs.

time, t. If the semilog straight line does not exist, then it is possible to determine
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hydraulic diffusivity, n, by aligning the vertical axes. (Note that the vertical axis
for the type curve and the field curve are dimensionless.) Once 7 is determined,
pressure data can be used to match the well response to obtain kh (the time axes
are now fixed) and the ¢c;h product can be determined from the estimates of kh
and 5. To apply this procedure, we generate a plot of pp/ (20pp /81Intp) vs. tp/r%
(log-log or semilog coordinates). Then type curve matching can be performed as
follows:

1. Plot Ap/(28Ap/dInt) vs. t with the same scale as that of the type curve.

2. Align the Ap/(280Ap/dInt) axis with the pp/(20pp/dIntp) axis (the
vertical axes) and match the field data with the type curve by horizontal movement
of the field curve.

3. Once the match is obtained, choose a match point, record the values of ¢
and tp/ r% and determine the value of the diffusivity constant, n.

4. Using the match determined in step 3 align the time axes (horizontal axes)
of the field curve and the type curve and then match the pressure response curve
(Ap vs. t) with the conventional log-log type curve by vertical movement of the
field curve. Once this match is obtained, then kh and ¢c:h can be obtained in the
conventional manner.

Although we have considered the exponential integral solution, this method is

applicable to other situations.

II. Application to Horizontal Wells The dimensionless pressure and its deriva-

tive with respect to Intp for a horizontal well are given, respectively, by

po( ID,yD,ZD,ZwD,LD,tD) =

A vt vl G| R

[1 +2 Z exp (—n®72L%7) cosnmzp cos nwzwp]

and

dpp __\/7TtD (1+$D) (1-——:1:0 %
olntp 4 [erf NN “4tp
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©o
[1 +2 Z exp (—n?72L%tp) cosnmzp cos nrzwp] . (3.6.8)
n=1

Dividing Eq. 3.6.7 by 3.6.8 and multiplying by 0.5, we obtain

2(3ppl;%lntp) = 2%{/:0 [eXp (“%)J

o0
[l + 2 Z exp (-—-n27r2L2DT) COS N Zp COS mrz,,,D]

n=1

(1+ zp) (1-zp) dr
[erf W + erf e ]\/;}

o«
{ l:l + 2 Z exp (—nzrzL%tD) COSNT2Zp COS mrz,,,p}

n=1

iz szl oo (<2)]) . e

In §3.2 1, it is shown that when

62 /20,
tp < min { (2p + 24p)? / (20L3), (3.6.10)
[(zp + zwp) — 2 / (20L3),

where 6p = 1—|zp|if |zp| < 1, and 8p = 2 if |zp| = 1, the horizontal well solution

can be approximated by

2
— 2y L2 2
pp (zp,Yp, 2D, 2wp,Lp,tp) = — B g _{zp = zD)" JLp +4p , (3.6.11)
8Lp 4ip
where
2 for |zp| <1,
B=1¢1 for [zp|=1, (3.6.12)

0 for |zp|>1.
Therefore, for the time range determined by Eq. 3.6.10 and |zp| < 1, Eq. 3.6.9 can
be approximated by

PD __1 exp (20 — zop)* /L3 + 3
2(app/alntp) 2 4ip




_ 2 /12 2
Ei [___ (ZD zwD‘i)tD/LD + yD:I . (3.6.13)

Note that when ;
(20 — zwp)” /LD

4tp
the right hand side of Eq. 3.6.13 can be approximated by

2
9 <01, (3.6.14)

PD 1 tp

~ 2L =—<In + 0.80907 ;.

2(8pp/dIntp) bPD 2{ [(zp — zup)? /L%+y%] }
(3.6.15)

In dimensional form, Eq. 3.6.13 becomes
a2 _ Lo (2= 20)” + (y — yu)’
2(8Ap/dInt) 2 4nt

(3.6.16)

- [_ (2 = 2)° +(y—y,.,)2} _

4nt
Eq. 3.6.16 indicates that, when the short-time approximation for the horizontal
well solution given by Eq. 3.6.11 becomes valid, then a plot of Ap/ (20Ap/31nt)
vs. t is independent of 2h/Ly; that is, the normalized responses on dimensionless
coordinates at early times are independent of Lp (see Figs. 3.7.3 and 3.7.7). Fur-
thermore, when the condition given by Eq. 3.6.14 is satisfied, the slope of the plot
of Ap/ (20Ap/31nt) vs. logt is 1.151. This observation can be used to identify the
initial radial flow period.
For times determined by
100/ (rLp)?,
tp > max { 25 [(zo +1)* + y%] ; (3.6.17)
25 [(zp - 1)* + 3],

the horizontal well solution can be approximated by (see §3.2)
1
pp = 3 (Intp +2.80907) + o (2p,yp) + F(zp, YD, 2D, 2uD, Lp).  (3.6.18)

Then, during the time range given by Eq. 3.6.17, Eq. 3.6.9 can be approximated
by

Pp 1
= - (Intp + 2.80907 , up.2D. 7up. Lo).
2(dpp/dIntp) 2(nD+ )+o(zp,yp) + F(zp,YD, 2D, 2up, LD)
(3.6.19)
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Eq. 3.6.19 suggests that at long times the normalized responses will merge with the
pressure responses. Furthermore, if the pseudoradial flow period is evident, then a
plot of normalized responses with respect to time will yield a semilog straight line

with slope equal to 1.151.

III. Application to Fractured Wells The dimensionless pressure solution for a

vertically fractured well is given by!°

pp = _\2_7?/0“9 [erf(lz—\;.D) +erf(12+\/’;”)] [exp (—%)] —‘f/-_r;. (3.6.20)

Thus, we have

— 2
Opp_ _ Vmip [ (1=2p) , (1+2p)][ _ifgﬂ, (3.6.21)
dintp 4 24/tp 2v/tp 4tp

At very early times, we can use the approximation given by Ref. 10 (note that Eq.

10 of Ref. 10 contains a misprint):

2
pp =0 [\/wtp exp (—4%%) - er-|yD|erfc (J%)] , (3.6.22)

where # =1 and 0.5 for |zp| < 1 and |zp| = 1, respectively. For |zp| > 1,pp =0

at early times. Therefore, at early times for |zp| < 1, we can write

PD 7|yp| b lyp] >
=1- == Jerfc | === ). 3.6.23
2(0pp/dIntp) 2+/ntp exp <4tD ere 2V4p ( )

We note that on the fracture plane (yp = 0), Eq. 3.6.23 yields

pPD
2 (dpD/dln tD)

=1 (3.6.24)

This indicates that the ordinate of the normalized plot of fracture responses is
approximately unity at early times (see Figs. 3.7.3 and 3.7.7).
It is shown in Ref. 10 that during pseudoradial flow period, pressure distribu-

tion in the reservoir is given by

pp = 0.5(Intp + 2.80907) + o(zp,yp), (3.6.25)
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where o(zp,yp) is defined by Eq. 3.2.9. Therefore at late times, the normalized

vertically fractured well responses are defined by the following expression:

PD
2(dpp/3Intp)

1
Npp =3 (Intp + 2.80907) + o (zp,yD) - (3.6.26)

As in the other cases, Eq. 3.6.26 suggests that at late times the normalized plot
will merge with the pressure response curve and will yield a semilog straight line

with slope equal to 1.151.

3.7 Results

Here we present the results of our investigation of the responses of horizontal
wells based on the analytical developments presented in the previous sections. Qur
main objective in this section is to provide physical insight of the parameters that
govern the performance of horizontal wells and to discuss the procedures to analyze
the pressure responses of horizontal wells. We consider both infinite-conductivity
and uniform-flux wells. Based on the discussion presented in §3.5, the infinite
conductivity results are obtained from the uniform-flux well solution given by Eq.
3.1.1 at zp = 0.732. For the purpose of continuity and comparison with the results
presented in Refs. 37 and 38, we use the point 2p = 2,p and yp = ryp (see
Eq. 3.3.3) to compute the wellbore pressures. The results presented throughout

this section assume that the reservoir is isotropic in the horizontal plane; that is,

k =k, =k,.

1. Infinite-Conductivity Well Responses Fig. 3.7.1 shows typical pressure re-

sponses of infinite-conductivity horizontal wells. The variable of interest is the
dimensionless horizontal well length, Lp, (0.1 < Lp < 100). The solutions shown
here are for a well located at the reservoir mid-height (z,p = 0.5) and r,,p = 1074,
The bottom curve in this figure is the response of a fully penetrating vertically
fractured well. The figure shows that the Lp > 50 solutions are indistinguishable

from the vertically fractured well solution for tp > 2.3 x 10~! (relative difference
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is less than or equal to 5 percent), i.e., at long times, the pressure responses of long
horizontal wells are almost identical to the responses of fully penetrating vertically
fractured wells. Our computations indicate that the difference between the horizon-
tal well responses and vertically fractured well responses at late times is less than
10 percent if Lp > 4.

The dashed lines on the left hand side, lines marked AA, of this figure, denote
the end of the initial radial flow period, Eq. 3.2.1. As already mentioned, during
this period, the well behaves as if it were a vertical well completely penetrating a
formation of thickness L. The end of this flow period was determined by computing
slopes and the lines marked AA reflect times at which slopes differ from 1.151 by 5
percent. The end of this flow period is determined by two factors. First, movement
of fluid across the well tips (|zp| = 1) can distort the isopotential lines that are
concentric with the well axis. In this case, the end of this flow period will be
independent of Lp. Intuitively we would expect this to be the case for small values
of Lp (h large and/or k, small). This period can also end if upper and/or lower
boundaries influence the well response. Under such circumstances, we would expect
Lp to have an influence on the end of this period. Intuitively speaking, we would
expect the boundaries to influence the well behavior early if Lp is large (h small
and/or k. large). These results are consistent with the time ranges given by the
right hand side of Eq. 3.2.3.

The chain-dotted lines, lines marked BB, on the right hand side of the figure
denote the beginning of the pseudoradial flow period. Data beyond this time pe-
riod can be used to obtain formation permeability and skin factor by conventional
semilog analysis techniques. If Lp > 0.25, the beginning of this flow period is
independent of Lp; in this case the upper and lower reservoir boundaries do not
influence the beginning of this flow period. The basis for this result can be un-
derstood if we examine the derivative of p,,p. Fig. 3.7.2 is a plot of dp,p/dIntp
vs. tp. Note that the derivative plot has a value equal to 0.25/Lp at early times
(Eq. 3.2.1) and 0.5 at late times (Eq. 3.2.19). The letter x (tp = 4.13) in Fig.

3.7.2 represents the time for the start of pseudoradial flow for horizontal wells for
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Lp > 0.25. It also represents the time for the start of pseudoradial flow for a verti-
cally fractured well. This result implies that for Lp > 0.25, the formation thickness,
h, and the ratio k,/k do not affect the beginning of this flow period; thus, it is the
length of the horizontal well, L), that governs the start of the pseudoradial flow
period and not surprisingly this time is identical to the start of the pseudoradial
flow period for a vertically fractured well. If Lp is small (Lp < 0.25), then the
upper and lower boundaries also control the time for the beginning of pseudoradial
flow and thus Lp (vertical permeability and reservoir thickness) has an influence
on the beginning of the pseudoradial flow period. These observations may also be
interpreted as follows. If the initial radial flow period ends because of the influence
of the top or bottom boundary (large Lp), then our results show that the start of
pseudoradial flow is independent of Lp and is governed by the value of L, (via ¢p).
The reverse argument is also true.

Based on an examination of the responses shown in Figs. 3.7.1 and 3.7.2, the
following conclusions may be derived. First, if Lp is large, then it may not be
possible to distinguish the horizontal well solutions from the vertically fractured
well solutions. The results shown in Fig. 3.7.1 and other computations suggest
that if Lp > 50 then the two solutions may be indistinguishable. The fact that
the horizontal well solutions are for all practical purposes identical to the fully
penetrating vertical fracture solution at late times for large Lp values deserves
comment. We have noted earlier that a horizontal well may be viewed as a vertical
fracture of zero height in the limit. Thus it may be surprising that the two solutions
are for all practical purposes identical for certain values of Lp. Physically, this result
implies that flow in the vertical direction is negligibly small. Also, the magnitude of
the additional pressure drop reflecting convergence to the wellbore depends on the
manner in which the fluid converges toward the wellbore. At large distances from
the well center, velocities are small, and if convergence takes place where velocities
are small then the additional pressure drop that reflects convergence is small. In
the horizontal well case, fluid begins to converge at large distances from the well

and thus the additional pressure drop is small. In the case of vertical wells, fluid
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converges toward the wellbore where velocities are high, and if all conditions are
identical (ry, h, ks, and k), the corresponding additional pressure drop would be
much higher. It is for this reason that a horizontal well may reduce water or gas
coning problems (see Refs. 57 and 58).

Although not directly pertinent to this work, the observations in the preceed-
ing paragraphs and the results in Figs. 3.7.1 and 3.7.2 have a bearing on the
performance of vertically fractured wells. These results suggest that the long term
productivity of a vertically fractured well is governed principally by the length (and
conductivity) of the vertical fracture rather than the height of the fracture. The
results given here imply that if lateral penetration is significant, penetration in the
vertical plane is not germane to long term productivity (see also Ref. 59).

The second conclusion that can be drawn from the responses shown in Figs.
3.7.1 and 3.7.2 is that, if Lp is small, then the characteristic shape of the well
response will be indistinguishable from that of an unfractured vertical well. The
well responses display features similar to that of an unfractured vertical well. If Lp
is small enough, type curve matching of pressure data may be virtually impossible.
Also, from the derivative plot, we may not be able to distinguish the specific radial
flow period (initial or pseudoradial) if all measured data are taken during one of
these flow periods. Fig. 3.7.2, however, suggests that the derivative plot would
be beneficial if data during the transitional period are available. In the following,
we suggest a procedure to identify the appropriate semilog straight line and also
improve our ability to type curve match pressure data.

Normalized Pressure Plots Fig. 3.7.3 is a composite of the normalized pressure re-

sponses discussed in §3.6 (unbroken lines) and the pressure responses (dashed lines).
At early times the normalized pressure responses are identical; the influence of Lp
is negligible. This result follows directly from Eq. 3.6.15. As time increases, the
normalized pressure responses diverge and ultimately merge with the appropriate
pwp curve (see Eq. 3.6.19). Note that the ordinate of the normalized pressure
responses does not involve formation or well parameters. This result implies that it

is possible to conduct type curve matching of normalized pressure data by aligning
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the vertical scales of the field curve and the type curve (Fig. 3.7.3). The circle
circumscribing the letter x on Fig. 3.7.3 reflects the end of the initial radial flow
period jfor Lp < 1.25. From Fig. 3.7.3, we note that the normalized responses
are for all practical purposes identical to the pressure responses during the pseu-
doradial flow period (Eq. 3.6.19). Thus, by type curve matching data with the
normalized pressure plots, the appropriate semilog straight lines, should they exist,
can be identified.

Influence of Well Radius, r,,. on Well Response The results presented in Figs. 3.7.1
— 3.7.3 assume that r,p = 10™%. We have chosen this value of r,,p principally be-
cause we believe that r,p = 10~* is representative of the value of the dimensionless
wellbore radius that will be encountered in practice, particularly for long horizontal
wells. In field applications, the wellbore diameter will be dictated by the drilling
constraints but will not vary by more than a factor of two. To evaluate the influence
of changes in wellbore radius, we computed pressure responses for r,p values in the
range 5 x 107% < r,p < 5 x 10~%. Typical responses for two values of Lp, Lp =10
and 1 are shown in Tables 3.7.1 and 3.7.2, respectively. Considering the results in
Table 3.7.1, we note that at early times the differences are significant. (In actual
practice, the difference at early times may not be as large as that shown here. For
a well of finite radius we would expect the differences to be smaller.) Long term
productivity, however, is unaffected. For example, at tp = 10* the change in di-
mensionless pressure is only 1.3 percent. For small values of Lp (Table 3.7.2), ryp
has a greater influence on long term productivity. In this case, for the ranges con-
sidered in Table 3.7.2, dimensionless pressures vary by approximately 10 percent.
The results presented in Tables 3.7.1 and 3.7.2 cover a wide range of r,p values
and for a given value of Lp, one will not encounter such large variations in ryp.
The tabulations are presented to emphasize the importance of r,, p, particularly on
the early time pressure response.

Influence of Well Location, z.,.,p. on Well Response Tables 3.7.3 and 3.7.4 are in-

tended to provide information on the influence of the well location, z,p, for two

values of Lp. In each table, four horizontal well locations are considered, z,p = 0.5,
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TABLE 3.7.1
THE INFLUENCE OF WELLBORE RADIUS ON PRESSURE RESPONSE

OF AN INFINITE-CONDUCTIVITY HORIZONTAL WELL

147

(LD = 10, z2.p = 0.5)
Dimensionless Wellbore Pressure, PuD
Dimensionless
Well Radius,
TD 5%107° 1074 5x10°%
Dimensicnless
Time, tD
iE-6 0.1700 0.1354 0.05642
TE-3 0.2276 0.1929 0.1126
lE-4 0.2851 0.2505 0.1700
1E-3 0.3439 0.3093 0.2288
1E-2 0.4646 0.4300 0.3495
1E-1 0.7827 0.7480 0.6675
1EQ 1.491 1.457 1.376
1E1 2.556 2.521 2.440
1E2 3.697 3.662 3.582
1E3 4.847 4.813 4.732
1E4 5.999 5.964 5.884




TABLE 3.7.2
THE INFLUENCE OF WELLBORE RADIUS ON PRESSURE RESPONSE
OF AN INFINITE-CONDUCTIVITY HORIZONTAL WELL

(L. =1, z = 0.5)

Dimensionless Wellbore Pressure, PuD

Dimensionless
Well Radius,

LI 5x10° 1074 5%x10""
Dimensionless
Time, tD

1E-6 1.700 . 354 0.5642
1E-5 2.276 .929 1.126
lE-4 2.851 .505 1.700
1E-3 3.427 .080 2.276
1E-2 4.000 .654 2.849
1E-1 4.501 .155 3.350
1EO 5.212 . 865 4.060
1E1 6.276 .929 5.125
1E2 7.418 .071 6.266
1E3 8.568 .221 7.417
1E4 9.719 .372 8.568
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TABLE 3.7.3
INFLUENCE OF WELL LOCATION ON
PRESSURE RESPONSE OF AN INFINITE-CONDUCTIVITY HORIZONTAL WELL

(LD = 25, L 1E-04)

Dimensionless Wellbore Pressure, PuD
Well Location,
20D 0.5 0.25 0.125 0.0625
Dimensionless

Time, tD
2E-6 0.06109 0.06109 0.06109 0.06119
lE-S 0.07717 0.07717 0.07742 0.08149
1E-4 0.1033 0.1024 0.1106 0.1228
1E-3 0.1391 0.1460 0.1583 0.1718
E-2 0.2595 0.2665 0.2787 0.2922
1E-1 0.5776 0.5845 0.5968 0.6103
1EO 1.286 1.293 1.305 1.319
1E1 2.350 2.357 2.370 2.383
1E2 3.492 3.499 3.511 3.525
1E3 4.642 4.649 4.662 4.675
1E4 5.794 5.861 5.813 5.826

1E5 6.945 6.952 6.964 6.978
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TABLE 3.7.4

THE INFLUENCE OF WELL LOCATION ON
PRESSURE RESPONSE OF AN INFINITE-CONDUCTIVITY HORIZONTAL WELL

(L, = 0.25, r = 1E-04)

Dimensionless Wellbore Pressure, P..D
Dimensionless

Time Dimensionless Well Location, Z.b

0.5 0.25 0.125 0.0625
2E-6 6.109 6.109 6.109 6.109
l1E-5 7.717 7.717 7.717 7.717
lE-2< 10.02 10.02 10.02 10.02
1E-3 12.32 12.32 12.32 12.32
1E-2 14.61 14.61 14.61 14.61
1E-1 16.58 16.58 16.60 16.92
120 17.99 18.10 18.59 19.42
1E1 : 19.07 19.36 19.99 20.87
1E2 20.21 20.50 21.14 22.02
1E3 21.37 21.65 22.29 23.17
1E4 22.52 22.80 23.44 24 .32

1ES 23.67 23.95 24.59 25.47




0.25, 0.125, and 0.0625. The tabulations show that for these values of Lp, the pres-
sure responses are insensitive to well location. These results suggest that the pseu-
doskin factor will be essentially independent of z,p. This result may be explained
if we note that for large values of Lp, the horizontal well solutions are essentially
identical to the vertical fracture solution; i.e., flow in the vertical direction is negligi-
bly small. Consequently the location of the wellbore within the productive interval
is not significant. If we compare pressure responses for a smaller value of Lp (Table
3.7.4), then the pressure responses are independent of z,p at early times. This
result can be attributed to the fact that for small values of Lp the initial radial
flow period exists for a very long time. At later times, differences become significant
and at tp = 10° the pressure drops differ by approximately eight percent (for Lp
= 25, the difference at tp = 10° is less than 0.5 percent). Although differences
in p,p values at late times are much larger than the differences in Table 3.7.3,
the influence of z,p on the pseudoskin factor may not be significant principally
because the magnitudes of the dimensionless wellbore pressures during the pseudo-
radial flow period for small Lp values are much larger than the magnitudes of the
dimensionless wellbore pressures for the vertical fracture solution at corresponding
times. Thus, we expect the percent change in pseudoskin factor to be of the same
order of magnitude as the dimensionless wellbore pressure. It is interesting that in
this case the pressure response is, for all practical purposes, relatively independent
of zyp for 0.125 < z,p < 0.875. The effect of r,p on the pressure response for
various well locations is similar to that discussed above.

The Pseudoskin Factor As noted earlier, pseudoskin factors of horizontal wells are

calculated by comparing their late time pressure responses with that of a fully
penetrating vertical fracture. Fig. 3.7.4 shows the variation in pseudoskin factor,
F, as a function of dimensionless well length, Lp (2,p = 0.5). The variable of
interest is the dimensionless well radius, r,,p. We have considered values of r,,p as
large as 102, principally because we wish to provide solutions for short drainholes.
It should be noted, however, that if the drainhole is short, then the upper limit

for Lp will be much smaller than the upper limit considered in this study. As
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expected from the results given earlier, for a fixed value of r,p, the pseudoskin
factor increases as Lp decreases. Also for a fixed value of Lp, pseudoskin factors
decrease as r,p increases. An increase in ryp should be viewed as an increase in
the wellbore diameter, all other variables being fixed. It should be noted that if
rwp is chosen large enough, then pseudoskin factors would be negative for some
values of Lp. Under the assumptions of this work, this result is obtained primarily
because well responses are computed at different points for the horizontal well and
vertical fracture solutions. (Actually, one may view the vertical fracture solutions
in the literature to be computed at r,p = 0.) For reasons mentioned earlier, we
believe that these results are unrealistic and have not considered them in this work.

Fig. 3.7.5 depicts the variation in pseudoskin factor for various values of 2z, p
(rwp = 10™%). Similar results are obtained for other values of r,p. For large values
of Lp, pseudoskin factors are negligibly small and thus the well location does not
impact the magnitude of the pseudoskin factor. On a percent basis, however, the
variation in pseudoskin factor is 10 percent. For smaller values of Lp, we note that
the pseudoskin factor for a well located at z,,p = 0.5 is large; for example, F' =~ 40.5
for Lp = 0.1. The additional pressure drops caused by the proximity of the upper
or lower boundary does not appear to be significant. Large values of pseudoskin
factors for small values of Lp may be explained as follows. For simplicity, if we
assume an isotropic reservoir, then values of Lp < 0.5 would represent well lengths
less than the reservoir height. Such wells can be viewed as limited entry vertical
wells. In such cases, large pseudoskin factors are reasonable.

Influence of Well Length, L;. on the Well Response As is evident from the results

presented thus far, the well length has a dominant effect on well productivity. If
we wish to examine the influence of length on productivity, then some care should
be taken because a change in well length influences both ryp and Lp, all other
parameters being constant. For example, if we consider a system with Lp = 10 and
rwp = 5x 107% (Col. 2, Table 3.7.1) and wish to examine the effect of reducing the
well length, Ly, by a factor of 10, then we must consider the solution for Lp =1,

rwp = 5 x 107* (Col. 4, Table 3.7.2). If we compare responses for these two
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cases we find that the pseudoskin factor changes from 0.2881 to 2.857, a change of

approximately 900 percent.

I1. Uniform-Flux Well Responses Based on the responses of vertically frac-
tured wells'®, we expect the characteristics of the response curves for the uniform-
flux case to be similar to those of the response curves for the infinite-conductivity
case. Fig. 3.7.6 presents solutions for the uniform-flux case. The well is assumed to
be at the center of the reservoir (z,p = 0.5). As mentioned earlier, these solutions
may be applicable to drainholes which extend on either side of a vertical well. If
we compare the magnitude of the pressure drops with the corresponding cases in
Fig. 3.7.1, we find that the pressure drops, in general, are greater than or equal
to the corresponding infinite-conductivity solution. During the initial radial flow
period, the responses would be identical since the conductivity has no influence on
the well response. The dashed lines on the left side of this figure, lines AA, denote
the end of the initial radial flow period. In this case also, the duration of this period
was determined by computing the slope of the pressure trace. For Lp > 1, these
times are essentially identical to the times for the infinite-conductivity case. For
intermediate values of Lp, 0.5 < Lp < 1, this flow period exists for a longer time.

The chain dotted lines on the right, lines BB, denote the beginning of the
pseudoradial flow period. As in the infinite-conductivity case, the beginning of this
flow period is independent of Lp if Lp > 0.5. In this case, the pseudoradial flow
period begins earlier (tp ~ 1.6 as compared to 4.13 for the infinite-conductivity
case). For Lp < 0.5, the upper and lower boundaries also determine the start of
the pseudoradial flow period, and, thus, these times depend on Lp.

Fig. 3.7.7 is a composite of the pressure responses and normalized pressure
responses. The characteristics of the normalized pressure curves are similar to those
considered in Fig. 3.7.3. The circle cirscumscribing the letter x on this plot denotes
the end of the initial radial flow for Lp < 0.5. At late times, the normalized pressure
curves merge with the pressure response curves (Eq. 3.6.19). The normalized

pressure plots should enable us to identify the appropriate radial flow periods and
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also enable us to choose the appropriate Lp curve to match pressure data if Lp is
small. The type curve matching procedure is identical to that discussed earlier.

Since the characteristics of the well responses for the uniform-flux case are
similar to those for the infinite-conductivity case, it does not appear worthwhile to
document the influence of zywp, rwp, etc. in detail.

As mentioned earlier, computation of responses at |tp| = 1, does not appear
to be worthwhile for the uniform-flux case. Table 3.7.5 compares well responses
at zp = 0 and at |zp| = 1, at tp = 10°. The results demonstrate that the
dimensionless pressures at the well tips are less than those at the well center (see
also Eq. 3.2.1). Thus, for a single drainhole or a single horizontal well, where
produced fluids are pumped out from the well tip (|zp| = 1), the uniform-flux
assumption is an unrealistic boundary condition since the point in a wellbore from
where fluid is pumped to the surface must be the point of lowest pressure within the
well. The infinite-conductivity assumption is the only viable boundary condition for
single drainholes or horizontal wells. Since the pressure at the well center (zp = 0)
is the lowest, the uniform-flux boundary condition can be used as an alternative
to the infinite-conductivity idealization for two equal length drainholes, drilled in

diametrically opposite directions from a single vertical well.

3.8 Example Application

In this section a simulated example is presented to demonstrate the application
of the solutions obtained in this chapter. Table 3.8.1 presents well completion data
pertinent to this test. Fig. 3.8.1 is a type curve match of pressure buildup data
with a type curve similar to that shown in Fig. 3.7.3. The unbroken lines represent
the normalized pressure responses of the drawdown type curve. (The dimensionless
pressure curves are not shown here.) The circles represent the normalized pressure
responses. To compute the normalized pressure responses for the “field” curve we
computed derivatives with respect to the Horner®® Time Ratio, HR. The square data

points represent pressure responses and are shown principally for continuity and
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TABLE 38.7.5
-5

DIMENSIONLESS PRESSURES AT t_ = 10 °, AT Xy ® 0 AND IXDI = )

D
(UNIFORM-FLUX SOLUTION)

(zwD = 0.5, T - 1E-4)

Dimensionless Well Length

Dimensionless Pressure, Pup

LD Well Center, Well Tip,
xp = 0 Xy = 1
0.1 53.263 37.00
1.0 10.85 8.988
10.0 7.415 6.662
50.0 7.196 6.499
Vertical Fracture 7.161 6.468
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TABLE 3.8.1

RESERVOIR AND WELL DATA

160

Porosity, ¢, Fraction of Bulk Volume
Thickness, h, Feet

Svetem Compressibility, oo psi—
Formation Volume Factor, B, RB/STB
Flcw Rate, g, STB/D

Viscosity, y, cp

Well Radius, L Feet

Procducing Time, t, Hours

500
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convenience. The match of the normalized pressure responses was conducted after
aligning the ordinates of the “field” curve and the type curve and then sliding the
“field” curve in the horizontal direction. Deviations at large values of At represent
the effect of producing time®!. The match shown in Fig. 3.8.1 indicates that
Lp =10, and At = 107! hrs. at tp = 4 x 107°. Using these values, the pressure
responses were matched as shown in Fig. 3.8.2. The circular data points in Fig.
3.8.2 are the pressure responses and the square data points are the normalized
pressure responses. From the match point shown, we obtain the following results:

kh = 983.5 md-ft., L, = 2000 feet and k./k = 0.25.
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CHAPTER IV

PERFORMANCE OF HORIZONTAL WELLS
SUBJECT TO BOTTOM WATER DRIVE

It is proposed in the literature that a horizontal well is an attractive option in
situations where bottom water will play a major role on production characteristics.
The objective of this chapter is to present information that enables the engineer
to decide on the productivity improvements that may be expected from horizontal
well completions under bottom water drive. As noted in Chapter III, when there
is no fluid intrusion into the reservoir across the boundaries of the reservoir, pseu-
doskin factors can be used to determine the productivity improvement that can be
expected from horizontal well completions. The behavior of water drive reservoirs
poses a more complicated problem and an investigation of the productivities of the
wells operating under such conditions requires a different treatment. In such a sys-
tem, bottom water will tend to encroach into the oil zone and after some time, reach
the well. Therefore, the producing history of the wells operating in the presence of
contiguous water can be divided into two phases. The first phase is characterized by
water-free oil production, while during the following phase, water production starts
increasing at an accelerated rate. Since our primary objective is fo compare hori-
zontal and vertical well productivities with a view of developing guidelines similar
to those presented in Chapter III, we only consider the first phase.

Three papers®2=%¢ have appeared in the literature that investigate the en-
croachment of water into the oil zone due to production from a horizontal well.

Ref. 62 extends the classic treatment of the water coning phenomena as presented

164



by Muskat and Wyckoff®> to horizontal wells operating under edge water drive con-
ditions. Refs. 63 and 64 use the method of hodographs®? to take into account
the deformed shape of the oil-water boundary due to production from a horizontal
well. Ref. 64 (also 63) states that the pattern of flow lines for the bottom water
drive mechanism is the same as that for the lateral edge water drive mechanism
in the vicinity of the well and hence the shape of the oil-water boundary obtained
for the latter can be used for the former in the neighborhood of the well. This
observation appears to be in conflict with Muskat’s comparison of the two water
drive mechanisms®*%6. Our work suggests that the streamlines for edge water drive
systems are significantly different from those for bottom water drive systems. In
this work, we recognize the distinct flow characteristics of bottom water drive reser-
voirs. Although our analysis involves the assumptions used by Refs. 53 and 66, the
model used here takes into account the basic phenomena underlying the behavior
of wells producing under bottom water drive conditions.

In this chapter, we first develop analytical expressions describing the pressure
behavior of horizontal wells subject to bottom water drive, and discuss the charac-
teristics of horizontal well responses under bottom water drive conditions. Recently,
Kuchuk et al.5” have considered the pressure behavior of horizontal wells under bot-
tom water drive. Solutions presented by Ref. 67 only consider a laterally infinite
reservoir whereas this study also investigates the influence of no-flow boundaries.
This aspect is particularly important for deliverability predictions.

Except the work of Muskat®®, the differences between the bottom water drive
and the edge water drive mechanisms have not been discussed in detail in the
literature. In this chapter, we also present a comparison of the basic phenomena
underlying the bottom water drive and the edge water drive mechanisms. We then
investigate the overall performance of horizontal wells under bottom water drive
conditions. Comparison of horizontal and vertical well performances under bottom

water drive conditions is also provided.
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4.1 Transient Flow Behavior

Here we develop the analytical expressions that describe the pressure behavior
of horizontal wells subject to bottom water drive. Asymptotic forms of the solution
for pressure distribution suitable during the transient flow period are derived. We
also investigate the conditions under which the lateral boundaries of the reservoir
do not have an impact on the production characteristics of horizontal wells if the
movement of bottom water is the driving force. The results presented here are
for uniform-flux wells. The consequences of using the infinite-conductivity well

idealization are discussed in §4.3.

1. Problem Formulation The mathematical model we consider here is similar to
the one examined in Chapter III. We consider the flow of a slightly compressible fluid
to a horizontal well of length L in a reservoir of height h. The well is assumed to
be parallel to the top and the bottom boundaries of the rectangular drainage region
and is located at an elavation 2,, within the vertical interval. The well is modeled
to be a line source. We assume that the well is produced at a constant rate. The
reservoir boundary at the top of the formation (z = k) and the boundaries at the
lateral extent of the formation (z = y =0 and z = z, and y = y.) are assumed to
be impermeable. It is assumed that an active aquifer at the bottom of the reservoir
(2 = 0) would yield an effect identical to that of a constant pressure boundary
located at the original water-oil contact and the pressure is above the bubble point.
Therefore, the production is merely by virtue of the movement of the water-oil
interface, not by internal dissolved gas.

To obtain a solution for pressure distribution, we use the source function ap-
proach discussed in Ref. 3. Under the assumptions stated above, we can visualize
the horizontal well as the intersection of three sources: (i) Infinite slab source in an

infinite slab reservoir:

L 4z, 1 n2n2n,t L T T
S, (z,8) = =2 [1+ == = exp | — =12 ) sinnr =2 cos nr =2 cos nr—
Z, wly —n T 2z, Te T,

(4.1.1)
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(i) Infinite plane source in an infinite slab reservoir:

oo 2,2
t
Sy (y,t) = ;1- [1 +2 E exp (—n—%’l’-’—) cos nm 22 cos nri] . (4.1.2)
e n=1 €

Ye Ye

(#%{) Infinite plane source in an infinite slab reservoir:

2 (2n-—1)21r2nzt X Zw . z
Sz(z,t)—-h:?;:lexp[ 1 sin (2n 1)7r2hsm(2n 1)7r2h.

(4.1.3)

The pressure drop at any point in the reservoir (except at the source location,

T=2Zy,Y = Yu,2 = 2y) is given by®

Ap(z,y,2,t) = 81; /0 g(r) S (¢ —1)dr (4.1.4)

where S (t) is the horizontal well source function for the problem under consideration

and, by the Newman’s product solution method?, is given by

S (t) = Sz (z,t) Sy (v,t) Sz (2,1). (4.1.5)

If we assume that the flux distribution along the well surface is uniform and the
production from the horizontal well is at a constant rate, then ¢ (t) = ¢/Ly. If we
further assume that k = k; = k, # k., then using Eqgs. 4.1.1 — 4.1.5, we obtain the
following solution for the dimensionless pressure:

47 to had n2x2r 7 i
pp = —— / 1+22exp (——,,—2— cosmr!{,wD cos nr—2
Y n=1 YeD

ZeDYeD YeD YeD

2% D n2 7r21' . 1 ZwD Zp
E = exp 8in N —— COS N ——— COS N —
ZeD Z:p ZeD

Z exp [— (2n — )2 2 L4D r] sin (2n — 1) 5 ZwD sin (2n — 1) 37D dr. (4.1.6)

Here pp is the dimensionless pressure at any point in the reservoir, ¢p is the dimen-
sionless time based on the well half length, L, /2, Zp and §p are the dimensionless

horizontal distances based on the well half length, zp is the vertical distance based
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on the formation thickness, h, and Lp is the dimensionless well half length. The well
is assumed to be centered at Z,p,JwD,2wp- The location of the reservoir bound-
aries in the lateral extent of the system is defined by Z.p and g.p (Fig. 4.1.1). The

definitions of the dimensionless variables are given by the following equations:

pPp = -1-‘—1—1-% [p: — p(z,v, 2, 2w, Ln, )], (4.1.7)
tp = ————-——-O'g(c)tlﬁ%kt, (4.1.8)
ip = 2xz/Lp, (4.1.9)
ip = 2y/Ls, (4.1.10)
zp = z/h, (4.1.11)
and
Lp = % %— (4.1.12)

Egs. 4.1.6 — 4.1.12 assume that the vertical permeability, k., is different from
the horizontal permeability, k, and £ = k, = k,. The effect of two dimensional
anisotropy of the formation is incorporated in the definition of the dimensionless
well half length, Lp. [If one wishes to consider anisotropy in all three directions,
then k in Egs. 4.1.6 — 4.1.12 should be replaced by /k.k k. or \/k;k, and the
right hand side of Eq. 4.1.6 must be multiplied by \/lTky . This would also require

that we define £p = (2z/Lp) \/k/k, and §p = (2y/Ln) \/k/ky.]

I1. Asymptotic Approximations As discussed in Ref. 3, the asymptotic forms
of the solution given by Eq. 4.1.6 can be obtained by examining the asymptotic
forms of the source functions used to construct the solution (Eqs. 4.1.1 —4.1.3). The
appropriate asymptotic expressions for the source functions given by Eqgs. 4.1.1 -
4.1.3 can be obtained by considering the conditions under which the phsical bound-
aries of the reservoir do not influence the source response. In case of slab sources,

it is also possible to consider the influence of flow across the tips of the slab source.
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We will first examine the situation where the lateral boundaries of the reservoir
do not have an impact on the pressure distribution. In this case, we take into account
the influence of the top and the bottom reservoir boundaries and the convergence
of flow across the tips of the well. When the boundaries at §p = 0 and §.p do not
influence the pressure response, we can replace the source function S, (Eq. 4.1.2)
by its short time approximation given by®

exp [—Mﬁ]

4nyt
2/t

The time period during which the influence of the boundaries in the y direction is

S, (v,t) = (4.1.13)

not felt is defined by the condition for the source function Sy to be replaced by its

short time approximation; that is,

(#p + Jup)® /20,
[(#ip + Jwp) — 2dep]® /20.

The source function S; given by Eq. 4.1.1 involves two types of boundaries;

tp <m1n{ (4.1.14)

the boundaries of the reservoir at Zp = 0 and Z.p, and the slab boundary (the tips
of the well) at Zp = Z,p — 1 and Zp = Z,p + 1. Therefore, it is possible to make
a two-step approximation for S,. If we assume that the influence of the reservoir
boundaries has not been felt yet but the influence of the slab boundary might have
been felt, then the source function S, can be replaced by an infinite slab source in

an infinite reservoir®:

Se (z,t) = %{erf [L/z al G x‘”)] + erf [L/z — (= ”"“)] } (4.1.15)

24/nat 2y/nat

Eq. 4.1.15 would approximate the source function S, given by Eq. 4.1.1 for the

dimensionless times given by

~ ~ 2
tp < min { (Zp +Zwp)” /20, (4.1.16)
[(.’ED +$wD)-2xeD} /20.

If we replace the source functions S; and S, in Eq. 4.1.5 by the short time
approximations given by Eqgs. 4.1.13 and 4.1.15 and use the resulting form of Eq.

4.1.5 in Eq. 4.1.4, we obtain the following asymptotic approximation:

-2 [ gt
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T, _4r
2wD\/F-

In physical terms, this solution represents the pressure distribution due to produc-

oo 2
D exp [~ (2n —1)? w"’%’lr sin (2n — 1) %zp sin (2n — 1) (4.1.17)
n=1

tion from a horizontal well in a laterally infinite reservoir. Note that in Eq. 4.1.17,
the definitions of the dimensionless distances in z and y directions are different from

those used in Eq. 4.1.6 and are given, respectively, by (see Fig. 4.1.2)

Ip =2($—Iw)/Lh, (4.1.18)

and
yp =2(Y — Yu) /L. (4.1.19)

This change is only introduced for convenience in presenting the results. The times
for which Eq. 4.1.17 approximates Eq. 4.1.6 can be found by combining the condi-
tions given in Eqgs. 4.1.14 and 4.1.17 and are given by

(#p + Zwp)? /20,

- ~ ~ 2
tp < min [(f”D +Zup) — 2Z.p]" /20, (4.1.20)

(yD + ng)z /20’ 2
[(#p + Gwp) — 27ep|” /20.

Assuming that the well is located at the center of the areal extent of the reservoir
(2wDp = Zep/2 = zep and Yup = Yup/2 = yep; see Figs. 4.1.1 and 4.1.2), the
minimum of the right hand side of Eq. 4.1.20 is given by

z2,, /20,

tp < min {
y2p /20.

(4.1.21)

Prior to the time the influence of the source boundary (well tips) is felt, the
source function S, can be replaced by the short time approximation of Eq. 4.1.15

given by3

B
2,
where § = 2 for |z — z,| < Lp/2, f = 1 for |z — z,| = Ly/2, and B = 0 for

S, (z,) = (4.1.22)

|z — 2| > L /2. The approximation given by Eq. 4.1.22 is applicable when

tp < 63 /20, (4.1.23)

171



172

— ——
N N
o w)
"

(0,0, ZWD)

XD= XeD

/ *D

e
'

/
/
)

7 Yp=Yep

Yp

Fig. 4.1.2 - Coordinate System of Eq. 4.1.17.



where 6p = 1 — |zp| for |zp| < 1 and ép = 2 for |zp| = 1. Using the short-time
approximations for S; and S, given by Egs. 4.1.22 and 4.1.13, respectively, and S,
given by Eq. 4.1.3, we obtain

ip 2 hiacd L2
PD = \/772/ exp _¥p exp |— (2n —1)* 72227
2 0 47 ne1 4

d
sin (2n — 1) —g-zp sin (2n — 1) Ezwp 4

2P YT

The time limit for the approximation given by Eq. 4.1.24 to be valid is obtained by

(4.1.24)

combining the conditions given by Eqgs. 4.1.14 and 4.1.23 and is given by

62 /20,
tp <min { (§p + #wp)’ /20, (4.1.25)

(§p + §wp) — 2§ep]” /20.
Physically, this solution would represent the pressure distribution in a reservoir
in which the flow in the z direction is negligible. We can argue that this would
be the case where the horizontal well length is long enough for the influence of the
horizontal boundaries of the reservoir to be felt prior to the influence of convergence
of flow across the tips of the well.

At very early times, the convergence of flow toward the well would be from the
close neighborhood of the well and therefore none of the physical boundaries of the
reservoir (including the top and the bottom boundaries) and the tips of the well
would influence the pressure response. Then, at very early times, we can replace the
individual source functions by their appropriate short time approximations given in
Ref. 3. The short time approximations of S; and S, are given by Egs. 4.1.23 and
4.1.13, respectively. The short time approximation of S, is also given by the right
hand side of Eq. 4.1.23 with y replaced by z. The appropriate asymptotic form of
Eq. 4.1.6 during this early flow period is defined by the following equation:

_l(z0 —zwp) /Lp]* + ¥}
4tp '

B .

(4.1.26)
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In Eq. 13, B is a constant equal to 2 for |zp| < 1,1 for |zp| = 1, and O for |zp| > 1.

The approximate expression for the duration of this flow period is given by

(62 /20,
(#p + §wp)” /20, \
tp < min { ((§p + Jwp) — 2deD]" /20, (4.1.27)

(2p + zwp)? / (20L3),
| [(2p + zwp) — 2]* / (20L3) .
Here 6p = 1— |zp| and 2 for |zp| < 1 and |zp| = 1, respectively.

The asymptotic expressions given by Eqgs. 4.1.17, 4.1.24, and 4.1.26, and the
time limits for these expressions to be applicable (Egs. 4.1.20, 4.1.25, and 4.1.27)
are extremely useful in that they provide valuable information on the interaction of
the physical boundaries of the system. Note that the asymptotic approximations
given by Eqs. 4.1.17 and 4.1.24 take into account the influence of the constant
pressure bottom boundary (in obtaining the approximations given by Eqs. 4.1.17
and 4.1.24, we used the exact expression for the source function S, given by Eq.
4.1.3). The constant pressure bottom boundary of the reservoir would manifest its
existence by stabilizing the pressure gradients developed by the convergence of flow
toward the pressure sink created at the well location due to extraction of fluids from
the well. This would bring the system to a steady state and the conditions at every
point in the reservoir established at the onset of steady state would be preserved
thereafter. We will investigate the steady flow behavior in §4.2. For our discussion
in this section, we only note the onset of the stedy flow period.

Examining the expression for the source function S, given by Eq. 4.1.3, we can
decide that S, becomes negligible (within 1 %) when the argument of the exponen-
tial function in Eq. 4.1.3 becomes less than —5. This indicates that the horizontal
well source function (Eq. 4.1.5) S(t) ~ 0 when tp > 20/(wLp)?, and from Eg.
4.1.4, we can decide that for times tp > 20/(wrLp)?, the pressure distribution in

the reservoir is steady. Therefore, the onset of stedy state is determined by
> 20
D Z Uk
(WLD)

In the following, we will use the relation given by Eq. 4.1.28 to determine the

t

(4.1.28)

conditions under which one or several of the physical boundaries of the system
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(including the tips of the well) would not affect the pressure distribution in the

TEeServoir.

III. Boundary of Influence In light of the discussion presented above, it is clear
that if steady state occurs prior to the time the influence of a closed boundary
manifests itself, then the existence of that boundary will not be evident; that is,
assuming that the well is located at the center of the areal extent of the reservoir,
the lateral boundaries of the reservoir would not affect the pressure distribution if
times predicted by Eq. 4.1.28 occur earlier than the times predicted by Eq. 4.1.21.
If we denote the distances at which the influence of production from the well will
not be evident in the z and y directions by z;p and y;p, respectively, then z;p and

¥;p may be obtained by equating the right hand sides of Egs. 4.1.21 and 4.1.28:

z; [k 20
ziplp =7\ == (4.1.29)
and
Yi kz 20
. T ewme — I m— 4-1.30
YvipLp V% - ( )

(Detailed computations suggest that Eqs. 4.1.29 and 4.1.30 overestimate the dis-
tance of “the influence limit” and, for all practical purposes, the constant 20/m on
the right hand sides of Eqgs. 4.1.29 and 4.1.30 can be replaced by 7.2/7.) From Egs.
4.1.29 and 4.1.30, it can be concluded that if z;p < z.p and y;p < y.p, then Eq.
4.1.17 would represent the pressure behavior of the entire system for all times. Eq.
4.1.29 also indicates that the influence of flow across the tips of the well is negligible
if Lp > 20/7 since in this case flow does not occur in the reservoir beyond the tips
of the well (z; > L,/2 or z;p > 1). Therefore, we can decide that the asymptotic
approximation given by Eq. 4.1.24 can be used to represent the pressure behavior
of the entire system for all times if Lp > 20/x.

The conclusion that can be derived from Eqs. 4.1.29 and 4.1.30 is that if
bottom water drive dominates the well response, then regions beyond'v the distances

given by Egs. 4.1.29 and 4.1.30 will not be drained by the horizontal well. In other
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words, the constant pressure bottom boundary establishes no-flow boundaries in
the lateral directions without regard to the existence or nonexistence of a physical
boundary, provided that such boundaries are far enough. Therefore the maximum
drainage area of a horizontal well subject to bottom water drive is determined by
the “boundary of influence” of the well (Eqs. 4.1.29 and 4.1.30), all other things
being the same. It should be noted that this conclusion is independent of the rates
of production. In essence, Eqs. 4.1.29 and 4.1.30 provide us with guidelines for
spacing horizontal wells in a multiwell pattern. Actually, this observation is generic
to bottom water drive systems; that is, it is not restricted to horizontal wells. If
we note that Eqgs. 4.1.29 and 4.1.30 were obtained by only noting the times for
which the influence of the constant pressure boundary would dominate the well
response before the influence of the no-low boundaries becomes evident and also
realize that these times would be independent of the type of well completion (see
the time limits for the approximations of various source functions given in Ref. 3),
we can conclude that the condition expressed by Eqs. 4.1.29 and 4.1.30 would also
be independent of the type of well completion. We will investigate the consequences
of this condition in more detail when we discuss the productivities of wells subject
to bottom water drive. For now, we make two observations: First, Eqs. 4.1.29
and 4.1.30 indicate that if bottom water drive is the major producing mechanism,
then small formation thickness or large vertical vs. horizontal permeability contrast
reduces the maximum drainage area of the well. Second, the information obtained
from the analysis of well test data, regardless of how long the test is run, may only

reflect the properties of the part of the reservoir in the vicinity of the well.

IV. Computation of Well Responses In this study, the horizontal well is mod-
eled as a line source. In §3.3, we discussed that the line source well approximation

of a horizontal well of finite radius is acceptable when
to > 25 [(20 — 2up)’ /13 + v3) - (4.1.31)

We also showed that for the case where the horizontal well is located between the
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impermeable top and bottom boundaries, the circle with the radius

D = \/(ZD — 24p)” /L% + 3, (4.1.32)

and located at zp = yp = 2zp — zuwp = O can be used to define the wellbore
radius. For an isotropic system, our computations indicate that when the bottom
boundary of the reservoir is at a constant pressure, the dimensionless pressure
computed by Eq. 4.1.17 never changes more than 0.7 % along the circumference of
the wellbore defined by Eq. 4.1.32. For the range of variables, 0.1 < Lp < 100,
0.0625 < zp <1,and 5x 1075 < ry,p < 5 x 10™%, we observed that the pressures
computed at 2p = 2z,p, Yp = Tup, Where r,p = 2r, /Ly, would best represent
the average pressure at the circumference of the wellbore. Dimensionless pressures
computed at yp = 0, 2p = z,p + Lpryp and those computed at yp = r,p,
Zp = z4p, however, do differ approximately 0.2 %. In the rest of this text, we will
use the point yp = 0, zp = zyup + Lpryp to compute wellbore pressures. We will

define the dimensionless wellbore radius by the relation

k.
rwpz = Lprwp = f-;:— = (4.1.33)
y

Note that r,p, is based on the formation thickness, h, whereas r,,p is based on the
horizontal well half length, L, /2. Therefore the definition of the dimensionless well-
bore radius as given by Eq. 4.1.33 is more convenient in presenting solutions with
the dimensionless well half length being the variable of interest and in comparing
horizontal well responses with the responses of unstimulated vertical wells.

The above discussion can be readily extended to anisotropic systems. Care
must be taken in interpreting the results since in this case the equipotential surfaces
are ellipses at early times; that is, we should not expect pressures to be identical for
all values of y and z, for a fixed value of rp (Eq. 4.1.32). This point is particularly

important if we compare solutions given here with numerical solutions.

V. Discussion of Well Responses A typical set of pressure responses of horizon-

tal wells, located at the reservoir mid-height (z,p = 0.5), computed by Eq. 4.1.17
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is plotted in Fig. 4.1.3. Each curve in this set of pressure responses corresponds to
a specific value of the dimensionless well half length, Lp. We have considered well
lengths in the range 0.1 < Lp < 100. The dimensionless wellbore radius, r,p,, used
in this figure is 2x 1073. The letter x indicates the times at which the line source well
assumption becomes applicable for a finite radius horizontal well and is given by Eq.
4.1.31. The dashed lines marked AA’ and A’B denote the times for the end of the
initial radial flow period (Eq. 4.1.26) and these times are given by Eq. 4.1.27. The
line AA’A” is given by tp = 1/20 (the first condition of Eq. 4.1.27) and corresponds
to the time at which flow across the well tips affects the pressure response. The
line BB' is given by tp = min{(zp + zwp)’ / (20L3),[(2p + zwp) — 2]° / (20L3)}
(the last two conditions of Eq. 4.1.27) and corresponds to the time at which the
boundaries located at the top and the bottom of the reservoir influence the well
response. For the case shown here (z,p = 0.5), the intersection point of the lines
AA’'A" and BB falls on the response curve for Lp = 1 and is denoted by A’. The
figure indicates that the end of the early radial flow period is dictated by the top
and the bottom boundaries for Lp > 1 and by the flow of fluid across the well
tips if Lp < 1. Noting the differences between the times denoted by the letter x
and the lines AA’ and A’ B, one can conclude that the exponential integral solution
(Eq. 4.1.26) would not be very useful for analyzing the early time responses of ultra
short horizontal wells (Lp < 0.1). As discussed in §4.4, the overall performance
of ultra short horizontal wells shows more resemblence to point source wells (single
perforation). Ultra short horizontal wells, however, may not have any conceivable
use in oil production practices and this discussion is presented primarily for com-
pleteness. An extensive discussion of early radial flow period and the information
that can be extracted from it is presented in Chapter IIl and will not be repeated
here. Of primary interest here are the events that develop subsequent to the times
predicted by Eq. 4.1.27 (or the lines AA’ and A’B on Fig. 4.1.3).

In physical terms, Eq. 4.1.27 represents the times for the isopotential lines
concentric with the well axis to be distorted either because of movement of fluid

across the well tips or because of the influence of the reservoir boundaries (the top
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or the bottom boundary of the reservoir). As discussed above, at times predicted by
Eq. 4.1.28, the influence of the constant pressure bottom boundary is established
and the flow in the reservoir becomes steady. The dashed line marked CC’ on Fig.
4.1.3 denotes the times for the beginning of the steady flow period and is only a
function of Lp. Note from the first condition of Eq. 4.1.27 and Eq. 4.1.28 that
the intersection point of the lines AA’A” and CC’ would approximately fall on the
response curve for Lp = 6.37. Since there is no flow in the z direction prior to
the times denoted by the line AA’A” and the conditions existing in the reservoir at
the instant denoted by the line CC’ are preserved at subsequent times, it appears
that there will be no flow in the z direction for all times if Lp > 6.37. In other
words, for Lp > 6.37, flow occurs primarily in the vertical (y — z) plane. (Our
computations and the analytical results obtained during the investigation of the
steady flow period presented in §4.2 suggest that, for Lp > 7.2/m, the contribution
of the three-dimensional flow effects becomes negligible for all practical purposes.)

The responses shown in Fig. 4.1.3 are replotted in Fig. 4.1.4 as a function
of the dimensionless time group tpL%. Note that tpL% is independent of the
well length, L;, and the responses shown in Fig. 4.1.4 for different values of Lp
correspond to the same range of the real time, t. Therefore, the dimensionless time
group tp L% is introduced here for convenience in discussing the influence of the
well length, L;,. It is clear from the shape of the pressure response curves presented
in Fig. 4.1.4 that, unless an estimate of Lp is available (that is, Ly, h, and k/k,
can be obtained by some independent means), type curve matching the pressure
responses with the theoretical responses shown in Fig. 4.1.4 (or Fig. 4.4.3) may not
provide reliable estimates of parameters. In order to alleviate this difficulty, in Fig.
4.1.4, we have included the pressure responses in terms of Chow’s pressure group?,
puwp/ [2(dpwp/dintp)]. For convenience, we refer to these responses as normalized
responses. The procedure for type curve matching and the advantages of using
Chow’s pressure group for horizontal and vertically fractured wells are discussed in
§3.6.

At early times (times predicted by Eq. 4.1.27), the normalized responses fol-
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low the pressure responses corresponding to the case for Lp = 0.5. This result
can be understood if we replace the exponential integral function in Eq. 4.1.26
by its logarithmic approximation during the period of time determined by Egs.
4.1.27 and 4.1.31 and note that in this case dpyp/dIntp = 1/(4Lp) and thus
Pwp/ [2(dpwp/dIntp)] = 2Lppwp. The normalized responses follow the pressure
response curve for Lp = 0.5 until the end of the early radial flow period (Eq. 4.1.27
or the line AA’B in Fig. 4.1.3). After deviating from the pressure responses for
Lp = 0.5, the normalized responses bend upwards and eventually approach infinity
at the onset of the steady flow period. Fig. 4.1.4 indicates that for Lp > 2.3, the
normalized response curves merge to yield a single curve. As explained above, for
Lp > 2.3, the contribution of flow across the tips of the well is negligible; hence,
the well tips do not influence the flow characteristics of the well (and therefore the
length of the well does not have influence on the shape of the response curves).
The distinct character of the normalized response curves for Lp < 2.3, subsequent
to deviations from the radial flow behavior, can be used to obtain an estimate of
Lp. Obviously, for Lp > 2.3, the value of Lp cannot be obtained by type curve
matching procedure if the bottom boundary is at a constant pressure.

The discussion presented on Figs. 4.1.3 and 4.1.4 assumes that the reservoir is
either infinite in the areal extent or that z.p > z;p and yep > y;p. If we assume
that z.p = yep (square drainage region), then from Eqs. 4.1.29 and 4.1.30, we
can conclude that the lateral boundaries of the reservoir would not have an influ-
ence on the pressure responses if z.pLp > 20/x. In fact, as discussed above, for
Lp > 7.2/x, flow across the tips of the well is negligible. Since the minimum value
z.p can take is 1, it is therefore reasonable to expect that the influence of the lat-
eral boundaries would also be negligible if z.pLp > 7.2/7. In order to investigate
the influence of the lateral boundaries, the pressure responses and the normalized
responses computed by Eq. 4.1.6 for Lp = 0.5, 2,p = 0.5, and rp,p; = 2 x 102
are plotted in Fig. 4.1.5. The unbroken lines represent the pressure responses
and the dashed lines represent the normalized responses. Pressure responses for

Z.p > 14.4/7 are identical. Similar behavior is also observed for the normalized
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responses. For smaller values of z.p, the pressure responses depart from the re-
sponses for z.p > 14.4/n; the upward bend in this curves indicates that the system
undergoes a depletion period due to the bounded nature of the reservoir. Ultimately
steady flow prevails. The same behavior is evident in the normalized responses. The
maxima and the minima shown by these responses are a consequence of the inter-
play of changes in flow regimes and the influence of various boundaries. A detailed
discussion of the behavior of normalized responses is useful for they provide insight
regarding the influence of flow regimes and the boundaries. For large values of z.p
(zep > 14.4/7), the constant pressure boundary dominates the well response and
the normalized responses approach infinity asymptotically. The influence of the lat-
eral boundaries, as already discussed, is negligible. For the solutions corresponding
to z.p = 5/7 and 4/7 (in these cases y. > Ly /2), the upward bend in the curves
is caused by the flow across the well tips. The downward trend in the normalized
responses reflects the influence of the lateral boundaries (for a completely bounded
system, pup/ |2 (dpwp/dIntp)] — 0.5 as tp becomes large). When the constant
pressure bottom boundary begins to provide pressure support, the normalized re-
sponse curve begins to bend upwards and approaches infinity as steady state is
attained. The normalized responses for z.p = 1 represent the case where the well
completely penetrates the formation in the z direction. In other words, this case is
identical to that of a vertical well located in a reservoir surrounded by impermeable
boundaries on three sides; the fourth boundary parallel to the well is kept at a con-
stant pressure. As will be expected, for this case the normalized responses follow
the pressure responses for a longer period of time compared to the other cases shown
in this figure. When the bottom boundary begins to provide pressure support, the
characteristics of the responses are similar to the other curves discussed here.

For completeness, the derivatives of the pressure responses shown on Fig. 4.1.5
with respect to the natural logarithm of time are plotted in Fig. 4.1.6. At early
times, the derivative responses are constant and equal to 1/(4Lp). Following the
end of the initial radial flow period, the responses for z.p > 14.4/7 continuously de-

crease to the late time value, zero. The responses for z.p < 5/7, on the other hand,
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display a peak, caused by the influence of the lateral boundaries of the reservoir,
before they start rapidly dropping to zero (this behavior is not readily identifiable
for 5/ < z.p < 14.4/7 because the influence of the lateral boundaries is masked
by the influence of the constant pressure bottom boundary).

Qualitatively, the observations presented above also apply to other well loca-
tions. The expressions given above may be used to obtain the times for appropriate
flow regimes to be evident. The observations also apply, in a qualitative sense, to
infinite-conductivity wellbores (see §4.3). Solutions for the pressure responses for
other well locations can be developed from Egs. 4.1.6 and 4.1.17. Analysis pro-
cedures using pressure and normalized responses are identical to that discussed in

Chapter III and will not be repeated here.

4.2 Steady Flow Behavior

As indicated by the results of the previous section, horizontal wells producing
bottom water drive reservoirs ultimately reach a steady flow period at times dictated
by the dimensionless horizontal well half length, Lp (that is, by the ratios of Ly /h
and k;/k). The appropriate asymptotic forms of Eqs. 4.1.6, 4.1.17, and 4.1.24
describing the steady flow behavior can be obtained by taking the Laplace transform
of these expressions and then evaluating at the limit as the Laplace transform
variable s approaches zero. In this section we first obtain the Laplace transform of
the solutions given by Egs. 4.1.6, 4.1.17, and 4.1.24. We then derive the expressions

describing the steady flow behavior and present a discussion of the late time results.

1. Laplace Transforms of Solutions Here we briefly demonstrate the procedure
to obtain the Laplace transform of the solutions given by Eqgs. 4.1.6, 4.1.17, and
4.1.24. We first consider the Laplace transform of Eq. 4.1.6. If we define

S(r)=(1+g1)(1+92)95 = gs + 9293 + 9195 + 919295, (4.2.1)
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where -
2,2 ~ =
n2r3r
g1 =2 2 exp (————;5—) cos n 222 cos nw 22, (4.2.2)
=1 yeD yeD YeD
_ 2%.p \~ 1 n2n2r\ | 1 £ b
<D Z — exp ( sin nm—— cos nr—22 cos nr—=-, (4.2.3)
o’ n ZeD ZeD ZeD
and

o0
gs = Z exp [-— (2n—1)%x ——T] sin (2n — 1) er-zwp sin (2n — 1) Zrz-zp, (4.2.4)

then we can write Eq. 4.1.6 as

4 to
P = — / S (r) dr. (4.2.5)
0

ZeDYeD
The Laplace transform of Eq. 4.2.5 is given by

47

L{pp} = %Jl{S (tp)}, (4.2.6)

eDYe

where s is the Laplace transform variable with respect to tp.
The functions, g2¢s, ¢193, and g;19293, on the right hand side of Eq. 4.2.1 can

be written as

~ a~

2:5,, 1 ZwD T
g2g3 = E —sinnw COS N ——— COS NI —
xeD TeD ZeD

hacd 2.2
Zexp{__. [(Zk— ) 2Lf+n7r] }Sin(Zk—l)zrz-zwDSin(2k—1)%ZD,

k=1 eD
(4.2.7)
(> o] ~ ~
gigs = 2 Z cos nm !{'"D COS NI ,{/D
n=1 yeD yeD
<0
12 2,2
Zexp — |(2k —1)* x2=2 4 i sin (2k — 1) z,,,Dsm(Zk—l) —zp,
k=1 4 yep 2 2
(4.2.8)
and
919293 = $2ep icosmr"‘7 cosn7r y i-l- sin k7 — coskwiwp coskm Zp
19293 - JeD — k ZeD Z.p Z.D

n=1
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o0

. L2 2.2 k2 2
Eexp{—[(2]—1)2ﬂ2—4—p+r;;r + |
=1

eD TeD

sin (25 — 1) -;-Ez.,,p sin (25 — 1) —;Ezp. (4.2.9)

Then applying the Laplace transform property given by

L{exp(—at)} = P (4.2.10)

to Eqs. 4.2.4 and 4.2.7 - 4.2.9, the Laplace transform of the function S (tp) on the
right hand side of Eq. 4.2.6 can be easily obtained as

o= sin (2n — 1) Z2wpsin(2n—1) Z2zp

L{S(tp)}=)_
{5 (to)) w2
n=1
2.'EeD 1 5:,,,_0 I
Z -_ sm nw COS N7 ~— COS NI —
zeD ZeD TeD

n=1

i sin (2k — 1) Z2,psin(2k— 1) Z2p
= s+b

) 5 2wp sin (2k — 1) %

Zk -1
+2 Z cos nwg—q- COS N7 Yp Z sm

n=1 YeD Yeb (=1 ste
4 . .
TeD Zcosmry cosnm~ "D cos k-2
nel YeD ch k=1 k ZeD Zep
sin (25 — 1) Zzypsin (25— 1) § 32D
s (4.2.11)
j=1
In Eq. 4.2.11, a, b, ¢, and d are given, respectively, by
2 2L}
a = (2n e 1) n -—4—-, (4.2.12)
L2 2.2
b= (2k—1)*n?=2 + T2, (4.2.13)
ZeD
L? nzw2
c=(2k-1)°m=2 4 —— (4.2.14)
4 yeD
and
. I2  n2x2 k2n2
= (25 -1)*m? L2 + —— + Foat (4.2.15)

4 YeD TeD



To obtain the Laplace transform of Eq. 4.1.17, we first note that

_ +1 )2
erf-(—l—i-—?—ll)- + erf(1 zp) _ 1 exp [—Eﬂz—c—!—)—] da. (4.2.16)
-1

27 2 v

Then, Eq. 4.1.17 can be written as

/-tp/+1 oo exp[ (2n — 1)% n? DT] exp [_(zD—Z1)_2+y%]

d
sin (2n — 1) --zD sin (2n — 1) - 5 z.,,Ddoz—‘;_Z (4.2.17)

Using the following Laplace transform relation??

£{/0“’ exp (—a?r) exp (__4_;) dT} _ %Ko (rpm) : (4.2.18)

T

the Laplace transform of Eq. 4.1.17 is obtained as

L{pp}= Z sin (2n — 1) ——zD sin (2n — 1) —zwD

n=1

/+1 lKo [\/(:cp —o) +43 M] da, (4.2.19)

-1
where a is defined by Eq. 4.2.12.

The Laplace transform of Eq. 4.1.24 can be easily obtained by using the rela-
tions given in any Laplace transform pairs table. Here we only report the resulting

Laplace transform of Eq. 4.1.24:

ex - a
.C{PD}—W—ZSIII 2n—1)2,»41751,1(2,1_1)72r D P(s|ny-v:+)

where a is given by Eq. 4.2.12 and § = 2, 1, and 0 for |zp| < 1, |zp| = 1, and

, (4.2.20)

|zp| > 1, respectively.

II. Derivation of Steady Flow Equations In order to obtain expressions that

describe the steady flow behavior of the system under consideration, we evaluate the

solutions given by Eqs. 4.1.6, 4.1.17, and 4.1.24 at large values of time. This can be
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accomplished most conveniently if we evaluate the counterparts of these equations
in Laplace domain given by Eqgs. 4.2.11, 4.2.19, and 4.2.20 as the Laplace transform
variable s — 0.

Consider first the Laplace domain solution given by Eq. 4.2.11. If we assume
that the Laplace transform variable, s, becomes small so that the following condition

is satisfied

a
$< 700 (4.2.21)

where a is defined by Eq. 4.2.12 (with n = 1), we can write the following approxi-
mation for s~1L{S(tp)}:

Z sin (2n — 1) Zz,psin(2n — 1) Z2p

SL{S (to)} = {{

n=1 a
2.’1331) 1 iwD z
E hand sm nwy— COS N — cCosnm—
zeD IeD TeD

n_

i sin (2k — 1) Z2ypsin (2k — 1) Z2p

b
sin(2k — 1) Zz,psin(2k—1) 2z
+22cosn1ry——D-cosn1ryD Z ) 52wp sin ( ) 52D
n=1 yeD yeD k=1 c
41: z 3
= Z cosnw JuD cos n1r Z 2D o kr—2
yeD yeD ZeD ZeD

n=1

2.sin(25—1)Zz,psin{27 —1) £z
Y Gi-1)3 = 21 )2”}. (4.2.22)
J=1
If we write
sin(2n —1)Zz,psin(2n —1)32p 2
a © (2n—1)272L%
[cos(zn _ 1)-’21(zp — 2op) — cos(2n — 1)%(;.,, + zwp)] , (4.2.23)

and note that®®

cos(2n —1)32p 1 . _
= 1- ; [-2<2p <2, 2.24
7,2[,2 Z (2n — 1)2 4L% ( |z2pl); [-2<2p <2 (4 )
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then we can write

. sin(2n —1)Zz,psin(2n — 1)Z 2 1
Z 1 ( )2 wD ( )2 D - (zD_l_zwD.._ zD—zle)' (4.2.25)

a - 4L%

If we also use the relation®®

;l0<z <7, (4.2.26)

i cos(2k—1)z _

Kis
Zek—1)%+ 2 4€  ch(3€)

then Eq. 4.2.22 can be written as

1 1 1
;13{5 (tp)} = ;{411217 (20 + zwD — |2D — 2wD|)

~2 (e o] ~ ~

zlp 1 1 Typ Ip
2 Y sin nr— cosnw COSNT =
27 LD e n TeD .'BeD TeD

o [(1 - |z — 2upl) 7255 s [~ 20 — 2u) 225 ]

ch, /=
zeDLD
~ o0 ~ ~
YeD 1 YuwD YD
_— COS nw cosnm—
2nLp £ UeD YeD

1

sh [(1~ lep — 2un]) 5255] o [(1 - 2p  2up) 5:2%5]

\/_

~ oo

1 :EwD ED
—— cos km—
ZeD TeD

xeD
[of0] n7r

sh{(1 - |zp — zup|) V€] = sh[(1 — 2p — 2uD) ﬂ}
Vech /e

Here e = -'%;ﬁ + "-;,1’—2 Substituting Eq. 4.2.27 into Eq. 4.2.6 for s~1L{S(tp)}
eD eD

yeD

(4.2.27)

and taking the inverse Laplace transform of the resulting expression, we obtain the

following long time approximation

4

1
pp = I {41% (2p + 2wp — |2D — 2zwD|)
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~D [> o] ~ ~

T.p ZuwD rp
5 — sin nmw COS NI —— COS N —
272Lp = T.p ZeD o)

sh [(1~ l2p — zupl) 2255 ] — oh [(1 ~ 2 — 2up) 72%]

ch - nmw
EpLlp
~ oo ~ ~
_YeD 1 YwD YD
cos nw COSNT—=
27 LD YeD YeD

sh [(1 = |zp ~ zupl) 3 ] ~sh [(1= 20 ~ zup) 5255 |

ch, [ ="
Yeolp
~ (v o) - ~ -~
ZeD YwD ZwD rp
+ — E —sinkn cos km—— cos km—
T yeD ke 1 -'ceD ZeD ZeD

(4.2.28)

Vechy/e

If we note that Eq. 4.2.27 would be applicable when the condition given by Eq.

sh[(1 - |zp — zup|) V] — sh[(1 - 2p —zwD)Ja}_

4.2.21 holds, then we can conclude that Eq. 4.2.28 is valid when

400
tp > mz- (4.2.29)

In §4.1 II, we obtained another expression for the onset of stedy flow period (Eq.
4.1.28). The times determined by Eq. 4.1.28 are earlier than the times determined
by Eq. 4.2.29 By a factor of 20. Our computations indicate that the time limit
given by Eq. 4.1.28 is satisfactory for determining the onset of steady flow period
for all practical purposes.

The long time approximation of Eq. 4.1.17 can also be obtained in a similar
manner to that discussed above. If we assume that the condition given by Eq.
4.2.21 holds, then we can replace s + a by a in Eq. 4.2.19 and taking the inverse

Laplace transform of the resulting form of Eq. 4.2.19, we obtain

oo
Pp = Z sin (271- — 1) %ZD sin (2n - 1) %zwD

n=1

./:1 Ko [(Zn -1 gLD \/("'D - a)* + y%] de. (4.2.30)
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Eq. 4.2.30, as it stands, is not convenient for computations at small values
of yp. In particular, difficulties arise if yp = 0; that is, if pressure distributions
are computed in the z — 2 plane, the plane in which the well is located. These
difficulties, however, can be eliminated by using the procedure outlined in §2.5 I.
For example, using Eq. 2.5.1, we can write Eq. 4.2.30 at yp = 0 and for |zp| < 1

as
2 Z sin(2n —1)Zzpsin(2n 1) Zz,p
LD (2n — 1)

oo (|zp] < 1,yp =0) =

i sin (2n — 1) Zzpsin (2n — 1) $24p
“ (2n —1)

{Kis [(2n — 1) gLD (1+2p)] +Kix [(2n - 1) ZLp(1- )|} (4231)

Also using the relations®®

sin (2n — 1) Zrz—zp sin (2n — 1) %zwp =

0.5 [cos (2n—1) % (2p — 2wp) —cos (2n — 1) _;r_ (2p + zwD)] (4.2.32)
and
— cos (2k — 1)z
Z _——276—:-1——— 2 ln Ot [0 <zr< 7['] (4.2.33)

k=1
Eq. 4.2.32 can be written in the following form:
1 tan ¥ (2p + zwp)

pD(|:cp|<1,yD=0)=21;1,ln tanZ|zp — zup|
4 w

2 i sin (2n — 1) Z2psin(2n—1) Z2,p
wLp (2n—-1)

n=1

{Ki1 [(Zn ~1) %LD (1+ :z:D)] +Ki, [(Zn ~1) gLD (1- zD)] } (4.2.34)

Application of similar arguments to the cases where |zp| > 1 and |zp| = 1 leads to

the following expressions:

1 . tanZ (zp + zuwp)
= - _— l
D (IIDI l’yD 0) 4LD n tan & Y IzD zwDI




5]

. 1) Zapsin(2n —1) Iz,
2 Z sin (2n — 1) Zzpsin(2n - 1) 22 D i, [(2n 1) ELD] . (42.35)
mLp & (2n —1) X
and
2 =sin(2n—1)Zzpsin(2n—1)Zz,p
Pp(l-":D|>1,yD—0)—7”:17”2___:1 (2n—1)

{Ki1 [(zn ~1) 2 Lo (e - 1)] - Kiy [(20 - 1) 2L (e + )] } (4.2.36)

In Eqgs. 4.2.34 — 4.2.36, the function Ki;(2) is defined by
(e o)
Ki; (2) = / Ko (t) dt. (4.2.37)
It can be noted from Table 11.1 of Ref. 23 that
2.
;Kll (2) <0.01, (4.2.38)
and (2/7)K1,(2) asymptoticaly approaches zero when
z > 3.6. (4.2.39)

This indicates that the summation term on the right hand side of Eqs. 4.2.34
4.2.36 becomes negligible, within 1 %, when

7.2
Lo 2 = Ten))”

(4.2.40)

It can be shown that, for large values of zp and yp, Eq. 4.2.30 and its deriva-
tives with respect to zp and yp all vanish. This indicates that Eq. 4.2.30 approxi-
mately satisfies both the constant pressure and the no-flow conditions at zp = +z.p
and yp = *y.p if Z.p and y.p are large enough (see also Eqs. 4.1.29 and 4.1.30
and the discussion following these equations). Actually, if we follow Muskat33:6°,

Eq. 4.2.30 can be readily extended to a bounded reservoir of radius r. as given by

the following equation:

o0
. T . m
pp = Z sin (2n — 1) 52D sin (2n —1) 5 %D

n=1
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+1 _— I [(2n — 1) 2 Lp7p| Ky [(2n — 1) S Lpr.p]
[, {K [(en - 1) 3 Lo70] + L [@n- D 5loren] }da’

(4.2.41)
where fp = v/(zp — a)?2 +y$ and rep = /22, +y2,. Note that the second

term inside the integral sign of Eq. 4.2.41 decreases exponentially with increasing

values of Lpr.p. Although Eq. 4.2.41 assumes a circular drainage region, pressure
distribution determined by Eq. 4.2.41 represents a very good approximation for
a square drainage region. In the rest of our discussion, we will use Eq. 4.2.41,
instead of Eq. 4.2.28, to investigate the steady flow behavior of the system under
consideration.

As noted before, if horizontal well length is long, then the influence of the
constant pressure bottom boundary becomes dominant before the flow across the
well tips starts. In this case, the steady flow behavior will be independent of the z
coordinate. The appropriate steady state expression for this case can be obtained
by evaluating the inverse Laplace transform of Eq. 4.2.20 subject to the condition

given by Eq. 4.2.21 and is given by

pp = B i sin (2n — 1) Z2psin(2n — 1) $zup

Lp (2n—1) P [" (2n —1) %LD lyD'J ’

(4.2.42)

n=1

when

tp > 20/ (rLp). (4.2.43)

Using the relation given by Eq. 4.2.32 and®®

©  ok-1 2

2k -1 1. 1+2 +
E:p COS( )x-——ln pcoszrp | [0<:c<27r,p2<1] (4.2.44)
k=1

2k—1 4 1-2pcosz+ p?’
with
P = exp (—%Lnlypl) (4.2.45)
we can write Eq. 4.2.42 as
B 1+2exp(-7Lplyp|/2) cos §|zp — zwp| + exp (—7Lp|yp|)

Pp = 8Lp 1—2exp(—7Lplyp|/2)cos §|2p — 2wp| + exp (—7Lp|yp|)
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g L+ 2exp(~7Lplypl|/2)cos § (2p + zwp) +exp (=7 Lplyp|) (4.2.46)

1—2exp (—7Lplyp|/2) cos % (2p + zwp) +exp (—7Lplyp|) |

Note that in Eq. 4.2.46, we can not have yp = 0 and 2p = 2z, p at the same time.
If we use yp = 0, and zp # z,p in Eq. 4.2.46, we can show that Eq. 4.2.46 is the
same as Eqgs. 4.2.34 — 4.2.36 for large values of Lp.

I1. Discussion of the Late-Time Results The transient flow behavior of hori-
zontal wells producing bottom water drive fields presented in the previous sections
should be useful for the analysis of well test data. In studying the productivities
of the wells, however, late time flow characteristics rather than transient flow char-
acteristics are of interest. Fig. 4.2.1 is intended to display the influence of the
reservoir boundaries on the wellbore responses at late times. The responses shown
in Fig. 4.2.1 were computed by Eq. 4.2.41 and are plotted as a function of the
dimensionless well half length, Lp. It is assumed that the well is located midway
between the top and the bottom reservoir boundaries (2,,p = 0.5) and at the cen-
ter of a square drainage area (z.p = yep). The dimensionless wellbore radius used
in these computations is ry,p; = 2 x 1073, The variable of interest is z.p; that
is, the ratio of the length of the reservoir in the z direction to the length of the
horizontal well. The responses for z.p = 1 correspond to the case where the well
completely penetrates the reservoir in the z direction. Larger values of z.p result
from incomplete penetration of the reservoir in the z direction. Also shown in Fig.
4.2.1 are the responses of an infinite system (z.p — oo, y.p — o0). Note that the
responses corresponding to the cases where z,p > 7.2/ (7Lp) are identical to the
responses for z.p = oo. Fig. 4.2.1 indicates that the pressure responses become
independent of z.p at large values of Lp and merge with the responses correspond-
ing to z.p = oco. At smaller values of Lp, p,,p decreases as z.p increases. Care
should be taken, however, in interpreting these results since both z.p and Lp are
based on the well half length, Ly /2.

Fig. 4.2.2 is a replot of the responses shown in Fig. 4.2.1 except that the

dimensionless pressure group Lpp,,p, instead of p,, p, is plotted vs. the dimension-
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less well half length, Lp. As will be expected from Eqs. 4.2.34 — 4.2.36 and the
remark following these equations that, for Lp > 2.3, the dimensionless pressure
group Lpp,p becomes independent of the dimensionless well half length, Lp, at
steady state. Fig. 4.2.2 also indicates that for Lp > 7.2/ (wz.p), the dimension-
less distance to the boundary, z.p, has no influence on pressure responses and the

pressure responses become identical to that for z.p = oo.

4.3 Solution for Infinite-Conductivity Wells

In obtaining the solutions presented thus far, we assumed that the flux distri-
bution along the well surface is uniform (uniform-flux well idealization). In §3.5, we
noted that the solution for an infinite-conductivity horizontal well located between
impermeable top and bottom boundaries can Be obtained from uniform-flux solu-
tion by dividing the well half length, Ly /2, into small uniform-flux elements.52:53:3
The same procedure as discussed in §3.5 can be used if the bottom boundary of the
reservoir is at a constant pressure. For this case, using the laterally infinite system
solution given by Eq. 4.2.30 at steady state, we can write the infinite-conductivity

well solution as

M
P =) Gm(PDm — PDm-1)- (4.3.1)
m=1
Here pp,. is given by
o T T
m =Y sin(2n—1)=zpsin(2n — 1)= 2,
D ;sm(Zn 1)2ZD sin(2n 1)2z D
/ Ko [(Zn -1) %LD \/(:cp —a)’ + y%J da, (4.3.2)
-m /M
and
gL
Gm = g—-f (4.3.3)

where g, is the strength of the differential flux elements (or point sources) located
along the flux element (and assumed to be constant along the flux element) and ¢

is the production rate from the total length of the well. In Eq. 4.3.1, the stabilized
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flux distribution, gy, , should be chosen such that the resulting pressure distribution
along the well surface is uniform. ¢, to be used in Eq. 4.3.1 can be obtained from

the solution of the following system of equations:

_25—-1\ _25+1 . _
PuwD (IBD = oM ) = PwD (-’ED = oM ), =1,M-1], (4.3.4)
and
M
Z gm = M. (4.3.5)
m=1

As noted in §4.2 II, Eq. 4.3.2 is not convenient for computations at yp = 0. We
suggest that Eqs. 4.2.34 — 4.2.36, with the constant 1 in the argument of the K1, (z)
function replaced by m/M be used instead of Eq. 4.3.2.

Note that Eq. 4.3.1 represents an approximation to the infinite-conductivity
solution and as the number of uniform flux elements, M, used in computations
increases, the result should improve. Computational constraints, however, dictates
and upper limit for the value of M (large values of M require excessive computa-
tion time and the accuracy of the results deteriorates due to rounding errors). In
Fig. 4.3.1, we investigate the influence of M on the infinite-conductivity solution
obtained from Eq. 4.3.1. In this figure, we show the dimensionless pressure distri-
bution on the well surface (yp =0, 2p = zwp + rwDz, Zp < 1) and in the reservoir
beyond the tip of the well (zp = 1). The well is assumed to be located midway
between the horizontal boundaries of the reservoir (z,p = 0.5). The dimensionless
wellbore radius is r,p, = 10™* and the dimensionless well half length is Lp = 1.
To obtain the infinite-conductivity results shown in Fig. 4.3.1 (unbroken line), we
first solved the system of equations given by Eqs. 4.3.4 and 4.3.5 for the stabilized
flux distribution, g¢,,, by using 10 uniform flux elements (M = 10). Then using
the stabilized flux distribution, we solved Eq. 4.3.1 to obtain the dimensionless
pressure distribution, pp. Also shown in Fig. 4.3.1 is the pressure distribution for
the uniform-flux case (dashed line) computed by Eq. 4.2.30. We first note from
Fig. 4.3.1 that beyond the tip of the well (zp = 1), the differences between the
uniform-flux and infinite-conductivity responses cannot be distinguished for prac-

tical purposes. On the well surface, close to the well tip, we observe oscillations
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in the responses computed by Eq. 4.3.1. Close to the well center (zp = 0), how-
ever, oscillations diminish and the dimensionless pressure distribution is uniform.
Increasing the number of the uniform flux elements, M, used in these computa-
tions, we were able to obtain uniform pressure distribution in an extended portion
of the well surface from the well center; yet we observed that the uniform pressures
obtained close to the well center with M = 10 remained unaffected from the in-
crease in the value of M (we obtained similar results for different values of Lp and
2yp). Therefore, in our computations hereafter, we used M = 10 and assumed that
the pressure obtained for the first flux element from the well center represents the
wellbore pressure of an infinite-conductivity horizontal well.

We computed dimensionless pressure responses of infinite-conductivity hori-
zontal wells subject to bottom water drive at steady state by using the procedure
outlined above. These responses are plotted as a function of the dimensionless dis-
tance zp along the well surface (yp = 0, zp = 2up + ruwp.) in Fig. 4.3.2 (the
unbroken lines). The well is located midway between the top and bottom bound-
aries (zyp = 0.5) and the dimensionless wellbore radius is r,,p, = 10~%. Three
values of Lp are considered: Lp = 0.5,1, and 5. Also shown in Fig. 4.3.2 are the
uniform-flux well solutions (dashed lines). zp = 1 corresponds to the dimensionless
location of the well tip. Fig. 4.3.2 indicates that as Lp increases the differences
between the uniform-flux and infinite-conductivity solutions diminish; also flow be-
yond the tips of the well becomes negligible as Lp increases. This result should be
expected in light of the discussion on the flow characteristics of uniform-flux wells
presented in the previous sections. Earlier, we concluded that for Lp > 6.37 flow
would take place only in the y — z plane perpendicular to the well axis; that is,
there would be no pressure gradient in the z direction. Pressure gradients in the
z direction would develop in the region outlined by the line AA’C in Fig. 4.1.3,
and the duration of the flow in the z direction would increase as Lp decreases.
Hence the influence the flux condition on the well surface become significant as Lp
decreases.

The intersection point of the solutions for uniform-flux and infinite-conductivity

202



o

I 1 1 1 1 ) B
—= INFINITE-CONDUCTIVITY _
S | Ly=05\ WELL
. sl | ——UNIFORM-FLUX WELL |
x | rwpz = 1074
7p) B 2wD= 0.5 -
w y =0
b6l D i
o
v Flo®! STEADY STATE -
p)] :.‘__a.v
wl
W gl \ i
<
© L i
N
<
W 2r -
& | Lp=d |
O d e ———
0 1 2 3 4

Fig. 4.3.2 - Influence of Flux Condition Along the Well Surface — Steady

HORIZONTAL DISTANCE, xp

Flow Period.

203



204

‘s)|nsoy Xn|J-wWiojiu() pue Ajaljonpuon-syuyu] jo uosueduwor - g ¢y Siq

Jy “3WiL SSIINOISNINIA

50l Ol _ -0l 5.0l c.Ol
M T T [T T r 1 LLLLSL L L LLLR R P4
TI3IM XNT13-WHOJINA ——

- 173M d¢
ALIAILONANOD-3LINIANl — |V

j _O I..v

_ “_V 48
(69:0=%x) 1=97

- 9

= L

- O ~ | -8

- m A\\\.\ox\ | o v g0=0Mz 3

- “_u L9°0=%)6 0= L -0l =20M, 7

TR TN TN (1T N A (TII RN | Ol

OMd ‘3ynss3¥d SSIINOISNINIA



conditions are the equivalent pressure point denoted by z}, for the specific value of
Lp corresponding to each case represented in Fig. 4.3.2. From the results shown
in Fig. 4.3.2, we determined the equivalent pressure points as z}, = 0.67 and 0.69
for Lp = 0.5 and 1, respectively. Well responses for Lp = 0.5 and 1, computed by
using the above values of z},, are plotted as a function of time in Fig. 4.3.3 (the
unbroken lines). Also shown in Fig. 4.3.3 are the responses of uniform-flux wells
(the dashed lines). The values of ry,p, and 2, p used in this figure are 104 and 0.5,
respectively. The line AA’ denotes the times for the flow across the tips of the well
to affect the well response and the line CC’ denotes the times for the beginning
of the steady flow period for uniform-flux wells (see Fig. 4.1.3). As discussed
above, differences between the infinite-conductivity and uniform-flux solutions are
evident only following the initial radial flow period. Fig. 4.3.3 indicates that the
characteristics of the responses of infinite-conductivity wells are, not unexpectedly,
similar to those of uniform-flux wells. The magnitude of the difference between the
infinite-conductivity and uniform-flux solutions for the range of Lp investigated in
this study is too small to be shown on a log-log plot of p,p vs. tp. Therefore, we

will not present the infinite-conductivity counterparts of Figs. 4.1.3 and 4.1.4.

4.3 Well Performances Under Bottom Water Drive Conditions

Solutions presented in the previous sections should be useful in analyzing the
well test data and determining the production capacities of the wells. In presence
of contiguous water, however, the production capacity of a well, as defined by a
rate-pressure relation, is not, by itself, a measure of the performance of the well.
Mutual existence of oil and water in a reservoir may result in a producing mechanism
commonly referred to as water drive. The term water drive is used to describe the
situations where the production of oil is only by virtue of the drive provided by
the advance of the water into the oil zone. When the direction of this motion is
parallel to the planes of stratification, that is, the water moves largely from the

lateral boundaries of the formation into the oil zone, the descriptive legend of the
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production mechanism is edge water drive. Lateral edge water drive is mostly
accompanied with the intrusion of the oil zone by the water rising from a bottom
water table. Although it does not contribute significantly to the driving mechanism,
it places severe restrictions on the production rates allowable to ensure water-free
oil production. Another situation which is likely to encounter in oil fields occurs
when the oil producing strata is underlain by a large body of water (an active
aquifer) that supplies fluids into the oil zone without significant loss of its potential.
The name bottom water drive is then assigned to the production mechanism in
situations where the oil production results from the displacement of oil by the
rising water-oil interface. An excellent classification of water drive reservoirs and
the documentation of the geological and field conditions under which one of the
aforementioned models (or a combination of them) can be used to investigate the
production characteristics of water drive fields are available in Refs. 11 and 12. It
appears, however, that the distinct characteristics of bottom water drive reservoirs
are sometimes not given cognizance and models that are suitable for investigating
the performance of lateral edge water drive systems are simply adopted for use in
case of bottom water drive systems.

In this section, we first discuss the flow characteristics of bottom water drive
and edge water drive reservoirs. This discussion is intended to provide the physical
background for the model chosen here to investigate the horizontal well performance
under bottom water drive conditions. As a suplement to the discussion presented
here, in Appendix D, we obtain the solution for pressure distribution in edge water
drive reservoirs produced via a horizontal wellbore and briefly discuss the theory
of Muskat and Wyckoff®® to investigate the performance of wells producing subject
to edge water drive. For bottom water drive reservoirs, we use the displacement
efficiencies as a measure of the productivity of wells. We also present the produc-
tivity comparison of vertical and horizontal wells producing under bottom water

drive conditions.

I. Flow Characteristics of Bottom Water Drive and Edge Water Drive
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Reservoirs Perhaps the most powerful tool in visualizing the differences between
bottom water drive and edge water drive systems is a picture of flow lines showing
the paths traveled by the fluid particles until they enter the wellbore. The math-
ematical analogue of these paths are the lines along which the stream function, 7,
does not change. Since the stream function, ¥, is related to the pressure function, p,
the stream function, 9, can be readily obtained from the knowledge of the pressure
distribution, p. For simplicity, if we neglect flow in the  direction (long horizontal
well assumption; see §§4.1 V and 4.2 III), the following relations should be satisfied

by the stream function, ¢, and the dimensionless pressure function, pp:

d¢y  141.2¢dpp
8zD - Lh/2 ayD’ (4'4.1)
a‘t/J _ 141.2th apD
T (4.4.2)
Integration of Eq. 4.4.1 from zp to zp = 1 yields
¥p = 2/zp=ladez (4.4.3
D = . B D, 4.3)
where we defined
Ln/2 _
‘lf)D = 141.2q [’(/) (ZD = 1) - ’(,[) (ZD)] . (4.4.4)

A general expression for the steady state pressure distribution created by long
horizontal wells under bottom water drive conditions is obtained in §4.3 II and is

given by the following expression:

_ B . 1+ 2exp (—7Lplyp|/2) cos Z|2p — zwp| + exp (—7Lp|yp|)
8Lp 1—-2exp(~7nLplyp|/2)cos Z|zp — zup| +exp (-7 Lplyp|)

Pp

i 1+2exp(~7Lplyp|/2)cos & (2p + 2wp) +exp(—7Lplyp)) (4.4.5)
1—2exp(~nLplyp|/2)cos § (2p + 2up) +exp(—7Lplyp|) )’ o

where
2 for |zp| <1,
=141 for |zp|=1, (4.4.6)
0 for |zp|> 1.
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The steady state pressure distribution due to production from a long horizontal well

under edge water drive conditions is obtained in Appendix D and is given by

np
PD = "'4— (yeD - lyDl)

B 8_5_1;{1n [t —2exp (-7 Lplyp|) cos w|2wp — 2p| + exp (—27Lp|yp|)]
+In[1—2exp(—7Lplyp|)cos 7 (2wp + 2p) + exp (—27Lplyp|)]},

(4.4.7)
where £ is given by Eq. 4.4.6. The dimensionless stream function, ¥p, for bottom
water drive and edge water drive conditions, is then obtained from Eqs. 4.4.3, 4.4.5,
and 4.4.7 and for |zp| < 1 is given, respectively, by

exp (—%Lplypl) sin  (2p + 2wD)
1—exp(—nLplyp|)

tp = arctan

2exp (=% Lplyp|) sin Z[zp — zup]

— arctan 44.8
1—exp(—7Lplyp|) ’ 4%)
and
=x (1 - zp) — arctan
¥p = (1 - zp) 1— exp (—7Lplyp|) cos 7 (zup + 2p)
+ arctan exp (—7Lp|yp|)sin7|zup — 2p| (4.4.9)

1—exp(~7Lplyp|) cos7 (zwp — 2D) "

Using the formulas given by Eqs. 4.4.8 and 4.4.9, we obtained the curves of
constant ¥)p and plotted as a function of the dimensionless vertical distance zp and
the dimensionless horizontal distance rLpyp /2 in Figs. 4.4.1 and 4.4.2 for bottom
water drive and 7Lpyp in Figs. 4.4.3 and 4.4.4 for edge water drive systems.
In Figs. 4.4.1 and 4.4.3, the well is assumed to be located midway between the
horizontal boundaries of the reservoir (z,p = 0.5). Figs. 4.4.2 and 4.4.4 display
the case where the well is located immediately below the top boundary of the
reservoir (z,p = 1). Note that because of the long horizontal well assumption
(low in the z direction is negligible), Egs. 4.4.8 and 4.4.9 are independent of the z
coordinate. Therefore, Figs. 4.4.1 — 4.4.4 show the streamline distribution in any
vertical plane (y — z) perpendicular to the well axis. Figs. 4.4.1 — 4.4.4 indicate

that the oil flow is predominantly in the vertical direction in bottom water drive

208



209

Bjep wolog — (§°0 = d™z) [[op |ejuozLIOl BUOT ® 10§ UOKNQIIISI( SUIjWIedI)S - TP P S1q

27949 4

¢

dALI(]

JONVLSIQ TVANOZIYOH SSITINOISNIWIQ
¢

14

1

|

0]

¢0

b0

90

80

g—

92°30NV1SI0 Tv2ILY3A SSIINOISN3WIA



210

-aal1(] Jorep| Woltog — (1 = d™z) [[9p [€)UOZLIOH BUOT ® 1O} UOHNQUISI(] BUljWRSI}S - Z°pF 31q

279499 4 ‘IONVLSIA TVLINOZIMOH SSIINOISNIWIA
é

14 ¢

|

1

0]

N
o

<
(@

©
o

©
o

Gu—

9z¢39NVLSIQ TVOILY3A SS3TINOISN3NIA



211

-aALI(] 197epA 98pd ~ (§°0 = d™2) [|9M [ejuOZIIOY] SuOT ® 1Oj UOIRNQLIYSI(] duljwRALS - £ P'F "SIy

S .mozq._.mm_o TVLNOZIYOH _wmquo_wzms:oo

¢
T | 0
i €=
G'0 =Mz
= 92 20
- ¢
N 2 v
Q /4
" 90
2-4
¢4
1 80
9'g-4
i MI.FV‘
l |

0z *39NV1SIa TVIILY3A SS3INOISNINIA



212

PAlI(] 193BAN 23pY - (1 = d™2) [[apn [RIUOZIIOY Buo ® 10j UOIYNQLISI(] dUlWRAING - P P'F "BLq

AK0qu .mozs.m_o

TVINOZIYOH SS3ITINOISNINIA

G ¢ 2 [ 0]
1 ] 1 |
i . ¢ /E@?
| = Mz -
- -
G2
B P4
B 91
¢ 1
N L
80 i
9°0
%0 /
<0 O/l I I  E—

0

9 < N
O o o

@
O
0z *30NV1SI0 TvOILH3A SS3TINOISNIANIA



systems whereas in edge water drive systems, convergence of flow toward the well is
mainly in the horizontal direction. Clearly, the direction of flow coincides with the
direction of displacement of oil by the water. Noting from Eq. 4.4.2 that d¢p /9yp
is proportional to dpp/8zp, we may conclude from Figs. 4.4.1 — 4.4.4 that the
maximum rate of advance of bottom water would be in the vertical plane passing
through the well axis (yp = 0). Therefore, as the water moves into the oil zone, the
water-oil interface would resemble a crest with its apex at yp = 0. Figs. 4.4.1 and
4.4.2 indicate that the vertical velocities in a bottom water drive system would not
be negligible until an appreciable distance from the well axis in contrast to rapidly
vanishing vertical velocities in an edge water drive system as indicated by Figs.
4.4.3 and 4.4.4. Therefore, in an edge water drive system, the bottom water crest
would be more localized and steeper compared to the one in a bottom water drive
system.

This detailed discussion is provided here to also investigate the validity of the
claim made in Ref. 64 that the pattern of flow lines for the bottom water drive
mechanism is the same as that for the lateral edge water drive mechanism in the
vicinity of the well and hence the shape of the oil-water boundary obtained for the
latter can be used for the former in the neighborhood of the well. Figs. 4.4.1 — 4.4.4
display patterns quite contrary to this claim. In addition to this crucial assumption
in the neighborhood of the well, Ref. 64 also claims that, at some distance from the

well, the use of Dupuit-Forchheimer approximation®9:79

would yield results that
are accurate enough in bottom water drive systems. Realizing that the Dupuit-
Forchheimer approximation is based on the premise that the streamlines would be
approximately horizontal for small inclinations of free surfaces in gravity drainage
systems®?, under most favorable conditions, this approximation could be considered
to be more appropriate for lateral edge water drive systems (see Figs. 4.4.3 and
4.4.4). For bottom water drive systems however, even at great distances from the
well, the streamlines are essentially vertical (see Figs. 4.4.1 and 4.4.2) and hence

the use of Dupuit-Forchheimer approximation should be inadequate. With these

underlying assumptions, the model used in Ref. 64 would, at best, represent the
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behavior of an edge water drive system in which the height of the water-oil interface
at the lateral boundaries of the reservoir would change with time.

In this work, we follow the approach taken by Muskat53:6 to investigate the
performance of vertical wells producing under bottom water drive conditions. Our
primary goal is to derive general conclusions on the gross performance features
of horizontal wells producing bottom water drive reservoirs. Provided that the
assumptions and their influences discussed below are understood completely, the
results obtained here can be used with confidence to determine the productivity

improvements that can be expected from horizontal well completions.

I1. Assumptions In order to restrict the discussion to complete bottom water
drive systems, we assume that pressures throughout the system are above the bubble
point. This ensures that the sole source of energy to drive the oil toward the well
is the movement of the oil-water interface; that is, there is no aid of the internal
dissolved gas. For simplicity, oil stripping is not taken into account; but stripping
would not have a major impact on calculated displacement efficiencies. Since our
objective is to develop general guidelines pertaining to the efficacy of horizontal well
completions and compare them to vertical well completions, we also assume, as in
other studies®3:66:63.64 that the mobility of water in the flooded portion of the oil
zone is the same as the mobility of oil. The necessity for this assumption arises
when two phase flow effects are neglected for the sake of analytical simplicity.

If we accept the above assumptions, the most critical assumption appears to
be the neglect of the density difference between the oil and water. Intuitively, it
can be expected that if the pressure gradients are comparable to the hydrostatic
gradient, then the density difference would help flatten the oil-water interface and
delay breakthrough. Such a control of pressure gradients, however, would be highly
impractical for bottom water drive systems. Under reasonable production rates, it
can be expected that the pressure gradients would be exceedingly higher than the
hydrostatic gradient and the influence of the density difference would be negligi-

ble. The consequences of this assumption are discussed in more detail later. At
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this stage, it should be noted that the assumption that the density differences are
negligible results in conservative estimates of displacement efficiency for it repre-
sents the least favorable conditions for oil displacement. (In this respect, we fully
recognize the attempt of Ref. 64 to take into account the density differences; but
unfortunately, this attempt fails in properly modeling the behavior of bottom water

drive reservoirs.)

III. Displacement Efficiencies Following Muskat®3%¢, the displacement
efficiency is defined as the fraction of the volume of oil pay that is swept out by the
time the water first reaches the well. If V is the volume of the oil zone swept by
the water until the water breaks into the well, k is the thickness of the oil pay, and

a is the well spacing (a = 2z.), the displacement efficiency, E, is defined by

14
E=—, (4.4.10)
where
t
V= q—f”-. (4.4.12)

In Eq. 4.4.11, t; is the breakthrough time, ¢ is the constant production rate, and f

is the microscopic displacement efficiency defined by
f = ¢(1 - ch - Sot' ) . (4.4.12)

Here ¢ is the porosity of the oil zone, S,,; is the connate water saturation, and S,;,
is the irreducible oil saturation.

For an oil particle originally at the oil-water interface (z = 0) travels to the
well along a streamline (see Figs. 4.4.1 and 4.4.2), we can express this motion along

the streamline by the relation

dSy = v,,,dt (4.4.13)

where Sy is the distance traveled by the particle along a streamline, vy is the

velocity of the particle along this path, and ¢ is the time of travel. By Darcy’s law,
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vy is proportional to the actual velocity. This proportionality is expressed by the

following relation:
ky Op
fudSy’

Therefore, for a given streamline, the time, ¢, and the distance traveled S, are

vy = 1.127x1072 (4.4.14)

related by <
‘ fu ¥ dSy
1.127x10-3k, J, 0p/8S,"

As the water rises most rapidly at z = y = 0, the time t; in Eq. 4.4.11 corresponds

(4.4.15)

to the time for an oil particle originally located at £ = y = z = 0 to travel to the
well along the streamline that coincides with the vertical (2) direction (see Figs.
4.4.1 and 4.4.2). Then letting 2, denote the location of the bottom of the well, the
breakthrough time ; is obtained from Eq. 4.4.15 as

dz
z

_ fu /zb
tb~1.127x10‘3k3 o (0p/02). o (4.4.16)

y=0
Combining Eqs. 4.4.10, 4.4.11, and 4.4.16 and using the definitions of dimensionless

variables, the displacement efficiency, E, can be written as

F
E==. (4.4.17)

In Eq. 4.4.17, the dimensionless parameter ap and the dimensionless function
F, which we will name after Muskat as the effective well spacing and the sweep

efficiency function respectively, are defined by

a [k,
ap =\ 2 (4.4.18)

2D dZD
F = 27!'/ . 4.4.19
0 (apD/azD)yp=0 ( )

Note that the sweep efficiency function, F, is also equal to

and

_ G ks
=R (4.4.20)

Thus, the right hand side of Eq. 4.4.20 indicates that F is a measure of clean oil
produced prior to breakthrough. Also, if F' is known, then the breakthrough time
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for a specific value of flow rate can be estimated from Eq. 4.4.20. The steady
state production rates to be used in these computations can be obtained from the
relations presented in the previous section (Eq. 4.2.28 or 4.2.41). In the discussion
that follows, information is provided to determine the function F.

We computed the displacement efficiencies of horizontal wells producing under
bottom water drive conditions from Eq. 4.4.17 by using Eq. 4.2.41. For comparison
purposes, we also reproduced the results of Refs. 53 and 66 for partially penetrating
vertical wells. A summary of the equations used in the vertical well case is also
presented in Appendix E.

Prior to presenting the central discussion of this section, we will comment
on two points that are of secondary importance to the goals of this investiga-
tion. Although the results presented in this section were obtained by using the
infinite-conductivity well condition, the results of our investigation indicated that
the uniform-flux well idealization would not significantly affect the computed dis-
placement efficiency. We observed a little discrepancy between the two cases for
intermediate values of Lp (0.1 < Lp < 2.3). On the basis of our earlier discus-
sion, the agreement between the infinite-conductivity and uniform-flux results for
Lp > 2.3 should be expected. The explanation for the agreement between the two
cases at small values of Lp is based on the expectation that the displacement effi-
ciencies of short horizontal wells (Lp < 0.1) would approach that of a point source
well. The results presented below justify this explanation. Similarly, we found that
the influence of the wellbore radius on the displacement efficiencies of horizontal
wells was not significant for practical purposes (in case of vertical wells, this vari-
able appears to be slightly more important). Therefore, the following discussion

can be generalized for both flux conditions and all wellbore radii.

IV. Discussion of the Results Fig. 4.4.5 presents the displacement efficiency,
E, vs. the effective well spacing, ap for horizontal and vertical wells. The unbroken
lines in Fig. 4.4.5 denote the variation of the displacement efficiencies for horizontal

wells as a function of effective well spacing. The dimensionless well half length, Lp,
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is the variable of interest. The horizontal well is assumed to be located midway
between the top and the bottom boundaries of the reservoir (z,p = 0.5). The
dashed lines in Fig. 4.4.5 correspond to the displacement efficiencies of vertical
wells (ryp = 2 x 10~3, the influence of r,p is, however, negligible; see Refs. 53
and 66). Here, the variable of interest is the penetration ratio, b = h,, /k, where
h,, is the thickness of the penetrated interval and h is the total thickness of the oil
pay. The maximum value of E for horizontal wells occurs at the minimum value
of ap correponding to z.p = 1. Similarly, the maximum value of E for partially
penetrating vertical wells occurs at ap = 0 and is equal to 1—b. Fig. 4.4.5 indicates
that the displacement efficiency decreases with increasing effective well spacing for
fixed values of Lp (horizontal well) and b (vertical well). For large values of ap, the
sweep efficiency function, F, becomes independent of the well spacing and therefore
the displacement efficiency, E, becomes proportional to 1/ .a%. This result implies
that the incremental oil recovery per additional well decreases as the well density
increases.

The influence of anisotropy on displacement efficiency can also be determined
from Fig. 4.4.5. As explained by Muskat®3:€®, this variable is extremely important.
For vertical wells, since ap is proportional to \/m, the displacement efficiency,
E, decreases as k,/k increases, assuming that the well penetration, h,, and the
formations thickness, k, are fixed. For horizontal wells, however, both ap and Lp
include the effect of anisotropy. Thus, determining the influence of anisotropy is
more complicated for horizontal wells. For example, if the ratio of &k, /k increases by
a factor of 4, then assuming that a, h, and L, are fixed, both ap and Lp increase by
a factor of 2. From Fig. 4.4.5, we note that the displacement efficiency of the case
corresponding to ap = 5 and Lp = 1 is higher than the displacement efficiency of
the ca:se corresponding to ap = 10 and Lp = 2. Similar observations can be made
for other combinations of ap and Lp. Thus, in general, as in the case of vertical
wells, everything else being the same, the displacement efficiencies of horizontal
wells decrease as the ratio of vertical to horizontal permeability, k./k, increases.

On the other hand, if L; is increased, everything else being fixed, the displacement

219



efficiencies of horizontal wells increse.

The fact that the displacement efficiency for a horizontal well depends on both
ap and Lp makes horizontal wells a better canditate than vertical wells in reservoirs
with high k, /k ratio. Consider for example a reservoir with a certain ratio of k, /k
and assume that corresponding to the given ratio of k,/k, the dimensionless well
spacing, ap = 5. If we compare a horizontal well with Lp = 1 and a vertical well
with b = 0.25 located in this reservoir, Fig. 4.4.5 indicates that the displacement
efficiency of the vertical well would be higher than that of the horizontal well. If
we now consider another reservoir where the ratio of k,/k is higher by a factor of
4, then everything else being constant, Lp = 2 and ap = 10 (the penetration ratio
b of the vertical well would remain to be same). For this case, the displacement
efficiency for the horizontal well would be higher than that of the vertical well.

Although Fig. 4.4.5 provides information on displacement efficiency, this in-
formation is incomplete for the purpose of evaluating the influence of water drive.
For example, the time for breakthrough (which would also govern the amount of
clean oil produced) is of interest. This information can be obtained by examining
the behavior of the sweep efficiency function, F.

The sweep efficiency function, F, vs. the effective well spacing, ap, for a
network of vertical wells (with square drainage region) is shown in Fig. 4.4.6. In
this figure, the dimensionless wellbore radius, ryp, is assumed to be 2 x 1072, The
variable of interest here is the penetration ratio, b. As can be expected, the sweep
efficiency function is larger for smaller well penetrations. For a fixed value of b,
F increases as ap increases and if ap is large enough, it becomes independent of
ap; that is, for fixed values of b, k, and k. /k, the sweep efficiency increases as the
distance between the wells increases (as a increases) and finally attains a constant
value. Refs. 53 and 66 report that for ap > 3.5, the sweep efficiency becomes
independent of effective well spacing. If we assume that we are above this limit,
then Eq. 4.4.20 indicates that breakthrough time, t;, is inversely proportional to
k./k, all other variables being constant.

In Fig. 4.4.7 we have plotted the sweep efficiency function, F, of an individual
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well in a regular network of horizontal wells (z.p = y.p) as a function of effective
well spacing. The well is assumed to be located at mid-height of the reservoir
(200 = 0.5). The variable of interest is the dimensionless well half length, Lp.
Fig. 4.4.7 indicates that for fixed values of ap, the sweep efficiency function, F,
increases as Lp increases; also for fixed Lp, F increases as ap increases and it
becomes independent of ap at large values of ap. This behavior is consistent with
the observation made earlier that pressure gradients are negligible beyond the points
defined by the relation zp Lp = 7.2/7. Then Fig. 4.4.7 indicates that the water-free
oil production obtained from an individual well in a regular network of horizontal
wells increases until the effective drainage area dictated by the spacing between
the wells becomes equal to the maximum drainage area defined by Eqs. 4.1.29 and
4.1.30. Thus, if ap is large enough, breakthrough time is inversely proportional to
k./k, all other parameters being fixed (see Eq. 4.4.20). Although the results shown
in Fig. 4.4.7 are similar to that shown in Fig. 4.4.6, the role of a,r‘lisotropy is more
important in horizontal well case since Lp is a function of &k, /k.

One interesting point to note in Fig. 4.4.7 is that F is independent of ap if
Lp is large enough. This result is also true for other values of z,p. The results
shown in Fig. 4.4.8 may be used to determine the value of F for large values of Lp.
The unbroken lines in Fig. 4.4.8 show the influence of the well length, Lj, and the
well location, 2y, on the sweep efficiency function, F, for a horizontal well located
in an infinite reservoir. For large values of Lp (Lp > 2.3), the sweep efficiency
function, F, of horizontal wells becomes a linear function of Lp. This observation
is consistent with that made from examination of Figs. 4.2.1 and 4.2.2. Using these
values of F, the displacement efficiency, E, can be readily determined for large
values of Lp (note that ap only involves the physical dimensions of the reservoir).
It is also possible to obtain the breakthrough times from Fig. 4.4.8 by using Eq.
4.4.20. Since for Lp > 2.3, F is proportional to Lp, we can decide from Eq. 4.4.20
that the breakthrough times for long horizontal wells are inversely proportional to
\/l-c:/—k whereas the breakthrough times for vertical wells are inversely proportional
to k. /k.

223



'OZ LA S R R Ll L N R ALL .
L F —— HORIZONTAL WELL
Z - — — VERTICAL WELL
9 ~ er=2x10-3
F- — o
g 10 = -
< - -
D - 3
l;- | 2wD= I _
O
& ! E ~~0.75 E
O o <~ =
L -
L r 0.5 -
W
a 10k \ 3
Ll - \ -
S = -
= [ | .
wn - | |

]62 IR R R e

1072 107! l 10 102

DIMENSIONLESS HORIZONTAL
WELL HALF-LENGTH, Lp,

PENETRATION RATIO, b

Fig. 4.4.8 - Sweep Efficiency Function F for Vertical and Horizontal Wells ~
Laterally: Infinite Reservoir.

224



Fig. 4.4.8 may also be used to compare vertical and horizontal well produc-
tivities. The dashed line in Fig. 4.4.8 shows the variation of the sweep efficiency
function, F, for a partially penetrating vertical well as a function of the penetra-
tion ratio b. Fig. 4.4.8 indicates that the sweep efficiency function, F, increases
as the distance of the horizontal well from the original oil-water interface increases
(as zwp increases). Similarly, for vertical wells, the sweep efficiency increases as
the distance of the bottom of the well from the original oil-water contact increases
or as b decreases. The intersection points of the sweep efficiency curves for vari-
ous elevations of horizontal wells (unbroken curves) and the curve representing the
sweep efficiencies of vertical wells (dashed curve) mark the pairs of Lp and b for
which the cumulative production until breakthrough from horizontal and vertical
wells is the same. Similarly, corresponding to every vertical well penetration, b, it
is possible to find a range of horizontal well elevations, z,; D, and horizontal well
lengths, Lp, for which horizontal wells would perform better compared to vertical
wells. The results shown in this figure also indicate that for small values of Lp
(Lp < 0.1), the sweep efficiency function becomes independent of the well length.
Our computations indicated that, the value of F' obtained for Lp < 0.1 would ap-
proach to the sweep efficiency of a point source well located at the same elevation
as the horizontal well. A summary of the equations used for the point source well
calculations is presented in Appendix E. This result also applies to vertical wells
with extremely small penetration ratios. In Fig. 4.4.8, we note that vertical well
solutions for small values of b merge with the horizontal well solutions for z,p = 1
and small values of Lp. Based on the observation that the point source idealization

is applicable for small values of Lp or b, this result is not surprising.

V. Influence of Gravity Effects The analysis presented above is based on the
fact that the water-free oil recovery is inversely proportional to the velocities of
the oil-water interface. As already mentioned, one would expect density differences
between the oil and water to reduce the velocity of the oil-water interface. On

physical grounds, we can argue that the reduction in the interface velocities due to
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density difference would be a maximum below the well axis at zp = yp = 0, where
the elevation of the interface is at a maximum, and it would gradually decrease as
the elevation of the interface decreases at distant points. Similarly, as a result of
rapidly increasing pressure gradients in the vicinity of the well, the influence of the
gravitational gradient would become smaller as the oil-water interface approaches
the well. Thus, if we assumed that the reduction in the interface velocities were
uniform everywhere at the oil-water interface and along the path from the original
oil-water interface (2 = 0) to the bottom of the well and it were equal to that at
zp = yp = zp = 0, we would be considering the situation where the influence of
the gravity on the water-free oil production would be maximum. Therefore, it is
possible to obtain an upper limit for the reduction in the interface velocities due
to the influence of gravity by comparing the pressure gradients corresponding to
the density difference with the pressure gradients at the original oil-water interface.
Since the cumulative oil production before breakthrough is inversely proportional
to the interface velocities, this would be equivalent to obtaining an upper limit for
the increase in water-free oil recovery due to the influence of gravity.

Table 4.4.1 presents the upper limit estimates of the percent increases in water-
free oil recoveries for an example case. For this example, the density difference
between the oil and water is 18.73 Ib,,/ft> and the equivalent pressure gradient is
0.13 psi/ ft. For an original oil pay thickness of 25 ft and a wellbore pressure drop
of 147 psi, pressure gradients at the original oil-water interface can be found from
the following relation by using Eq. 4.2.30 (here we assumed an infinite reservoir).

dp Pi — Pws OPD

Bal=0 = T 5 lap=0- (4.4.21)

We computed the pressure gradients at the oil-water interface for three well loca-
tions, 2z, p = 1, 0.5, and 0.25, and for two dimensionless well half lengths, Lp = 5
and 0.5. The results of these computations are shown in Cols. 2 and 4 of Table
4.4.1. The percent increases in water-free oil production given in Cols. 3 and 5
of Table 4.4.1 represent the ratios of the pressure gradient corresponding to the

density difference between the water and oil to the pressure gradients at the origi-
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TABLE 4.4.1

INFLUENCE OF GRAVITY ON WATER-FREE OIL RECOVERY

Pw — Po = 18.73 Ib,,, / ft3
pi — Pus = 147 pst

h =25 ft

Dimensionless

Lp=5

Lp =0.5

Well % Increase % Increase
Location dp/0zl|.=0 in Water-free 0p/d3z|.=0 in Water-free

ZwD Oil Recovery Oil Recovery

1.00 1.43 9.1 0.81 16.1

0.50 4.04 3.2 3.07 4.2

0.25 8.65 1.5 7.96 1.6
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nal oil-water interface. (Note that if we assume that the pressure gradient is equal
to the gravitational gradient, then this situation implies that the well is produced
such that the pressure gradient is exactly equal to the gravitational gradient. This
is analogus to the critical rate calculations done for the water coning problem in
edge water drive systems.)

The results shown in Table 4.4.1 indicate that the influence of gravity on
the water-free oil production becomes more important as the well length becomes
shorter. Similarly, as the distance of the well from the original oil-water interface in-
creases, the influence of the gravity becomes more significant. From Eq. 4.4.21, we
can decide that for higher pressure drops than that assumed here (that is, at higher
production rates), the influence of gravity on the water-free oil recovery would be
less significant. For greater pay thicknesses, on the other hand, the percent increases
in the water-free oil recoveries would be higher than those presented in Table 4.4.1.
[For the same case considered here, Muskat computed (see author’s reply in the end
of Ref. 66) the improvements in the clean oil recoveries of vertical wells to be 20
and 3 percent for 50 and 90 percent well penetrations, respectively. He concluded
that the effect of gravity would be greater for smaller well penetrations.)

At this stage, two points should be noted. First, we have assumed an infinite
reservoir system. Had we assumed a finite reservoir system, then dp/dz would be
greater than or equal to the values noted here and thus percent increases in oil
recovery would be less than those noted here. Second, had we assumed that dp/8z
was variable and compared increases in water-free oil recovery, then the increase in
recovery would be less than that noted here. As a result of these observations, in
actual circumstances, the influence of gravity would be much less than that noted
here.

The quantitative example presented here, as well as the physical arguments
provided, indicates that the assumption that the gravity would not have a major
impact on the displacement efficiencies is not as important as it might have appeared
initially. Therefore, the results presented in this work can be used with confidence

to determine the productivities of horizontal wells and compare the horizontal and
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vertical well productivities under bottom water drive conditions.



CHAPTER V

CONCLUSIONS

The primary subject of investigation in this work is the performance of hori-
zontal wells. Preliminary results of our investigation indicate that the productivity
of horizontal wells can be comparable to that of vertically fractured wells and hence
horizontal well completions are an alternative option to conventional well completion
techniques. In addition, this mode of completion should be effective in reservoirs
wherin the invasion of the oil pay by water or gas precludes the efficient operation of
vertical wells since horizontal wells provide a larger surface area for fluid withdrawal
that results in reduced pressure gradients in the reservoir.

Several solutions are avaliable in the literature concerning the transient flow
behavior of horizontal wells in homogeneous reservoirs. In this work, the transient
ﬂow‘ solutions to horizontal well problem have been obtained through the use of
the source function approach of Gringarten and Ramey®. The challenging problem,
however, has been the extention of these solutions to more complex situations such
as incorporating the influence of wellbore storage and skin, variable rate production,
and production from naturally fractured reservoirs. The approach taken in this
work to solve the aforementioned problems is a synthesis of two powerful methods in
solving unsteady flow problems in reservoirs; the method of sources and the Laplace
transformation technique. In essence, the procedure developed in this study covers
a broad range of viable well-reservoir systems and many new solutions have been
obtained as a result of the new source function approach.

The major contributions and the specific conclusions of this work are docu-

mented below following the outline of the text.
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In Chapter II, a new source function approach has been developed to solve
the problem of unsteady flow in reservoirs. The new approach is a culmination of
attempts over a number of years to obtain the Laplace transformation to several
important solutions in well test analysis, so that the utility of these solutions can be
enhanced to other problems of considerable interest — solutions that incorporate the
combined influence of wellbore storage and skin and solutions that can incorporate
variable rate production. Initial efforts were not fruitful primarily because these
attempts involved obtaining the appropriate Laplace transforms from the solutions
given in Ref. 3. Our realization that many of the problems one encounters can be
resolved, if one examines extensions of the Laplace transformation of Lord Kelvin’s
point source solution for a wide variety of outer boundary conditions removed the
major obstacle in attaining the goal of this work. This aspect of our study is new
for until now the use of Lord Kelvin’s solution and its extensions in the petroleum
engineering literature consider pressure distributions only in the time domain and
not in terms of the Laplace variable. Solutions for various wellbore configurations
(partially penetrating vertical wells, horizontal wells, and partially penetrating ver-
tically fractured wells) are then obtained in the manner suggested by Carslaw and
Jaeger??; sources are distributed along the appropriate space coordinate(s) and the
pressure distribution is obtained by simple integration along the space coordinate(s).
As an application of this procedure, an extensive library of solutions useful in well
test analysis has been developed. Many of the solutions presented here are new
and the fact that this library involves solutions in terms of the Laplace transform
variable provides the analyst with the power to solve complex practical problems
of interest.

Even if appropriate solutions are obtained with respect to the Laplace variable,
myriad problems in the inversion of the solution by the Stehfest algorithm® must be
overcome. The major problems are: (i) computations of integrals involving the mod-
ified Bessel function, Ko(u) as u — 0, (i1) recasting series that behave as if they are
divergent series into convergent forms, and (iit{) computations of series that involve

double infinite Fourier series (limited entry wells in bounded reservoir systems).
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These problems are also addressed in detail in Chapter II of this study; the results
presented represent tangiable evidence of the claims regarding the computability
of our solutions. Procedures to compute the horizontal well responses in bounded
reservoir systems should be particularly useful since horizontal well lengths can be
comparable to the dimensions of the drainage area. New expressions for shape fac-
tors for various well configurations in rectangular and cylindrical drainage areas are
presented. These expressions can be used to predict long term well deliverability
and also to compare well performance for various completion conditions. They serve
the purpose of the pseudoskin factor for infinite-acting systems.

Although many specific results are presented, the central contribution of Chap-
ter II is broad in scope. Briefly, the procedures developed in Chapter II permit the
analyst to exploit the extraordinary advantages of the Laplace transformation tech-
nique to solve a wide variety of complex problems of interest in well test analysis.

In Chapter III, we have computed pressure responses of horizontal wells located
between impermeable top and bottom boundaries of a laterally infinite reservoir and
compared these responses to the responses of fully penetrating vertical fractures.
Two classical boundary conditions, namely infinite-conductivity and uniform-flux,
have been considered. Analytical expressions for the pseudoskin factor and the
effective wellbore radius are presented. These expressions should be extremely useful
for designing completions and comparing productivities. Physical explanations and
interpretations provided in this chapter are not available in the literature. A new
method to determine formation properties is also proposed. Pressure responses
normalized by the derivative provide a novel procedure to analyze data.

Specific conclusions that result from the work presented in Chapter III are as
follows:

1. For a single horizontal well or a drainhole, the infinite-conductivity idealiza-
tion is the only viable boundary condition. For two drainholes drilled in diametri-
cally opposite directions from a single vertical well, either the infinite-conductivity
or the uniform-flux idealization is appropriate.

2. Horizontal well pressure responses are a function of the dimensionless well
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length, Lp, and the dimensionless well radius, ryp.

3. If the dimensionless well length, Lp, is greater than 25, then the long time
(tp > 10) pressure response of a horizontal well is essentially identical to that of a
fully penetrating vertical fracture. If Lp > 50, the pressure response of horizontal
well is indistinguishable from that of a vertically fractured well for tp > 10~2. This
result implies that pseudoskin factors are negligible if Lp > 5.

4. The pressure response of horizontal wells and pseudoskin factors are, for
all practical purposes, insensitive to the well location in the vertical plane of the
reservoir.

In Chapter IV, we have presented analytical solutions together with approx-
imating forms at short and long times for the pressure distribution created by
horizontal wells producing under bottom water drive conditions. The influence
of the reservoir boundaries on the pressure responses of horizontal wells is also
investigated. The information provided on the flow characteristics enhances our
understanding of the basic phenomena that underly the performance of horizontal
wells subject to bottom water drive conditions. The productivity of horizontal wells
is discussed in terms of the efficiency of the displacement mechanism provided by
the water drive. Comparison of horizontal and vertical well performances under
bottom water drive conditions can be easily obtained from the charts presented
here. The results presented can also be used to determine the breakthrough times
and the water-free oil recovery.

Based on the work presented in Chapter IV, the following conclusions regard-
ing the performance of horizontal wells under bottom water drive conditions are
estabilished:

1. Behavior of horizontal wells under bottom water drive conditions posseses
unique characteristics. Performance predictions obtained under edge water drive
assumption cannot be used for wells subject to bottom water drive.

2. The early time behavior of horizontal wells subject to bottom water drive is
idéntical to that of horizontal wells located between impermeable top and bottom

boundaries. For times tp > 20/ (wL%), the influence of the constant pressure
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bottom boundary is estabilished and steady state flow prevails in the reservoir.

3. If bottom water drive is the major producing mechanism, then the pressure
gradients in the reservoir beyond the points determined by the relations zp Lp > 2.3
and ypLp > 2.3 are negligible. Similarly, if Lp > 2.3, then the pressure gradi-
ents beyond the tips of the well are negligible. This indicates that the maximum
drainage area of a horizontal well under bottom water drive conditions is equal to
21.2h2 (k/k;) if Lp < 2.3 and it is equal to L? if Lp > 2.3. Therefore, a small
formation thickness or a large vertical to horizontal permeability contrast has a
reducing effect on the maximum drainage area of the well. This result provides
guidelines as to the number of wells required to develop a reservoir subject to bot-
tom water drive.

4. The water-free oil production increases as the horizontal well length increases
and for Lp > 2.3 it becomes proportional to Lp. As the dimensionless well-
half length, Lp, becomes smaller than 0.1, the productivity of horizontal wells
approaches the productivity of point source wells located at the same elevation as
the horizontal well. Water-free oil production also increases as the distance of the
well from the original oil-water interface increases.

5. Water-free oil production of an individual well in a network of horizon-
tal wells increases as the spacing between the wells increases. Once the effective
drainage area of the well becomes equal to a critical value, further increases in the
well spacing do not influence the productivity of an individual well. Expressions
to obtain this critical value are summarized in this study. Gains in the water-free
oil production per additional well, however, continuously decrease with increasing
number of wells.

6. The productivities of horizontal and vertical wells decrease as the ratio of
vertical to horizontal permeability increases. The influence of anisotropy, however,
is less on the productivity of horizontal wells compared to the influence on the

vertical well productivities.
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= permeability, md, [m

NOMENCLATURE

well spacing, ft, [m]
effective well spacing

penetration ratio

= formation volume factor, RB/STB, [res m®/stock — tank m?]

= shape factor

vertical well shape factor

vertically fractured well shape factor

= horizontal well shape factor

= total compressibility, psi~!, [Pa~1]

displacement efficiency
sweep efficiency
horizontal well pseudoskin factor

microscopic displacement efficiency

= defined in Eq. 2.1.23 or 2.1.42

Laplace transform of g

reservoir thickness, ft, [m]

= dimensionless formation thickness

open interval of the pay in vertical direction, ft, [m]
%]
permeability in the [-direction, ! = z, y, or z, md, [m?]

reference length in the system, ft, [m]

= Laplace transform operator

dimensionless linear distance,l =z, y, or 2

dimensionless horizontal well half length
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Ly =
Ly, =
p=
pp =
PDfs =
PDhr =
PDv =
pi =
PwD =

Pwf =

horizontal well length, ft, [m]

fracture half length, ft, [m]

pressure, pst, |Pa]

dimensionless pressure

vertical fracture dimensionless pressure
horizontal well dimensionless pressure

vertical well dimensionless pressure

initial pressure, pst, [Pa]

dimensionless wellbore pressure

wellbore pressure, psi, [Pa]

production rate, STB/D, [m®/s]

production rate from point source, STB/D, [m?®/s]
volumetric flow rate from the matrix system to the fracture system
radial distance, ft, [m)]

dimensionless radial distance

dimensionless drainage radius

wellbore radius, ft, [m)|

dimensionless wellbore radius (Eq. 3.3.3)
dimensionless wellbore radius (Eq. 3.3.4)
Laplace transform variable with respect to tp
Laplace transform variable with respect to tp4

length, area, or volume of the source, ft, ft2, or ft> [m, m?

, or m®]
dimensionless skin factor

unit storage factor, RB/psi, [m3/Pa]

dimensionless storage constant

source function in the j-direction

distance traveled along a streamline, ft, [m]

time, hours, [s]

breakthrough time, days, |s]

dimensionless time
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lpa =

&
Il

< < &
]

ZwD =

Yp1 =
Yp2 =
Ye =
YeD =
JeD =
yi =

Yib =
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dimensionless time based on drainage area
sf(s)

51(3)

relative volume with respect to the bulk volume
volume of oil pay swept by the water, ft3, [m?]
velocity along a streamline

distance in the z-direction, ft, [m]

dimensionless distance in the z-direction
dimensionless equivalent pressure point
dimensionless distance in the z direction (Eq. 4.1.9)
defined in Eq. 2.2.26

defined in Eq. 2.2.27

reservoir length in x-direction, ft, [m]

dimensionless reservoir length in the x-direction
dimensionless reservoir length

boundary of influence in the z direction, ft, [m]
dimensionless boundary of influence in the z direction
well location in the z-direction, ft, [m)]
dimensionless well location in the z-direction
dimensionless well location in the z direction
distance in the y-direction, ft, [m)]

dimensionless distance in the y-direction
dimensionless distance in the y direction (Eq. 4.1.10)
defined in Eq. 2.2.28

defined in Eq. 2.2.29

reservoir length in the y-direction, ft, [m]
dimensionless reservoir length in the y-direction
dimensionless reservoir width

boundary of influence in the y direction, ft, [m)]

dimensionless boundary of influence in the y direction



Yw
YuwD

ng

zp = vertical location of the bottom of the well, ft, [m]
z,p = dimensionless vertical location of the bottom of the well
zp = dimensionless distance in the z-direction
Zp1 = defined in Eq. 2.2.30
Zp2 = defined in Eq. 2.2.31
2, = well location in the 2-direction, ft, [m]
2wD dimensionless well location in the z-direction
a = interporosity shape factor
~ = Euler’s constant (v = 0.5772...)
Ap = pressure difference from the initial pressure, pst, [Pa]
n; = diffusivity constant, j = z, y, or z, ft2/hour, [m?/s]
o = verticall fractured well pseudoskin factor
A = dimensionless transfer coefficient (Warren and Root model)
A" = dimensionless transfer coefficient (deSwaan-O model)
u = fluid viscosiiy, cp, [Pa.s]
po = density of oil, Ib,, / ft3, [kg.m™3]
pw = density of water, b,/ ft3, [kg.m™3]
¢ = porosity, fraction
= defined in Eqs. 2.7.35 and 3.4.7
1 = stream funcfion
Yp dimensionless stream function
w = dimensionless matrix storativity (Warren and Root model)
w’ = dimensionless matrix storativity (deSwaan-O model)
Subscripts

well location in the y-direction, ft, [m]
dimensionless well location in the y-direction
dimensionless well location in the y direction

distance in the 2-direction, ft, [m]

f = fracture system

m = matrix system
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APPENDIX A

SOME SOLUTIONS USEFUL IN WELL TESTING

In this appendix, we present a library of Laplace domain solutions useful in well
test analysis. The procedure to obtain these solutions is discussed in §§2.1 and 2.2
of this work. Table 1 presents the solutions for laterally infinite reservoirs. Table
2 lists the solutions for cylindrical reservoirs. In Table 3, continuous point source
solutions for rectangular drainage regions are presented. The procedure to obtain
the solutions for different well configurations by using the point source solutions
given in Table 3 is discussed in §§2.2 IIT and 2.3.

In Tables 1 - 3, h,, denotes the length of the penetrated interval in case of

limited entry wells and fractures, L., is the half length of a vertical fracture in the

Tz
lateral direction, and Lj is the length of a horizontal well. For each type of well
considered in Tables 1 — 3, the appropriate relation between the withdrawal rate
from the well, ¢, and the withdrawal rate from the point source, g, is also noted. The
location of the well is determined by zup, ywp, and 2, p, except in Table 2 where
the well is assumed to be located at the center of the circular drainage area (zwp =
Ywp = 0). In Table 2, r.p is the dimensionless drainage area where rp = m
defines the dimensionless radial distance and fp = \/ (zp — a\/k_/_k:)z +y%. The

coordinate system for the solutions given in Table 3 is chosen to be at the bottom

left hand corner of the reservoir, and the dimensions of the reservoir are defined by
Tep, YeD, and hp. To the left of each solution given in Table 3 is the areal view of
the rectangular drainage region for the particular solution. The well is assumed to
be located at some arbitrary point Zup, YwD, 2Zwp. ch(z) and sh(z) used in these

solutions denote the hyperbolic cosine and hyperbolic sine functions respectively.
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TABLE 1-A
SOLUTIONS FOR WELLS IN INFINITE RESERVOIRS
IMPERMEABLE BOUNDARIES AT z2p = 0 AND 2p = hp

WELL TYPE PRESSURE DISTRIBUTION IN LAPLACE SPACE, Ap
Ko (rpvVu) 4 ZZK Nk
POINT SOURCE 21rchhD o\"D oD %3
7=7 cosnrl Zw
08 h cosnnm h.
FULLY
PENETRATING .
__i‘ih__.go (roV/%)
VERTICAL WELL 27kLhpe
g=gh
PARTIALLY a}lhw (r \/—) B L 2th i rlK [ n2x2
PENETRATING 2kLhps” ° V7 72kLhps < [n \"PVHT TR
VERTICAL WELL ke v z
g= ahw smn 2h cosnd h COSﬂ.T\"E
FULLY
PENETRATING o Lt
VERTICAL FRACTURE 2:15103 / i ;L Ko [ﬁv/(zp - zwp — av/k/k:)? + (yp - ywo)2] da
g = 23hL,, N
Gk /“w/b [ / ‘
o K - zup — aVk/k;)? + (yp - yup)?|d
PARTIALLY 2wkhps Jop, i1 o |Vu\/ (2D = ZwD — aVk/k;)? + (yp = yuD) J o
PENETRATING N 2fuh o1 . hy 2y z
VERTICAL FRACTURE khps i gh O SRR
9 =2Ghy L. tlaght [ [ a2
! / Ko VU+ %\ﬂzp—twu—avk/hP*'(yo—wa)2 da
~Ls, L D
~ *LA/(zL)
ks _ — aJkIE.)2 .
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TABLE 1-B
SOLUTIONS FOR WELLS IN INFINITE RESERVOIRS
CONSTANT PRESSURE BOUNDARIES AT zp =0 AND zp = hp

WELL TYPE PRESSURE DISTRIBUTION IN LAPLACE SPACE, Ap
POINT SOURCE 7121r2 ) z . z,
R xchhDa E Ko (rp h%, sin nﬂ'z sin mr—h—
PARTIALLY
PENETRATING _2Guh i K L2 P R N
VERTICAL WELL 77kLhps = n"° D I R T Y
= ghy
PARTIALLY 2Gph hy Zw z
2 Z "‘SH'I mr-—- sm n1r——- sm nr—
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q= 2qth:; ~Ls /L
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WELL thDa o 81n n?fh sinnmnT h
¢=3qL +Lnf(2L) 2.2
o / Ko +2}:—:—\/(:1,-x.up—a\/k/k,)2+(yp—yw)2 da
-—L,‘/(ZL) D




TABLE 1-C

SOLUTIONS FOR WELLS IN INFINITE RESERVOIRS
IMPERMEABLE BOUNDARY AT zp = 0, CONSTANT PRESSURE BOUNDARY AT zp = hp

WELL TYPE

PRESSURE DISTRIBUTION IN LAPLACE SPACE, Ap

POINT SOURCE

f (2n - 1)2n2 Tz 2y
g K, {rp -——-—4}% cos{2n — 1) T cos(2n — 1) Y

9=9 kahDa
PARTIALLY Guh 1 (2n — 1)2n2
PENETRATING x2kLhps ,.; Eno1) {’D TR
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¢ = Ghe um(Zn—l)-Z——é—}:_sm(Zn— 1)2 - cos(2n — 1)2-}:
PARTIALLY 4guh Z S sin(2n - IR n(en - T2 cosan - 1)1 2
PENETRATING 1|’2th5 (2n 2}1./ 2 h 2h
VERTICAL FRACTURE | [*ia/E (2n - 1)
et T T —rm—V (20 7 zep = aVHRITH 40~ yuo)?) do
HORIZONTAL in = Tz g z.,,
WELL rhhps 2 <020 7 Uz corlin = )3
g=qLs

/'*'Ln /(2L)
-Lp/(2L)

Ko [1 fu+ (z—ni—h—i—\/(zv = z2wp — aVk/k:)? + (yp - wa)Q]
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TABLE 3-A
POINT SOURCE WELLS

BOUNDED RESERVOIRS - CYLINDRICAL COORDINATES

BOUNDARY BOUNDARY
CONDITION CONDITION PRESSURE DISTRIBUTION IN LAPLACE SPACE, Ap
ATzp =0ANDhAp| ATrp=r.p
Io {rp/u) K, (rep /)
21l'kLhDa {KO (rD\/—) + 11 (”gD\/‘_‘)
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TABLE 2-A (Cont.)
POINT SOURCE WELLS

BOUNDED RESERVOIRS - CYLINDRICAL COORDINATES

BOUNDARY BOUNDARY
CONDITION CONDITION PRESSURE DISTRIBUTION IN LAPLACE SPACE, Ap
AT zp =0ANDRp| ATrp=r.p
R B T 2w
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TABLE 2-B
FULLY PENETRATING WELLS
BOUNDED RESERVOIRS - CYLINDRICAL COORDINATES
IMPERMEABLE BOUNDARIES AT 2p =0 AND #p = hp

b = \/(e0 - aV/ATR)? + 4}

WELL BOUNDARY
TYPE CONDITION PRESSURE DISTRIBUTION IN LAPLACE SPACE, Ap
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TABLE 3-C

PARTIALLY PENETRATING VERTICAL LINE SOURCE WELL
BOUNDED RESERVOIRS - CYLINDRICAL COORDINATES

g = Ghy
BOUNDARY BOUNDARY _
CONDITION CONDITION PRESSURE DISTRIBUTION IN LAPLACE SPACE, Ap
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TABLE 3-C (Cont.)
PARTIALLY PENETRATING VERTICAL LINE SOURCE WELL
BOUNDED RESERVOIRS - CYLINDRICAL COORDINATES

q=dho
BOUNDARY BOUNDARY
CONDITION CONDITION PRESSURE DISTRIBUTION IN LAPLACE SPACE, Ap
4
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TABLE 2-D
PARTIALLY PENETRATING VERTICAL FRACTURE
BOUNDED RESERVOIRS - CYLINDRICAL COORDINATES

0= GhoLe, fp = \/lzp — a/KTRE)? + 2
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TABLE 2-D (Cont.)
PARTIALLY PENETRATING VERTICAL FRACTURE
BOUNDED RESERVOIRS - CYLINDRICAL COORDINATES
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TABLE 2-E
HORIZONTAL WELL
BOUNDED RESERVOIRS - CYLINDRICAL COORDINATES
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TABLE 2-E (Cont.)
HORIZONTAL WELL

BOUNDED RESERVOIRS - CYLINDRICAL COORDINATES
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TABLE 3-A
POINT SOURCE WELLS
RECTANGULAR RESERVOIRS

IMPERMEABLE BOUNDARIES AT zp = 0 AND zp = hp
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TABLE 8-A (Cont.)
POINT SOURCE WELLS
RECTANGULAR RESERVOIRS

IMPERMEABLE BOUNDARIES AT zp = 0 AND zp = hp
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TABLE $-A (Cont.)
POINT SOURCE WELLS
RECTANGULAR RESERVOIRS
IMPERMEABLE BOUNDARIES AT zp = 0 AND zp = hp
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TABLE 3-B
POINT SOURCE WELLS
RECTANGULAR RESERVOIRS

CONSTANT PRESSURE BOUNDARIES AT 2p =0 AND hp
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CONSTANT PRESSURE BOUNDARIES AT zp =

TABLE 3-B (Cont.)
POINT SOURCE WELLS
RECTANGULAR RESERVOIRS
0 AND hp
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IMPERMEABLE BOUNDARY AT zp = 0,CONSTANT PRESSURE BOUNDARY AT zp = hp

TABLE 3-C
POINT SOURCE WELLS
RECTANGULAR RESERVOIRS
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TABLE 3-C (Cont.)
POINT SOURCE WELLS
RECTANGULAR RESERVOIRS

IMPERMEABLE BOUNDARY AT zp = 0, CONSTANT PRESSURE BOUNDARY AT zp = hp
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APPENDIX B

REDUCTION OF TRIPLE INFINITE FOURIER SERIES

In applying the method of images in z, y, and =z directions to obtain the point
source solutions in rectangular reservoirs (solutions given in Table 3 of Appendix
A) we encounter triple infinite series of Eq. 2.1.40. Here we present summation
formulas to be used in generating the solutions given in Table 3 of Appendix A.

First we consider the triple summation given by

“+ oo +oco + oo
TS= > Y, > s, (B-1)
k=—ocom=—0c0 n=—oco

where
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By using the summation formula given by Eq. 2.2.5 in §2.2 and?®
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+2 Z cos n7r / exp ( exp |— = o
k——oo
+00 (u + 1%5:—2) (p — 2myeD)2 d¢
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Using Poisson’s summation formula given by Eq. 2.2.4 in §2.2 to evaluate the

summation terms in Eq. B — 4, performing the integrations, and then using3®
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Here we have reduced the triple infinite series to expressions involving double infinite
series. In a similar fashion, we can obtain the following triple summation formulas:
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- f: (2k - 1) 222 shyfu + F55" (ep — lin)
COs - —
hpzep k=1 2z.p \/‘U,+ !2k—1!31r7 Ch\/u+ !2k4_x1!2."2 YeD
' eD
T3 .
N sh\/ ut B+ o= T (4. ~ lin ) }
e

gt hD \/ u+ nﬂ,.-n + lzk 1)2,,.2 ch u+ n’:, 2 + (2k4m1)2,r:y b
(B -8)

and

+co +co <+co

k=—co m=-—-0c0 n=-—o00

27 [Z cos (2n — 1) Z2D N cos (2k - 1) TZp

zephp

sh\/ + (2n—1)21r2 + (2k 1)2 =(yeD — lipl)

2 3n3 2k—1)3n3 2n—1)372 2k—1)3n3
\/u+(n4hl§), +1 4ac)1r ch ""’(n‘thf),1r +1 4231; YeD

(B —-9)

Egqs. B—6 - B — 9 can be used to derive all expressions given in Table 3 of

Appendix A.
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APPENDIX C

SHORT TIME APPROXIMATIONS
RECTANGULAR RESERVOIRS

In §2.7 we outline a procedure to obtain the short time approximations of the
solutions that describe the pressure distribution in bounded reservoirs. Here we
present an alternate approach that can be used to derive the short time approx-
imations of the solutions for rectangular reservoirs. This approach involves first
replacing the ratios of hyperbolic functions in the solution by their short time ap-
proximations and then using the standart procedures to find a short approximation
of the resulting form of the solution. In the following, we first derive the short
time approximations for the ratios of hyperbolic functions appearing in the solu-
tions given in Table 3 of Appendix A. We then consider the solution for a vertically
fractured well in a rectangular drainage area to demonstrate the procedure to ob-
tain the short time approximations of the solutions for wells in rectangular drainage

areas.

1. Short Time Approximations for the Ratios of Hyperbolic Functions

In order to obtain a short time approximation, we first express the ratios of hyper-
bolic functions in terms of the exponential function and then evaluate the resulting

expression as s — oo (or u = sf(s) — oo0). Consider first

lim chy/u[yep — (Yp + Ywp)] + chy/u (yep — |yp — ywp|) —
s — 00 2/ush\/uyep

lim 1 e—ﬁlyp—yupl +e—\/5(yn+ywp)
§ — 00 | 2¢/u [1 — e~2Vuven)|
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+e“\/;(2yeb-|yb_wa|) + e—\/!:[2yep—(yv+ymv)]:| }

(C-1)
If we assume that
lim
exp (—2v/uy.p) =0, (C-2)
§ — 00
then Eq. C — 1 can be written as
lim | chy/u[yep = (b +Yup)] + chv/u (yep = lyp —ywp|) | _
s — 00 2y/ush\/uye.p
1
= ) ~Vulyvp~vup| —u(yp+ywp) _
Zﬁ{e +e (C—3)

+ e—ﬁ(zyeb—‘yb"ywbl) + e—\/!:[2yep—(yp+ywv)] } .

Similarly, assuming that the condition given by Eq. C — 2 holds, we can write

lim {chﬁ [yeD — (yp + YuwD)] — ¢hv/u (yep — [yD — Yub|) } _

2y/ush\/uy.p

1
— —\/;I!ID"!IWDI — —\/;(yb'f'ywb) _
2vu {e ¢ (€-4)

+ e—\/;(2yev—|yp-ywpl) - e-ﬁ[ZyeD—(yD+wa)] } ,

and

lim | shy/u|yep — (yp + YwD)] + 8h/u (yep — |yp — Yub|) _
§ — 00 24/ush+\/uyep
1

-Vu|lyp—yuwn| ~Vu(yp+ywp)
2\/6 {e + €

— e~ Vu(2vep—lyp-yuwp|) _ e—\/i[Zyep—(yp-f-ywv)]}.
If we also assume that the following conditions hold

exp [V (¥p + yup)] = 0,

exp{—\/i (2yep — |yp — waI)} =~ 0,



and

eXP{—\/ElzyeD - (yp + wa)]} ~ 0, (C - 8)

then letting HF denote the ratios of the hyperbolic functions on the left hand sides
of Eqs. C — 4, C — 5 and C — 6, we can write

8§ — OO

lim {HF} 2\/_exp( \/ﬂ|yp——wa|). (C—-9)

Eq. C — 9 can be used to replace the ratios of hyperbolic functions in the solutions

given in Table 3 of Appendix A when s is large (small times).

I1. Vertically Fractured Well Consider the solution given by Eq. 2.3.4 in §2.3

for a vertically fractured well in a closed rectangular reservoir:

ﬁD (xD,yD) — ™ [Ch\/'l—l' (yeD - lyD - wal) + Ch\/l_l[yeD - (yD + wa)]

ZT.DS Vu sh /uyep

2z 2.1 1 z T

D . D

4 = E —sin k7 cos kr——=cos km
m k=1 k ZeD ZeD Z¢.p

chy/u+ £ (yeD — lyp — Yupl) + chy/u+ £ [yeD —(yp + Ywb)]
\/u-i— k°n sh\/ +—r-yeD

Using Eq. C —9 and substituting sw for u as suggested by Eq. 2.7.1 as s — oo, we

(€ - 10)

can write the following approximation for Eq. C — 10:

lim STep _
s_)oo{ o pp} 2\/—exp( vVsw|yp — ywp|)

2.'123 Z

D Tp
coskm
ZeD TeD

(C —11)

1 k2n2
T &P sw + oD |y — Ywp|
m
24/sw + e ¢
We can now follow the standart procedures to obtain an approximation for the right
hand side of Eq. C — 11 as s — oco. If we let sw denote the Laplace transform

variable with respect to £ and £ denote the Laplace transform operator, then taking
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the inverse Laplace transform of the right hand side of Eq. C' — 11 with respect to

sw, we can write

lim STep _ -7 1 exo | — (yD - wa)2
s— oo | 2nm Pp = 2/ ¢ P 4¢

2Tep e 1 1 z z
1+ eD z —k—: sin k7 wD D
k=1

cos km cos km
T

ZeD ZeD ZeD
(£}
exp | — .
ZeD

Since the right hand side of Eq. C — 11 is to be evaluated as s — oo, the right

(C -12)

hand side of Eq. C — 12 should be evaluated as £ — 0. One can evaluate the
function inside curly braces on the right hand side of Eq. C — 12 for small values
of &; however, if we recognize that the bracketed term on the right hand side of Eq.
C — 12 is the Function X(z) given in Table 2 — b of Ref. 3 then its approximation
for small values of £ can be found in Table 3 of Ref. 3. Therefore, using Table 3 of
Ref. 3, we can write Eq. C — 12 as

lim })szep_ | _ ,) Bzep (veD — yup)?
s—»oo{ 2m pD}-E{SﬁEeXP[_ 4¢ }}’ (€ —13)

2 for |zp — zwpl| <1,

where

B=1<1 for |zp — zuwp| =1, (C —14)

0 for |zp — zuwp| > 1.
Evaluating the Laplace transform of the function inside curly braces on the right
hand side of Eq. C — 13 with respect to £ and simplifying, we obtain the following

expression:

lim ]
D = —_ — . C-—-15
s 0o?P ™ Tay/am P (~VeUluD ~vup)) (€~ 15)
Evaluating the Laplace inversion of Eq. C — 15 with respect to s, we finally obtain

the following short time approximation for the vertically fractured well solution:

7o = 2{ ViibTues |- t2—teo)

4tD/w (0_16)

T lyp — ywp| erfc —-——-—-——lyD—yWD| .
2\,/E v 2\/tD/w
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Not unexpectedly, Eq. C — 16 is identical to the short time approximation given by
Eq. 2.7.12 in §2.7.



APPENDIX D

HORIZONTAL WELL PERFORMANCE
SUBJECT TO BOTTOM WATER DRIVE

Here we present a brief discussion of the long term performance of horizon-
tal wells producing under edge water drive conditions. This appendix is intended
merely as a supplement to the discussion presented in Chapter IV regarding the dis-
tinct flow characteristics of bottom water drive and edge water drive mechanisms
and not to discuss in detail the performance of horizontal wells under edge water
drive conditions.

The word steady state is generally used in well testing literature to describe
the long time flow behavior of wells located in reservoirs surrounded by constant
pressure boundaries in the lateral extent. Geologically, constant pressure boundaries
in the lateral extent of the reservoir may develop as a result of an adjacent aquifer
which is large enough to maintain the pressure at the water-oil contact (reservoir
boundary) at its original level without significant loss of its potential. Reservoirs
that are surrounded by a large aquifer in the lateral extent are mostly underlain
by a water table of finite volume. Due to its finite volume, the influence of the
water table on the production mechanism is negligible compared to the influence
of the edge water and therefore the water-oil interface at the bottom of the oil pay
can be idealized as an impermeable boundary. As production continues, however,
because of the pressure gradients developing at the water-oil boundary below the
oil pay, the bottom water tends to advance into the oil zone and this places severe
restrictions on the maximum allowable production rates (critical rate) to guarantee

water-free oil production. If the well is produced at or under the critical rate, then
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it can be expected that the bottom water would rise to the point where the pressure
gradients are balanced by the gravitational gradient and remain stable at this point.

In light of the physical view of the system described above, here we will derive
expressions that describe the long term (steady state) flow behavior of horizontal
wells operating under edge water drive conditions. The transient flow solution for
the system considered here can be found in Ref. 37. Approximate steady state
solutions for long horizontal wells have been extensively used in the literature (see
for example Refs. 58, and 71). Here we first derive a general steady state solution for
a point source well subject to edge water drive; then by appropriate integration as
described in Chapter II and Ref. 3, we obtain the solution for a horizontal well. This
solution does not involve the assumption used in the literature that the horizontal
well length is long. The point source solution derived here can also be used to obtain
solutions for other well configurations. We also derive an approximate solution for
long horizontal wells. This solution has not been reported in the literature and is
used in Chapter IV to derive conclusions on the flow characteristics of horizontal
wells producing under edge water drive conditions.

The maximum allowable production rates (critical rates) have been investi-
gated in Refs. 62, 63, and 64. For completeness, here we present a summary of
the approximate procedure to determine critical rates suggested by Muskat and

62

Wyckoff®®> and applied to horizontal wells by Chaperon Discussion of critical

rates is outside the scope of this appendix.

1. Steady State Solutions Consider a point source in a reservoir that extends to
infinity in £ and y directions and is bounded by impermeable boundaries at z = 0
and h. Following the lines suggested in Ref. 3, the source functions that are used

to construct the solution are given by

1 [ (z—-= )2-
Sz (z,t) = —— ——_— ], -
(=.2) 2,/mngt P I 4nzt ] (D-1)
r b
1 (¥ — Yu)®
Sy (y, t) - 2\/W exp 4nyt b) (D 2)
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and

| b

5. (21) = [1 Lo Zexp( n2n? 77z )cosn?rf}';ﬂ cosmr%} , (D - 3)

where n;,1n,, and n, are given by

k;
17

n; = , Jj==z, vy, or z. (D —4)

Assuming that the flux distribution is uniform in time, the pressure distribution in

the reservoir is given by>

~ ot
Ap = ¢q / Sz (z,7) Sy (y,7) Sz (2,7) dr. (D - 5)

Ct
Here § is the withdrawal rate from a point source. Note that if we assume n =7, =

1y, then we can write

Ap= (I + 1) (D —6)

where

t 6 7'2
= | —— —— ) dr, _
5 /(; 4mhnTdes eXp ( 4177') T (D 7

and

t G i 2,2 2
_ q _nintn,r v 2y z _
I = /; I ;exp ( 2 4771_) coS T = COS n7rhdr. (D — 8)

In Eqs. D — 7 and D — 8, r is the radial distance defined by

rz\/(x—zw)2+(y—yw)2. (D-9)

We can recognize the function I; given by Eq. D — 7 as the line source solution for
a vertical well in an infinite reservoir (see for example Ref. 3). If we let Ap; denote
the line source solution, then we can write the point source solution in a laterally
infinite reservoir, Ap, as

Ap= Ap + I. (D - 10)

The Laplace transform of Eq. D — 10 is given by

Ap=12Ap + I, (D —11)
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where
—_— g
=—9 K, (r/57m), D-12
Ap 2nhndcs 0 (r s/n) ( )
and
— g = Zw z r n2n2n,
I, = Thnders ; cos i —= cos nszO —\/_ﬁ s+ e . (D —13)

The influence of the constant pressure boundary located at r = r, can be incorpo-
rated by the procedure described in §2.2 of this work and the resulting expression
is given by (see Eq. 2.2.4)

A7 = B+ T (D - 14)

where the subscript b refers to the bounded system solution and Ap;, and I are

given by

R o

-~ (> o]

Zw z
COS T — COS NI —

q

7rh17q5cf_snz=:1 h h

(i (2 m) b (e =) Ko (g >}
0 - .

Iy (—'\/#-‘,; s+23%;—"l>

VAN
(D — 16)
The long time approximation of the solution given by Eq. D — 15 can be obtained

following the lines suggested by Ref. 16 for a line source well in a bounded reservoir

and is given by the following well-known expression:

i, (D -17)

App =5 oI

The long time approximation of the function I is obtained by assuming that s is

small enough that s + n%x2n,/h? ~ n?x2%n, /h? in Eq. D — 16 and then taking the
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inverse Laplace transform of Eq. D-16. This procedure yields
~ ©o z 2z
I = flﬁ% Z cos nw-hl'- cos n -

) )

h
Therefore, the steady state pressure behavior of a point source well producing under

(D —18)

edge water drive conditions is described by

h

Ko (—E-\/;r>— \2_(%:—’\/5,,—7)\/- }

To obtain the steady state solution for a horizontal line source well producing under

Ap = %’;{lnr—: +2 Zcosnvri"- cosnwi—

(D - 19)

edge water drive conditions, we integrate the right hand side of Eq. D — 19 from
—Lp/2 to Ly /2 with respect to z,, where L, is the length of the horizontal well.

The result is given by

pp=Inr.p+o (z:D,yD) +14 Z COS N2 COS NN 2y D
+1 L=t (D — 20)
/* [Ko (nrLpip) — Ii (nmLpfp) Ko (nmLprep) do
-1 Iljl(mrLDreD)
where
2wkh
pD = Ap, (D —21)
7
z
Zp = Z, (D - 22)
Ly,
Lp = —, —
D=2 (D —23)
. 2/ E-) (v w)’
™D = \/ Ln ’ (D - 24)
and
2 2 2
TeD = _i.e_j.-.&_ (D — 25)



The function o (zp,yp) in Eq. D — 20 is given by

o(zp,yp) = 0.25{(3:13 —1)In [(xD -1+ y%]

2
—(zp +1)In [(zD +1)% + yD] - 2yp arctg———-——y—l—j-——— . (D — 26)
zh +vp -1

I1. Steady State Solution for Long Horizontal Wells We consider a long

horizontal well located at some elevation z, between the impermeable bottom
(z = 0) and top (2 = h) boundaries of the reservoir. The well is assumed to
be parallel to the constant pressure boundaries located at ¥y = 0 and 2y,. Using the

source function approach of Ref. 3, the source functions in z,y and z directions are

given by
Ss (z,t) = 0.5 [erth/2;\/E%z—- Zu) | erglnl2 \/(_- )} ; (D — 27)
= yl i exp ( it Zy:yt) sinnm g;e sinnr 2 ;yfw , (D — 28)
and
S, (2,t) = [1+22exp< n7rnz )cosnw%cosnwz]. (D —29)

Note that in Eq. D — 28, y is the distance measured from the center of the well.

The pressure distribution in the reservoir is given by>

i [t
Ap = ¢Ct/ Sz(z,7)Sy(y,7)S:(2,7) dr. (D — 30)

Note that, when the influence of the constant pressure boundaries at y = 0 and 2y,
is established, the source function S, =~ O [from Table 3 of Ref. 3, the time for S,
to be negligible is found as t < 20y2Z/ (wzny)]. This indicates that the upper limit
of the integral in the right hand side of Eq. D — 30 can be replaced by the time for
the onset of steady flow period. It is also clear that the conditions established in

the reservoir prior to steady state are preserved during the steady state flow period.

279



Here we will assume that the horizontal well is long so that the influence of the
constant pressure boundaries become dominant prior to the start of flow across the
tips of the well. When the flow across the tips of the well is negligible, then we can
replace the source function S, by its short time approximation given by
B
2

Sz (z,t) = 5 (D - 31)

where
2 forlz — zy| < Ly /2,

B =11 for|t— z,| = Ly /2, (D — 32)
0 for|z — zy| > Ln/2.

Therefore, using the source functions S;, S, and S, given by Eqs. D — 31, D — 28
and D — 29, we can write Eq. D — 30 as

Ap=1I+1> (D - 33)
where
B ' ( nzrznyf) : w . Y+ Yu
Ij = —="— exp | — sinnw sin nmw dr, D — 34
YT 2y Jo nzz:l P 4y? 2y, e ( )
and

I, = 9% Z exp (__ﬁig_yf> sin nr 22 sin nr ¥ + Y
gechye Jo | 4y, 2¥. 2y.

k27r2,7z 7r—z—cs — 1 dr.
exp cosn n 0 n7rh

Let us first consider the long time approximation of the function I;. The Laplace

transform of the function I is given by

2 sinnm ¥ sin nyitde
4p Z 2ye (D — 36)
" beihyes = 5+ 2

If we assume that s becomes small so that s + n?n2n, / (4y2) ~ n?n2n,/ (4y2?) and
evaluate the inverse Laplace transform of Eq. D — 36, we obtain the following long

time approximation:

~ [°] H Yw & ytyw
Zqﬂye smnnw sinnm

I = >, 20 20 (D —37)

2 2
e hm?n, = n
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If we also note that®8

sinkzsink
S HnkEIkY )2, o< el <yl < 7, (D - 38)
k=1

then we can write

2kyh (ve — % — %) Yo, for y 20,
I]_ - . + (D - 39)
3kyh (ve — %) ye» for y<0.
The Laplace transform of the function I; (Eq. D — 35) is given by
I, = ¢c:1£ye cos nn% cos nwih——

D — 40
sin k7rlw— sin kﬂ'u-“'- ( )

> <
k"’" Ny 2‘"’ ﬂ} ’

n=1 St 4y3 + =2

As in Eq. D—36, if we assume that s becomes small enough so that s+kZn2n,,/ (4y§)
& kzvrzny / (4y3), then the inverse Laplace transform of Eq. D — 40 yields the

following expression for large values of time:

448y z Zw
L = m Z cos nr - cos nw—; I, (D — 41)
where +
o s .
sin kw-g;"; sin kwyyy%ﬂ
IS - Z > 4n3y3n, (D - 42)
k=1 k? + h’ny
Noting that
sin kr 22 sin kn ¥ Y _ 0.5 [cos kr =L — cos lc7r‘1—ji---2—gti , (D — 43)
2y, 2y. 2y. 2y,
and using3®
coskz n ch a(m — ) 1
= ~—, [0<z<2n], D — 44
k24+a2 2a shar 2a2 [0< =< 21] ( )

k=1

we can write the function I3 as

13=8—”h—,/g£
nYe
Ty nr (29e — [y]) — chBE, /2= [2y, — (y+2yw)] (D — 45)
sh2Z, [ £2y,
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By a similar procedure to that outlined in Appendix C, if we assume that

exp (_%1 /%2%) ~ 0, (D — 46)
v
then Eq. D — 45 yields
rh [n nt [n,
I = Zlex (——— —= )
3 8n7. ﬂz{ P R\, |yl

+ exp {—%:—r -:7;5 (y+2yw)] (D — 47)
v

—exp [“n_}:r\/%(‘;ye _ lyl)} — exp [—%7—5\/%(4% —y- 2yw)] }

Therefore, the function I (Eq. D — 41) can be written as

~ oo Z 2
qap Z cosnwy cos nw S

 28eum /TyTs n

{exp (_g’:_r \/ZZZIyO + exp [—%\/—%(y + 2yw)] (D — 48)
exp [—-’fhﬁ\/%(we - Iyl)] — exp [—%\/—%(41/3 -y- 2yw)} }

If we consider the case where the well is located midway between the constant

I

pressure boundaries at y = 0 and 2y, (yy = ¥.), then from Eqs. D — 33, D — 39

and D — 48, we can write

quB Guf <= cosnmZ cosnwie
Ap=_—(ve—y) + a :
2kyh 27\/kyk n

Z n=1

{exp (—n—’:r Z—:ly|> +exp [—%\/%(Zye + y)] (D — 49)
— exp [—n—,:r z—: (4ye — y)] ~ exp [—%\/% (2ye — y)] }

If we further assume that

€xXp [—ﬁ’;v _:7;_2_ (Zye + y):l & 0: (D - 50)
Yy




exp [—ﬂ‘ /’—75 (4ye — y)] =~ 0, (D — 51)
h 'V ny
nw =z
exp [—T‘ /2— (2ye — y)] ~ 0, (D — 52)
Ny
then Eq. D — 49 can be written as
T
P =~ (ve0 — |yp])
oo D — 53)
B COS N2, p COSNAZD (
—nnL .
+2LD:4__:1 > exp (—n7Lplyp|)

In Eq. D — 53, pp, zp and Lp are defined by Egs. D — 21 - D — 23 (with k = ky
and ¢ = §L,) and yp is defined by

2y
_ ) D—
Yp = _Lh ( 54)

Note that, in physical terms, the assumptions stated by Eqs. D — 46 and D — 50
— D — 52 are to ensure that the influence of the impermeable boundaries at z = 0
and h is fully established at every point in the reservoir prior to the influence of the
constant pressure boundaries at y = 0 and 2y,.

The following summation formula is given in Ref. 36:

© k
2 : C:S bz _ ~0.5In (1 -2pcosz+p®), [0<z<2mp®<1]. (D-55)
k=1

Using Eq. D — 55 with p = exp (—7Lplyp|), we can write Eq. D — 53 as

T
Pp = (yep ~ lyp|)

- g-g-; In[1—-2exp(—7Lplyp|) cosm|zp — zup| + exp (—27Lp|yp})]
- Sfp In[1~2exp(—rLplyp|) cos 7 (zwp + zp) + exp (—27Lplyp|)] .

(D — 56)
Note that in Eq. D — 56, we cannot have yp = 0 and 2p = 2z,,p at the same time.

If zp # zuwp, then at yp = 0 Eq. D — 56 yields

pp = g{ﬂyeD — _Ijl_l;ln 2 — 2—L}-51n [sin—glzp - zwplsing (2p +ZwD)] }
(D - 57)
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III. Critical Production Rate Here we consider a system where there exists a
finite volume aquifer beneath the oil bearing formation. We assume that the bottom
water does not contribute to the production mechanism. Since the water is of greater
density than the oil, under static conditions, it would remain at the bottom of the
formation and the water-oil interface would be flat. Once the production starts
from the oil zone, due to the dynamical effect of the motion of the oil, the bottom
water would rise into the oil zone and the water-oil interface would resemble a cone
(or a crest in case of horizontal wells). It is reasonable to expect that if there
exists an elevation below the well at which the pressure gradients are balanced by
the differential hydrostatic head, then the bottom water would rise to that point
and remain at dynamic equilibrium with the oil. Therefore, although it does not
contribute to the drive of oil into the well, the movement of the bottom water is
determinant on the maximum allowable production rates to ensure water-free oil
production (critical rate).

The water cresting phenomena and the critical production rate for the case of
production via a horizontal wellbore have been investigated in Refs. 62 and 64.
Here, we briefly discuss the procedure used in Ref. 62 which is an extension of the
approximate theory of Muskat and Wyckoff®® to horizontal wells. We note that
Ref. 62 makes the assumption that the horizontal well extends to infinity in both
directions and uses a solution similar to that given by Eq. D —56. In this appendix,
we derived a solution that can be used for all horizontal well lengths (Eq. D — 20).
Our intent here is to develop the framework in which the solution given by Eq.
D — 20 can be simply inserted to improve the procedure used in Ref. 62 for all
horizontal well lengths.

The condition of static equilibrium as stated by Muskat and Wyckoff®® assumes
that the water initially at pressure p; lying statically beneath the oil zone (z = 0)
will rise to an elevation z and be in static equilibrium with oil if the drop in oil

pressure at this point from its initial level is balanced by the differential hydrostatic
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head. Therefore, the condition of static equilibrium is given by

p; ——p(z,y,z) = (po - pw)gz- (D — 58)

It is also conceivable that beyond the height at which the pressure gradient in the
oil zone is just equal to the opposing differential gravitational force, (po — pu)g,
acting upon the water, no water crest (or cone) will be stable, and that any slight
increase in the height of the water crest above this point will result in flow of water
into the well. From this discussion, the condition of dynamic equilibrium is stated

as
_%p

5, = (Po = Pu)g- (D - 59)

In terms of the dimensionless variables, we can write Eqs. D — 58 and D — 59 as

_ 2nkh?

= o— Pw) G2 D - 60
PD ” (Po — Pw) 92D ( )
and
dpp  2mkh?
= — Pw)g. D —-61
T = o (o= pu)g (D - 1)

According to our discussion above, Eqs. D —60 and D — 61 are mutually satisfied at
zp = z,p Where z.p is the critical crest height. Then combining Eqs. D — 60 and
D - 61, we obtain the implicit equation to be solved for the critical crest height,

Zep, @8

PD
2,p = (_@_22) (D - 62)
zZp=z:p

sz

If we define a dimensionless rate as in Ref. 62 by

= qu
P 27kh? (p, — puw) g’

(D - 63)

then substituting Eq. D — 61 (or D — 60) into Eq. D — 63 at zp = 2,p, we obtain

an expression for the dimensionless critical rate, ¢.p, given by

1 z
4ep = - = (—D) (D — 64)
(émz PD/ ;p=z.p
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To solve Egs. D — 62 and D — 64 for the critical crest height, the pressure
distribution, pp, must be known. Muskat-Wyckoff®® theory of water coning assumes
that the pressure distribution solution for the case where the water-oil interface is
flat (Eq. D —20 or D —56) can be used to represent the pressure distribution in case
of the existence of a water cone (or crest). In addition, since the critical crest height
is the maximum crest height which will be in the vertical plane passing through the
well axis (the plane at yp = 0), we only need to know the pressure distribution,
pp, at yp =0.

Detailed discussion of the water cresting phenomena for horizontal wells is
outside the scope of this work. The discussion presented above is merely intended
to demonstrate the use of the solutions given by Eqs. D—20 and D—56 to determine
the critical production rates along the lines suggested by Muskat and Wyckoff and
extended to horizontal wells by Ref. 62.
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APPENDIX E

PARTIALLY PENETRATING VERTICAL WELL
AND POINT SOURCE WELL
SUBJECT TO BOTTOM WATER DRIVE

Here we derive the solutions for pressure distribution due to production from a
partially penetrating vertical well and a point source well subject to bottom water
drive. We also obtain the steady state solutions for both well completions. These
solutions can be used in the manner discussed in Chapter IV to determine the
productivities of partially penetrating vertical wells and point source wells under

bottom water drive conditions.

1. Partially Penetrating Vertical Well The solution for a partially penetrating

vertical well in a bounded reservoir subject to bottom water drive is given in Ref.
72. Here we present the solution for a laterally infinite system. The solution for
this system is obtained in the same fashion as described in §4.1 I for a horizontal
well. The source functions in the z and y directions are infinite plane sources in an

infinite reservoir and are given by>

S, (z,t) = 1 _(z—z)’ (E - 1)
2\mH =3 TNl P 4n,t ’
and _ .
— 1 (y — yw)
Sy(y,t) = N exp an,t . (E —2)

The source function in the z direction is an infinite slab source in an infinite slab

reservoir and, for our problem, is given by>

8 1 (2n — 1)® 72t
S:(20) =2 2 Grg) P [“ e
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sin(2n — 1)—-5— sin(2n — 1)-2—£l-— sin(2n — 1) (E —3)

h 2h

oy
a-!N

where h,, is the height of the penetrated interval of the oil pay. In Eqs. F — 1
- E -3, n; = kjt/(¢c:p) with j = z, y, or 2. The pressure distribution in the
reservoir is then obtained by using the following relation:

~

Ap = —

™ / Sz (z,7)Sy(y,7)S:(2,7)dr, (E —4)

where we assumed §(t) = § = constant. If we assume that the flux distribution
along the well length is uniform, then § is related to the total production rate from
the well length, ¢, by ¢(t) = ¢/hyw. Using Eqs. E — 1 - E — 4, the solution for

dimensionless pressure distribution in the reservoir is obtained to be

oo

4 to $2D + y% 1 2 T
-2 _IpTY% S 2n — 1)% 72
PD = Tb 0 exp ( 47 nz=:1 (2n—1) exp | = (2n —1)"m 4h2

d
sin (2n — 1) %zp sin (2n — 1) ngD sin (2n — 1) -Zb% (E —5)

In Eq. E — 5, the dimensionless variables are defined by

2 kok,hA
= IVERyAP (E - 6)
qu
kt
‘o ¢Ct1“'2 (E B 7)

rT—z, |k
Ip = e \ITC‘;, (E —8)
_Y~Yu [k _
yD'— rw ky, (E g)

hp = —¢\/— (E —11)

and

b=hy/h. (E - 12)
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In these definitions, k is the equivalent horizontal permeability for an isotropic

system and is qiven by k = \/kzk,.
The short time approximation of Eq. E — 5 is given by”>

~_lm(-p (E - 13)
Pp = =5 4p )’
where
r3 =25 + y5 (E - 14)

Eq. F — 14 is applicable when
tp < 63/20 (E — 15)

where 6p is the dimensionless distance between the point at which the pressure
is measured and the top or the bottom of the wellbore opening whichever is the
nearest.

The Laplace transform of Eq. F — 5 is given by

- 4 sin{2n — 1) Zzpsin{2n — 1) £2,p sin -1
pp = 3 SnlnoDFapen(n ol gzensinCn - Niby () o),

mhs (2n —1)
(E —16)
where )
(2n — 1) n2
= (E - 17)

If we evaluate the inverse Laplace transform of Eq. E — 16 subject to the condition

that s +a = a (s — 0), then we obtain the following long time solution in real time

domain:
4 ~sin(2n—1)Zzpsin(2n — 1) Z2z,psin (2n — 1) Tb
PP =T Z (2n —1)
Ko [(277, - 1) '2—’1'—7'0:' (E — 18)
when
tp > 20 (hp/7)>. (E — 19)

The solution given by Eq. E — 18 is expressed in terms of the flow potential in Ref.
66. An alternate form of this expression to be used for small values of rp can also

be found in Ref. 66 in terms of the flow potential.
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I1. Point Source Well (Single Perforation) Solution for this case can be sim-

ply obtained by evaluating the partially penetrating vertical well solution given by
Eq. E — 5 at the limit as the penetration ratio, b, approaches zero. This procedure

yields the following expression:
tp 32 + 2 houd
D T Yp 2 2 T
= =P __ 7D —(2n—1 _—
= e""( ir )2;:@[ (2n =) 4%}

d
sin (2n — 1) -;Izp sin (2n — 1) %zwp—}. (E - 20)

The short time approximation of Eq. E — 20 is given by

_hp to :C% +y12_-,+(zD—zwD)2h% dr
when
2
tp < min { (2 + 2up)" A3 /20, (E - 22)
- [(2p + zwp) + 2] h2D/20.

The long time approximation is obtained similarly by evaluating Eq. E — 18

at the limit as 5 — 0 and is given by

Pp = Z sin (2n — 1) gzD sin (2n — 1) g'ZwDKo [(Zn - 1) E-}Z:—ETD] (E — 23)

n=1
when

tp > 20 (hp/7)>. (E — 24)
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