Analysis of Decline Curves
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(Houston Meeting, May 1944)

ABSTRACT

SincEe production curtailment for other than
engineering reasons is gradually disappearing,
and more and more wells are now producing at
capacity and showing declining production
rates, it was considered timely to present a brief
review of the development of decline-curve
analysis during the past three or four decades.

Several of the commoner types of decline
curves were discussed in detail and the mathe-
matical relationships between production rate,
time, cumulative production and decline per-
centage for each case were studied.

The well-known loss-ratio method was found
to be an extremely valuable tool for statistical
analysis and extrapolation of various types of
curves. A tentative classification of decline
curves, based on their loss ratios, was suggested.
Some new graphical methods were introduced
to facilitate estimation of the future life and
the future production of producing properties
where curves are plotted on semilogarithmie
paper.

To facilitate graphical extrapolation of
hyperbolic-type decline curves, a series of
decline charts was proposed, which will make
straight-line extrapolation of both rate-time
and rate-cumulative curves possible.

INTRODUCTION

During the period of severe production
curtailment, which is now behind us,
production-decline curves lost most of
their usefulness and popularity in prorated
areas because the production rates of all
wells, except those in the stripper class,
were constant or almost constant.
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While production-decline curves were
thus losing in importance for estimating
reserves, an increasing reservoir conscious-
ness and a better understanding of reservoir
performance developed among petroleum
engineers. This fact, together with intelli-
gent interpretation and use of electric
logs, core-analysis data, bottom-hole pres-
sure behavior and physical characteristics
of reservoir fluids, eliminated a considerable
part of the guesswork in previous volu-
metric methods and put reserve estimates,
based on this method, on a sound scientific
basis. At the same time, a number of
ingenious substitutes were developed for
the regular production-decline curve, which

~ made it possible to obtain an independent

check on volumetric estimates in appraisal
work, even though the production rates
were constant.

With the now steadily increasing demand
for oil to supply the huge requirements
of this global war, proration for reasons
other than prevention of underground
waste is gradually disappearing. More and
more wells are, or will be, producing at
capacity or at their optimum rates, as
determined by sound engineering practice.

With this trend, the character of
producing wells seems to regain, more or
less, its “individuality,” and the old and
familiar decline curve appears to have had
a comeback as a valuable tool in the hands
of the petroleum engineer. It may be
timely, therefore, to retrace the develop-
ment of decline-curve analysis in the past
by presenting a brief chronological review
of bulletins and papers published during
the past three or four decades, which have
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contributed to our present knowledge of
this subject. Such a review will, at the
same time, serve as a good basis for further
analysis of the production-decline curve
and its possibilities in this paper.

DEVELOPMENT OF DECLINE-CURVE
ANALYSIS

The two basic problems in appraisal
work are the determination of a well’s
most probable future life and the estimate
of its future production. Sometimes one
or both problems can be solved by volu-
metric calculations, but sufficient data
are not always available to eliminate all
guesswork. In those cases, the possibility
of extrapolating the trend of some variable
characteristic of such a producing well
may be of considerable help. The simplest
and most readily available variable charac-
teristic of a producing well is its production
rate, and the logical way to find an answer
to the two problems mentioned above, by
extrapolation, is to plot this variable
production rate either against time or
against cumulative production, extending
the curves thus obtained to the economic
limit. The point of intersection of the
extrapolated curve with the economic
limit then indicates the possible future
life or the future oil recovery. The basis
of such an estimate is the assumption
that the future behavior of a well will
be governed by whatever trend or mathe-
matical relationship is apparent in its
past performance. This assumption puts
the extrapolation method on a strictly
empirical basis and it must be realized
that this may make the results sometimes
inferior to the more exact volumetric
methods. ,

The production rate of a capacity well,
plotted against time on coordinate paper,
generally shows a rapid drop in the
beginning, which tends to decrease as time
goes on. Changes in method of production,
loss in efficiency of lifting equipment, shut-
downs for work-over or pulling jobs, usually
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disrupt the continuity of a production-
decline curve, and for mathematical or
statistical treatment some preliminary
smoothing out is often necessary.

The first and most obvious mathematical
approach to a declining production curve
is to assume that the production rate at
any time is a constant fraction of its rate
at a preceding date or, in other words, that
the production rates during equal time
intervals form a geometric series. This also
implies that the production drop over a
given constant interval is a fixed fraction
or percentage of the preceding production
rate. The earliest reference in the literature
of this type of decline was made by Arnold
and Anderson! in 1908. This production
drop, as a fraction, usually expressed in
per cent per month, is called the decline.
A considerable number of the decline
curves encountered in appraisal work
show this decline percentage to be approxi-
mately constant, at least over limited
periods. A decline curve showing this
characteristic is easy to extrapolate, since
the rate-time curve will be a straight line
on semilog paper and the rate-cumulative
curve on coordinate paper.

The literature between 1915 and 1921
shows a considerable amount of research
and study of production curves.?~® Much
information from various sources was
accumulated in the Manual for the Oil
and Gas Industry.” J. O. Lewis and C. N.
Beal, of the Bureau of Mines,® recom-
mended the use of the percentage decline
curve, which is an empirical rate-time
curve, whereby the production rates during
successive units of time are expressed as
percentages of production during the first
unit of time. This makes it possible to
bring individual well or lease data to a
comparable basis. The results can then be
grouped together, either on regular coordi-
nate or log-log paper. From such data
on wells in the same area an empirical
appraisal curve may be constructed to

! References are at the end of the paper.
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show the possible ultimate production as
a function of the initial production rate.
W. W. Cutler,®in 1924, pointed out, after
an intensive
number of oil-field decline curves, that
the assumption of constant percentage
decline and a straight-line relationship
on semilog paper generally gave results
that were too conservative in the final

stage. In his opinion, a better and more -

reliable straight-line relationship could
be obtained on log-log paper, although some
horizontal shifting usually was necessary.
This implied that the decline curves show-
ing such characteristics were of the hyper-
bolic rather than the exponential or
geometric type. He also recommended the
use of the family decline curve, either
“graphically constructed or statistically
determined, which is a representative
average decline curve for a given area
based on a combination of the actual rate-
time data from a number of wells in the
area.

C. S. Larkey,® in 1925, showed how the
method of least squares could be applied
successfully to decline curves belonging to
both the exponential and the hyperbolic
types. He also demonstrated that the
application of this well-known statistical
method makes a strict mathematical
extrapolation of a given decline trend
possible.

H. M. Roeser, in 1925, showed that
equally reliable results can be obtained
when, instead of the rigorous method of
least squares, a somewhat simpler method
of trial and error to determine the neces-
sary constants is followed. He illustrated
his method with examples of both the
exponential and the hyperbolic types of

decline curves. In his paper was also the

first reference to the mathematical relation-
ship between cumulative and time for
hyperbolic type of decline.’

C. E. Van Orstrand,! in 1925, investi-
gated the empirical relationship of produc-
tion curves representing the output of

investigation of a large
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certain minerals by states or nations. Such
a curve will rise from zero value at the
time of first production to a maximum
and then slowly decline, presumably to
zero value. The possibilities of various
mathematical relationships and different
methods of curve fitting are described in
this paper. The best results were obtained
with a curve of the type:

P = AgmeBt

R. H. Johnson and A. L. Bollens,!?
in 1927, introduced a novel statistical
method for extrapolation of oil-well decline
curves. With their so-called “loss-ratio
method,” the production rates are tabu-
lated for equal time intervals, then the
drop in production is listed in a second
column and the ratio of the two, or “loss
ratio,” is listed in a third. A curve to be
investigated with this method usually
shows, after proper smoothing out, either
a constant loss ratio or a constancy in the
differences of successive loss ratios. Some-
times it may be necessary to take these
differences two or three times before
constancy is reached, and often additional
smoothing out of the data is required. This
procedure furnishes an easy and convenient
method for extrapolation. It is only neces-
sary to continue the column with the
constant figures in the same manner and
then work backward to the production-

rate column.

H. N. Marsh,® in 1928, introduced
the rate-cumulative curve plotted on
coordinate paper and pointed out that
this relationship generally appears to be
or approaches a straight line. Although
this is only mathematically exact for
decline curves of the exponential type, as
will be shown later, it was pointed out
in his paper that the errors in estimating
ultimate recovery with this method in
most other cases were generally small or
negligible. A distinct advantage of this
type of curve is its simplicity in appraising
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the effect of different methods of production
control on the same well. :

R. E. Allen,™ in 1931, mentioned four
types of decline and classified them accord-
ing to a simple mathematical relationship.
The decline types were:

1. Arithmetic, or constant decrement
decline.

2. Geometric, constant rate or expo-
nential decline

3. Harmonic, or isothermal decline.

4. Basic, or fractional power decline.

Type 1 is of little practical value for
production-decline curves. Type 2 is
the well-known straight-line relationship
on semilog paper, and type 3 is the special
case of hyperbolic decline where the decline
is proportional to the production rate.
It was not possible to reconcile the equa-
tion given for the type 4 decline, as the
nominator and the denominator were of
the same order, indicating a possible
misprint.

S. J. Pirson,!® in 1935, investigated the
mathematical basis of the loss-ratio method
and arrived at the rate-time relationships
for production-decline curves having a
constant loss ratio, constant first differences
and constant second differences. Those of
the first type appeared to be identical
with the simple exponential or constant
percentage decline curves, which straighten
out on semilog paper; those of the second
type were the hyperbolic type of decline
curves, which can be straightened on
log-log paper and those of the third type
appeared to have such complicated mathe-
matical equations as to be unsuitable for
practical purposes.

" During the period of production curtail-

ment, interest centered upon suitable
curves for reserve estimates that did not
require the usually constant or almost
constant actual rate of production.

H. E. Gross,'® in 1938, showed the
advantages of substituting oil percentage
in gross fluid for the production rate in
the Marsh rate-cumulative curve. This
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method, originated by A. F. van Ever-
dingen in Houston, proved particularly
valuable for prorated Gulf Coast water-
drive production.

For depletion-type or gas-drive-type
pools without water encroachment, how-
ever, a parameter other than oil or water
percentage had to be found to replace
the production rate.

W. W. Cutler and H. R. Johnson,' in
1940, showed how potential tests, taken
periodically on prorated wells (or calcu-
lated from bottom-hole pressure and
productivity-index data) can be used to

" reconstruct or calculate the production-

decline curve, which the well would have
followed if it had been permitted to produce
at capacity.

H. C. Miller,'® of the Bureau of Mines,
introduced in 1942 the pressure-drop
cumulative relationship on log-log paper
and showed how changes in reservoir
performance may be detected by abrupt
changes in the slope of such a curve.

C. H. Rankin,'® in 1943, showed how
the bottom-hole pressure can sometimes
be used to advantage as a substitute for
the rate of production of the rate-cumula-

tive curve on prorated leases. Apparently,

this method applies only in pools where
water drive is absent or negligible and
where productivity indexes are constant.

In the Oklahoma City field, which is
well known as a typical example of gravity
drainage, a plot of fluid level against the
cumulative production has been used
successfully  to estimate the reserves of
wells with constant production rates.

P. J. Jones,? in 1942, suggested for
wells declining at variable rates an approxi-
mation whereby the decline-time relation-
ship follows a straight line on log-log paper.
This corresponds to an equation:

log D = log Do — m log ¢

in which D, designates the initial decline
and m is a positive constant. Integration
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of this relationship will lead to a rate-time
equation of the general form:
Doti=m
P = Poexoo(m-—x)

It may be noted that this relationship
will not straighten out on semilog or
log-log paper, but shows the_interesting
characteristic of straightening out when
the log-log of the production rate is plotted
against the log of the time.

F. K. Beach,? in 1943, showed, with
examples from the Turner Valley field,
Canada, how cumulative-time curves some-
times can be extrapolated as straight lines
in their last stage by plotting the antilog
of the cumulative production against time.
Such a straight-line relationship is mathe-
matically correct only for the case of
harmonic decline, where the decline itself
is proportional to the production rate, as
will be discussed later.

RESERVOIR CHARACTERISTICS
. AND DEcCLINE CURVES

In order to analyze what influence
‘certain reservoir characteristics may have
on the type of decline curves, it was first
assumed that we are dealing with the
idealized case of a reservoir, where water
drive is absent and where the pressure is
proportional to the amount of remaining
oil. It was further assumed that the
productivity indexes of the wells are
constant throughout their life, so that the
production rates are always proportional
to the reservoir pressure.

In such a hypothetical case, the relation-
ship between cumulative oil produced
and pressure would have to be linear and,
consequently, also the relationship between
production rate and cumulative production.

This linear relationship between rate
and cumulative is typical of exponential
or semilog decline, as will be shown later
(Eq. 4), and simple differentiation will
lead to the basic equation for this type of
decline in Eq. 1.

ANALYSIS OF DECLINE CURVES

In most actual pools, however, the
aforementioned idealized conditions do
not occur. Pressures usually are not
proportional to the remaining oil, but seem
to decline at a gradually slower rate as
the amount of remaining oil diminishes.
At the same time the productivity indexes
are generally not constant, but show a
tendency to decline as the reservoir is
being depleted and the gas%il ratios
increase. The combined result of these
two tendencies is a rate-cumulative re-
lationship, which, instead of being a
straight line on coordinate paper, shows
up as a gentle curve, convex toward the
origin.

If the curvature is very pronounced,
the curve can sometimes be represented
by an exponential equation and the rate-
cumulative relationship straightened out
on semilog paper. This type is called
harmonic decline, and its equation is
identical with Eq. 14, derived on page 12.
By differentiation, it can be shown that
in this case the decline percentage is
directly proportional to the production
rate. :

When the curvature of the rate-cumula-
tive relationship is not pronounced enough
to straighten out on semilog paper, it can
usually be represented as a straight line
on log-log paper after some shifting. This
identifies it as a hyperbola and it can be
shown that it will fit Eq. 13 (p. 12) for
the general case of hyperbolic or log-log
decline.

From this general discussion, it is evident
that the hyperbolic type of decline curve
should be the most common and that
harmonic decline is a special case, which
occurs less frequently.

The exponential or semilog decline,
however, although less accurate, is so
much simpler to handle than the other two
that it is still quite popular for quick
appraisals and approximate estimates;
particularly since a large number of decline
curves actually show an apparent constant
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decline over limited intervals. The decline
percentage in such calculations is then
usually taken somewhat lower than the
actually observed value in order to evaluate
the possibility of a smaller decline in the
final stage.

ExPONENTIAL DECLINE

Exponential decline, which is also called
“geometric,” ‘“‘semilog” or “constant
percentage’ decline, is characterized by
the fact that the drop in production rate
per unit of time is proportional to the
production rate.

Statistical Analysis and Extrapolation

The simplest method to recognize
exponential decline by statistical means is
the loss-ratio procedure.!? With this
method the production rates P at equal
time intervals are tabulated in one column,
the production drop per unit of time, AP in
a second column and the ratio of the two
(a = loss ratio) in a third. If this loss
ratio is constant or neatly constant, the
curve can be assumed to be of the expo-
nential type. The mathematical basis for
this will be discussed hereafter.

It will often be found, if time intervals
of one month are used and when the decline
percentage is small, that the general trend
is disturbed considerably by irregularities
in the monthly figures, and in such cases
it is better to take the production rates
further apart. As an example, Table 1
shows the data from a lease in the Cutbank
field, Montana, where the monthly produc-
tion rates are taken at six-month intervals.
Since the loss ratio is defined as the
production rate per unit of time divided
by the first derivative of the rate-time
curve, it is necessary in this case to intro-
duce a factor 6 in the last column to correct
the drop in production rate during the six
months interval back to a monthly basis.
The loss ratios in the fifth column of the
table appear to be approximately constant.
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The average value over the period from
July 1940 to January 1944 is 86.8 and this
value was used to extrapolate the produc-
tion rate to January 1947 in the lower
half of the tabulation. The procedure

TABLE 1.—Loss Ratio on a Lease in the
Cutbank Field, Montana
(TypicAL CASE oF EXPONENTIAL DECLINE)

PL%SS ltn Loss Ratio
Monthly Rrgt eug é?_n (on
Produc- : Monthly
Month | Year tion ing 6 Basis)
Months 3
Rate, P Interval, | g = 6 —=
AP AP
July...... 1040 460
January 1941 431 — 29 ~80.2
July...... 1041 403 —28 —86.4
January 1942 377 —26 —87.0
uly...... 1942 352 —25 —84.5
January 1943 330 —22 ~00.0
uly...... 1943 300 — 21 —88.3
January 1044 288 —21 —~82.3
July...... 1944 269.4 —18.6 —86.8
January 1945 252.0 —~17.4 -~86.8 -
July...... 1045 235.7 —16.3 —86.8
January 1946 220.4 —~15.3 —86.8
uly...... 1046 206.1 —14.3 —86.8
January..| 1047 192.7 —-13.4 —86.8

Average loss ratio July 1940 to January 1944, 86.8.

Decline percentage 8—169(-8) = I.I5 per cent.

Extrapolation until January 1947 by means of
average loss ratio, 86.8.
followed in this extrapolation is self-
explanatory; the same method that was
used to arrive at the loss ratio from the
known production rates in the upper half
of the tabulation is used in reverse to find
the unknown future production rates from
the constant loss-ratio values.

Mathematical Analysis's

Rate-time Relationship.—The rate-time
curve for the case of exponential decline
has a constant loss ratio, as shown in the
preceding section, which leads to the follow-
ing differential equation (see list of symbols
on page 20):

P .
aPjai = ¢ (]

in which ¢ is a positive constant. After
integration of this equation, and after
elimination of the integration-constant by
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setting P = Po for ¢{ = o, the following
rate-time relationship is obtained:

P = Pge-t/s [2]

This expression obviously is of the
exponential type and explains why such a
rate-time curve can be represented as a
straight line on semilog paper.

Rate-cumulative Relationskip.—The ex-
pression for the rate-cumulative curve can

be found by simple integration of the rate- -

time relationship, as follows:

C = [ Pdt = f Poe—t/aar (3]

which, after integration, and after elimina-
tion of the constant by setting C = o
for t = o, leads to:

(Po — P)
oMo =)

C = a(lPy — P) = 10 2] [4]

This simple linear relationship indicates
that the production rate plotted against
the cumulative production should be a
straight line on regular coordinate paper.1?

Monthly Decline Percentage.—The
monthly decline percentage as per defini-
tion can be represented by:

D= —100 dP}{dt

per cent [s]

or, with the use of Eqgs. 1 and 4:

ﬁ)—gﬁ per cent [6]

100
= — = JOO
a

In other words, the decline percentage
can be found directly from the loss-ratio
tabulation (100/86.8 = 1.15 per cent in
the example shown in Table 1) and also
from the slope of the rate-cumulative
curve.

Graphical Extrapolation and Practical
Shortcuts

As pointed out before, the rate-time
curve for exponential decline will show
a straight-line relationship on semilog

paper and can, therefore, be extrapolated.

by continuing the straight line.

ANALYSIS OF DECLINE CURVES

The rate-cumulative curve shows a very
simple linear equation (Eq. 4) and can,
therefore, be represented by a straight-line
relationship on regular coordinate paper.

In addition to these methods, some
practical shortcuts have been developed
recently, which were made possible by the
fact that rate-time curves for exponential
decline are usually plotted on semilog
graph paper.

The gradient of the rate-time curve
on semilog paper is constant and equal

I . Sy e .
to —— Since the decline percentage is a

simple function of a (see Eq. 6), it is
possible to make a calculator for standard
semilog paper by, plotting the constant
drop in production rate per year for a
given decline on a strip of paper or trans-
parent film. This can be used, then, as a
yardstick to read off the decline per-
centage immediately from the production
drop over a one-year interval. By making
the width of the calculator equal to one
year on the horizontal time scale, the
procedure can be simplified even more.
Fig. 1 shows how such a calculator can
be used for the purpose of determining
the monthly decline percentage.

The relationship between cumulative
production C and production drop (Po — P)
in Eq. 4 is a simple multiplication. Since
we are already working on paper with a
vertical logarithmic scale, it is easy to see
that we can apply the slide-rule principle
by using the paper on which the curve is
plotted as one scale and a graduated strip
with a similar logarithmic division as the

other scale. By plotting the value of E%? on

this strip for various values of the decline
percentage D, it is possible to carry the
multiplication out on the same graph paper
used for the curves, and read the answer
on its vertical log scale. Figs. 1 and 2 show
how such a calculator, designed for deter-
mination of both decline percentage and
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Fi6. 1.—USE OF CALCULATOR TO DETERMINE DECLINE PERCENTAGE.
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future production, is used. The monthly
decline percentage was read off from scale
BC in Fig. 1 as 4 per cent and the constant

ARPS 237
matched with this production rate of
190 bbl. per month and the future recovery
is read off opposite arrow E as 4750 barrels.
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Frc. 3.*—GRAPHICAL EXTRAPOLATION OF HYPERBOLIC RATE-TIME CURVE ON SEMILOG PAPER.

I
Type of curve: P = P, (1 -+ b t) b

1. Smooth out the givén curve 4B,

Qo

2. Draw a vertical line CD midway between A and B.
3. Project 4 and B horizontally on this middle line and find points C and D.

4. Draw CG and DF parallel to EB.

5. Project G back horizontally on the curve and find point H.
6. Draw GX parallel to HF and find the unknown extrapolated point X at the intersection

with the horizontal line through F.

for 4 per cent decline on scale 4D was used
to find the future production in Fig. 2.
The economic limit was assumed to be
150 bbl. per month and the production drop
from January 1944 until this economic
limit will be reached is, therefore, 340 —
150 = 190 bbl. per month. The constant
for 4 per cent decline on scale AD is

HypeErBOLIC DECLINE

Statistical Analysis and Extrapolation

The hyperbolic or “log-log” type of
decline, which occurs most frequently, can
be recognized by the fact that the loss
ratios show an arithmetic series and that,
therefore, the first differences of the loss
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ratios are constant or nearly constant.1?.18
As an example, Table 2 shows the loss ratio
for production data from a lease producing

from the Arbuckle lime in Kansas. This

lease had been producing under conditions
of capacity production since the completion
of drilling and shows a rate-time curve on
semilog paper, curving steadily to the
right (Fig. 3). To eliminate irregularities,
it was necessary to smooth out the original
data (see curve JB on Fig. 3). The produc-
tion rates listed in Table 2 are identical
with the circles on the curve in Fig. 3.

TaBLE 2.—Loss Ratio for Lease Producing
from Arbuckle Lime tn Kansas
(Tyeicar Case or HypeErBoLIC DECLINE)

Monthlv! L I First De-
onthiy; Loss In rivative
Produc- | Produc- Rﬁﬁgson of Loss
tion |tion Rate Monthly] Ratio,
Month| Year | Rate, P | during 6| "Basis =
(Curve | Months 5 (6P
JB, |Intervalla = 6-—5 A{ﬁ}
Fig. 3) AP AP —
Jan. 1937 | 28,200
July..| 1037 | 15,680 | —12,520] — 7.32
Jan...| 1038 9,700 | — 5,080 — 9.72] —0.37
July..} 1038 6,635 | — 3,005 —12.97] —0.54
Jan...| 1030 | 4,775 | — 1,860, —15.39| —0.40
July 1939 3,628 | — 1,147 —18.96/ —0.50
Jan 1940 2,850 | — 7781 —21.96f —o0.50
July 1040 2,300 | — 550, —25.08/ —o0.52
Jan 1941 1,905 | — 395 —28.95] —0.64
July 1941 1,610 | — 205 —32.76| —0.63
Jan. 1042 1,365 | — 245| —34.43] —o0.28
July 1042 1,177 | — 188| —36.97| —o0.42
Jan 1043 1,027 | — 150 —41.15/ —0.70
July 1043 004 | — 123} —44.20, —0.508
Jan. 1944 802z | — 102f —47.25 —0.508
July 1944 717 | - 85/ —350.30] —o0.508
Jan...| 1045 644 | — 73| —53.35] —0.508
July 1045 582 | — 62{ —56.40{ —o0.508
Jan...| 1046 529 | — 53| —59.45] —o0.508
July 1046 483 | — 46{ —62.50, —o0.508
Jan. 1047 442 | — 41| —65.55| —0.508
July 1047 406 | — 36| —68.60] —o0.508
Jan...l 1948 375 | — 31, —71.65 —o0.508
July. .| 1048 347 | — 28! —74.70 ——0.598

First derivative of loss ratios approximately con-~
stant; average ¥ = —0.508.

Extrapolatlon until July 1948 by means of this
average b value of —0.508

As in the case of exponential decline, the
production rates were posted at six-month
intervals to eliminate monthly fluctuations
and to embrace the general trend of the
curve without too much work. Since the
loss ratio a is defined as the production
rate divided by the first derivative of the

rate-time curvé, a factor 6 was introduced
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to find the proper values. The loss ratios
thus obtained indicated a fairly uniform
arithmetic series and consequently the
differences between successive loss-ratio
values b are reasonably constant. The
average is 0.508.

These differences represent the deriva-
tives of the loss ratios with respect to
time, and since six-month intervals are
used, a correction factor of 1§ was intro-
duced to find the proper values of 5. The
average value for b was used to extrapolate
the curve to July 1948 by reversing the
process used in the upper part of the
tabulation. From these data, it is evident
that the lease can be expected to reach
its economic limit of 400 bbl. per month
during the second half of 1947.

As will be shown later, the mathematical
equations of the rate-time and rate-
cumulative curves for hyperbolic decline
are essentially of the same type and it is
therefore also possible to use the loss-ratio
method for extrapolation of rate-cumula-
tive data. The only difference from the
procedure in Table 2 is that the time
column is replaced by cumulative produc-
tion figures, and that the intervals therefore
may not be constant. The loss ratio in that

~ case is the production rate at a given point

divided by the ratio of the drop in produc-
tion rate to the total production during
the preceding interval. In a similar way,
the first derivative should be determined
as the increase in loss ratio over the given
interval divided by the total production
during the same interval. In hyperbolic
decline, the first derivative should be
approximately constant. To extrapolate
the data and find the ultimate recovery
for a given economic limit, the average
first derivative can be used to extrapolate
the tabulation in a manner similar to
that of Table 2.

Mathematical Analysis

1. Rate-time Relationship.—When the
first differences of the loss ratios are



J. J. ARPS

approximately constant, as in Table 2, the
following differential equation can be set

up:
iﬁé@):-b (7]

dat

in which b is a positive constant. Integra-
tion of Eq. 7 leads to:

P

in which a¢ is a positive constant, represent-
ing the loss ratio for { = o. Eq. 8 can be
simplified to:

Pt
.P——ao—{*'bt {9}

This second differential equation can be
integrated and the constants eliminated
by setting P = P, for ¢ = o, which results
in the rate-time relationship for hyperbolic

decline:
-~1/b
P = Po (I + E)
: v ao

This expression, which is obviously of
the hyperbolic type, explains why such a
curve can be straightened on log-log paper.
It also shows that horizontal shifting to

[10]

. . ao .
the right over a distance -59 is necessary

for such straightening. The slope of the
straight line on log-log paper thus obtained

. 1
will be — b

Rate-cumulative. Relationship.—To find
the rate-cumulative relationship for this
case, the above rate-time curve can be
integrated as was done for the exponential
decline curve:

bt -1/b
C=[Pdt=ng(1+E~ di [11]
(1]

After carrying out the integration for
the case where b is not equal to unity, and
keeping in mind that the cumulative
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production C = o at time ¢ = o, the follow-
ing relationship is obtained:

o (o 2

or after eliminating ¢ with the rate-time
relationship in Eq. 1o:

C = ﬂ@ (Pol-t — P1-b)

- [13]

In the special case, where b = 1, the
integration results in the expression for
harmonic decline as can be easily verified:

C = aoPo (log Py — log P) [14]

The rate-cumulative relationship in Eq. 13
can apparently also be straightened on
log-log paper after horizontal shifting
on the cumulative scale, while the relation-
ship in Eq. 14 can be represented by a
straight line on semilog paper with the
production rate plotted on the log scale.

Monthly Decline Percentage.—~From Eq.
8, it can be found that the monthly decline
for this case is:

dP/dt

100
D= —100
P

=ao+bt

per cent [15]

After elimination of ¢ with Eq. 10, it is
found that:

100

D= aoP o’

Pt per cent [16]

or, in other words, that in the case of
hyperbolic decline, the decline percéentage
is proportional to the power b of the
production rate. This is a very interesting
result. It means that if a hyperbolic decline
curve has a first difference in the loss ratio
of say —o.5, the decline percentage is
proportional to the square root of the
production rate. This means that if such
a well has a 10 per cent decline when the
production rate was 10,000 bbl. per month,
it will slow down to 1 per cent by the time
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the production rate has dropped to 1oo bbl.
per month.

Three-point Rule—The hyperbolic de-
cline curve shows another interesting
feature, which can sometimes be used to
advantage. It can be expressed as: “For
any two points on a hyperbolic rate-time
curve, of which the production rates are in
a given ratio, the point midway between
will have a production rate which is a
fixed number of times the rate of either
the first or last point, regardless of where
the first two points are chosen.”

In other words, if on a curve with an
exponent b = 0.5, the first point has a
production rate of 24 bbl. and the last
point a rate of 4 bbl,, the point midway
between will have a value of 1.3744 bbl,,
regardless of where the first set of points
is selected on the curve and regardless of
the time interval. The validity of this
statement can be shown as follows:

According to Eq. 10, the production
rates at time { — o, ¢ and ¢ + v will be:

Pi = P {1 +£-o(t - v)}“l"’

b\
P = Po (I + mt)
ag
and

b -1/
PH.”:PO{I +_’ (t+‘l))}
ao "

By adding together the right sides of
Eqs. 17 and 19, the time interval v is
eliminated and an expression is obtained
that is twice the value of the right side of
Eq. 18. Therefore:

ZP{." = Pt—v’b + P¢+v.b [20}

If the rate at the first point is »# times
the rate at the last point, the value of the
rate at the middle point (P;) can be
expressed as:

S

.P:-—"‘-

(ztr) [21]

2 Pm.

This relationship was wused advan-
tageously for a simple graphical extrapola-
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tion construction for the hyperbolic-type
decline curve on semilog paper as illustrated
by Fig. 3 and discussed hereafter.

Graphical Extrapolation Methods

Log-log Paper.—As pointed out before,
both the rate-time and rate-cumulative
curves for hyperbolic decline can be repre-
sented and extrapolated as straight lines
on log-log paper after some shifting. The
rate-cumulative curve for the special case
of harmonic decline where b = 1, however,
can be straightened only on semilog paper.

Log-log paper extrapolation has the
disadvantage of giving the least accuracy
at the point where the answer is required;
it is also somewhat laborious on account
of the extra work involved in shifting until
the best straight-line relationship is found.

Semilog Paper.—Although log-log paper
is used to a large extent for production
curves of the hyperbolic type, there are
still some companies that continue to plot
their production curves on semilog paper,

Pt = Pyb {x -+ 2%, (¢t — v)} [z7]

Pib = Pob (1 + -(%z) [18]

Piyprt = Pg? {I—\l‘%(t*{*b)} [19]

even though the decline may be of the
hyperbolic type. The reason seems to be
that this procedure allows a wide range
in small space on the vertical log scale
and at the same time has a simple linear
horizontal time scale. The curvature in the
rate-time relationship for this case, how-
ever, makes extrapolation difficult and
uncertain.

With the help of the ‘“three-point rule”
for hyperbolic decline, it is now possible
to extrapolate such a curved hyperbolic
rate-time curve on semilog paper with a
fair degree of accuracy by simple graphical
construction. This procedure is shown on
Fig. 3. Three points, 4, E and B, are
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selected at equal time intervals on the
smoothed-out curve AB. Then, according
to the three-point rule the relative value
of the middle point E is a simple function
of the ratio of the first and third points 4
and B, regardless of the time interval
or the location on the curve. Transfer
of the value of these ratios is possible by
drawing simple parallel lines, because the
vertical scale is logarithmic. In the con-
struction, the third point B is used as the
middle point of a new set of three equi-
distant points whose ratios are identical
with those originally selected. The third
point of this new set of three is found by
the construction shown on Fig. 3, which is
self-explanatory, and it represents a new
extrapolated point of the curve. The
method can be used for both rate-time
and rate-cumulative curves, provided they
are of the hyperbolic type, and provided
the construction is carried out on semilog
paper.

" Special Straight-line Charts.—It may be
noted from Eq. 10 and 13 that the behavior
of the hyperbolic-type decline curve is
governed primarily by the value of the
exponent b, the first differential of the loss
ratio. When the value of b is zero, the
decline curve is of the simple exponential
or constant percentage type. Some mention
is found in the literature of hyperbolic
decline with a value of & = 1, which was
called harmonic decline.

To find the practical range of this
exponent b from actual production curves,
the data assembled by W. W. Cutler®
was used. He published the coordinates
of a large number of hyperbolic field-
decline curves. From his data the exponent
b was calculated for each case. The results
are shown in Table 3. According to this
tabulation, the value of & in the majority
of cases appears to be between o.o and
0.4. The b value equal to unity is, according
to Cutler’s data, very rare. In the writer’s
experience, however, this type decline does
occur occasionally.

ANALYSIS OF DECLINE CURVES

TABLE 3.—Value of b According to Cutler’s

Data®
Exponent b | Number| Exponent?d | Number
.Between of Cases Between of Cases
oo0and 0.I...... 19 0.4 and 0.5.... 5
o.xand 0.2...... 41 0.5 and 0.6.... 9
o.zand 0.3...... 27 0.6 and 0.7.... 4
0.3and 0.4...... 34 Above 0.7..... None

~ The rate-time and rate-cumulative re-
lationship in Egs. 10 and 13 can be re-
written as:

o Do b )
P"—Pob(x—}—aot [22]

. —b
and  Pib = Py~ (1 - IaoPo C) 23]

In both equations the right-hand side is
linear in either time or cumulative while
the left-hand side is an exponential func-
tion of the production rate P. The exponent
in Eq. 22 is —b; in Eq. 23 it is 1 — b.
In other words, if a vertical scale could be
arranged in such a manner that the ordinate
for P would represent a distance P~? for
the rate-time curve and P!~ for the rate-
cumulative curve, a straight-line relation-
ship should result for both. The horizontal
scale could remain linear and no shifting
would be necessary. At the same time, the
accuracy of reading the extrapolated
remaining life or the ultimate recovery
on the linear scale would be better than
with the log-log method. '

Since most decline curves seem to be
characterized by b values between o and 1,
with the majority between o and o.4, a
set of so-called “straight-line decline
charts” was prepared for successive values
of b. The vertical scales were prepared
simply by calculating and plotting a series
of values for P~ and P'%. It was found
that a highly accurate determination of &
is usually unnecessary for most practical
purposes and that for ordinary appraisal
work a set of charts for b values of o, 0.25,
o.5 and 1.0 is sufficient.
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The chart for b = o.5 is shown in Fig. 4
and the data from Table 2 are plotted on
this chart to show the straight-line extra-
polation procedure. The scale on the right

€ =Cumulative oil production
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F16. 5.—STRAIGHT-LINE DECLINE CHART FOR
EXPONENTIAL DECLINE.
@ = constant; b = o.
(For curves with constant decline.)
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is designed to match the & value of the one
on the left, so that it will fit the rate-
cumulative relationship. The scale on the
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right should be used in conjunction with
the linear cumulative scale on the top of
the chart,"while the scale on the left should
be used in combination with the linear

C=Cumulative o1l production
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F16. 6.—STRAIGHT-LINE DECLINE CHART FOR
HYPERBOLIC DECLINE.
b = o.25.
(To be used if decline is proportional to the
14 power of the production rate.)

time scale on the bottom. Both curves
can then be plotted and extrapolated as
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straight lines, simultaneously. Vertical
scales for similar charts, designed for
b values of o, 0.25 and 1.0 are shown
in Figs. 5, 6 and 7, respectively.

C=Cumulative oil production
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F16. 7—STRAIGHT-LINE DECLINE CHART FOR
HARMONIC DECLINE.
= 1.
(To be used if decline is proportional to the
production rate.) .

To determine which chart should be used,
the three-point rule can be used: Two

ANALYSIS OF DECLINE CURVES

points are selected on the available curve
in such a manner that the production rate
of the first point is twice the rate at the last
point. The production rate at the midway
point is then read off and its ratio to the
last point determined. If this ratio has a
value between 1.414 and 1.396, the chart
for b = o should be used; if it is between
1.396 and 1.383, the chart for b = o.23
will be better; if it is between 1.383 and
1.352, the chart for & = o.50 should be
preferred, and if the ratio is between 1.352
and 1.333 the chart for harmonic decline
(b = 1) will give the best results. If these
ratios are too close together, other values
can be calculated with the help of Eq. 21.

A simpler method is to plot the rate-time
curve on semilog paper (b = o) and if it
shows a persistent curvature three repre-
sentative points should be replotted on the
chart for b = o.5. If the three points do
not lie on a straight line, but show curva-
ture to the right, the chart for b = 1
should be selected; if the curvature is
downward, the chart for = o.25 should
give better results.

Another method is to set up a loss-ratio
tabulation and actually determine the
average value of the first differential 5.
The chart with the closest & value should
then be chosen. This method was followed
in Table 2, and since the b value obtained
(0.508) was very close to o.50, the chart
for this latter value was used (Fig. 4).

Otaer EmpiricaL DecLiNe CURVES

In addition to the exponential type of
decline, which is the simplest empirical
relationship and has found widespread
application for approximate estimates
because of its simplicity, and the hyperbolic
type of decline, which is more complicated,
but also generally more accurate, there are
several empirical equations that can
sometimes be used to represent production-
decline curves if the simpler types are
inadequate. Three of the more important
types are discussed in the following

pages.
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Loss Ratios Form a Geometric Series
(Ratio Decline)

A curve of this type has the charac-
teristic that the decline percentage-time
relationship is similar to the rate-time
relationship for exponential decline and
can be plotted as a straight line on semilog
paper. In other words, the decline fraction
itself is declining at a constant percentage
per month. The differential equation for
the rate-time curve is:

o ,e__“ i " [ ]
dp/dt = 24
in which 7 is the constant ratio of two
successive values of the loss ratio a. After
integration this leads to:

P = Pgeoologr [25]
The simplest way to recognize this type
of decline, and to extrapolate it, is by
means of the loss-ratio tabulation. The
equation for the rate-cumulative curve,
which can be found by integration of Eq.
25, is too complicated for practical use.
As an example of the statistical treatment
of production curves of this type, Table 4
shows a loss-ratio tabulation of the family
decline curve from a Wilcox sand pool in
Oklahoma. As before, the per well produc-
tion rates at equal time intervals are
tabulated in column 3, the drop in produc-
tion rate in column 4 and the loss ratio
in column 5. In this case the loss ratios
form approximately a geometric series.
This is evidenced by the fact that the
figures in column 6, which represent the
ratios of successive loss-ratio values, are
approximately constant. Their average
value is 1.127 and this figure was used
for the extrapolation of column 6 in the
lower half of the table. The extrapolated
values for the production rate were then
found by reversing the process used in the
upper part of the tabulation.
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TABLE 4.—Loss Ratio for the Family
Decline Curve of a Field Producing from

the Wilcox Sand in Oklahoma
(TvricarL CASE oF RATIO DECLINE)

Iﬁf_’ggg‘? R Loss Iéatio of
; - IRatio, on| Succes-
%’ﬂ%‘}ﬁ’g}’ tion Rate Monthly|sive Loss
Month{ Year ) during 6| "Ragis Ratios

tion | Months ) an

Ratio, P Interval,ja = 6 —=|r8 =
AP AP, an -1

Jan... b 20,360
July 1 13,260 | — 7,100 [—11.206
Jan. 2 8,000 | —4,270 | —12.632] 1.127
July. 2 6,390 | —2,600!—14.746] 1.167
Jan. 3 4,650 | —1,740|—16.034 1.087
July 3 3,490 | —1,160|—18.052] 1.1206
Jan. 4 2,700 — 7901—20.500] 1.136
July 4 2,140 | — 560|—22.920{ 1.118
Jan. 5 1,740 | — 400 |—26.100] 1.138
July 5 1,440 | — 300|—28.800| 1.103
Jan. 6 1,220 ~ 2201-33.2731 I1.155
Jul 6 1,050 | — 170|—37.050! 1.114
Jan. 7 918 — 132 |—41.760] 1.127
July 7 814 | — 104{—47.078] 1.127
Jan. 8 731 | — 83|-—53.062 1.127
July 8 664 | — 67{—59.806] 1.127
Jan. [} 610 | — 54i—67.407 1.127
July..| o 565 | — 45|—75.974] 1.127
Jan...| 10 528 | — 37({—8s5.631] 1.127
July..| 10 497 | — 31|—96.514] 1.127

The ratio of successive loss ratios is approximately
constant; average value, 1.127. i
Extrapolation until the tenth year, in the lower
half of the tabulation, by means of this average value
First Derivatives of Loss Ratios Form

an Arithmetic Series

The first derivatives of the loss ratios
form an arithmetic series and the second
derivatives are constant. S. T. Pirson!®
worked out the three possible mathematical
solutions for the rate-time equations, and
complete details may be found in his paper.
It has been found that these equations
are generally too complicated for practical
use. The simplest way to extrapolate a
curve, showing these characteristics, is by
means of the loss-ratio method.

Stmz'ght-line Relationship between
Decline Percentage and Time on Log-log
Paper

This type of decline was discussed in a
general way on pages 4 to g, and for
more details we refer to the original article
by P. J. Jones.2!

Aside from the fact that there is a
straight-line relationship between decline
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and time on log-log paper, this type of
curve can also be extrapolated as a straight
line by plotting the log-log of the produc-
tion rate against the log of the time.
Statistical extrapolation by means of the
loss-ratio method is possible but too com-
plicated for practical use.

TENTATIVE CLASSIFICATION OF
DEecLiNe CURVES, -BASED
oN Loss Rartio

To summarize the discussions in this
paper, a tabulation was prepared (Table 3)
showing the mathematical interrelationship
between the commoner types of decline
curves. At the same time, it is shown how
these decline curves can be classified
according to the loss-ratio method.

-

ANALYSIS OF DECLINE CURVES

If the loss ratio is constant, the decline
curve must be of the exponential type.
If the loss-ratio figures are not constant,
but form an arithmetic series, the decline
will be of the hyperbolic or harmonic type,
depending on the value of the increment 5.
If the loss-ratio figures indicate a geometric
series, the curve must be of the ratio-
decline type.

On this table is shown also a summary
of the graphical and other methods that
can be used to extrapolate the different
types of curves.

SUMMARY

Most production-decline curves can be
classified into a few simple types, which
can be recognized by graphical, statistical

TABLE 5.—Tentative Classification of Decline Curves, Based on Loss Ratios
Time, t; production rate, P; drop in production rate, AP

Ratio of Successive

Loss Ratio, Differential of Loss Ratio, Loss Ratios,
I - Az =A (_1_’_) n
¢=ap =fe=Aa\ap ro=
an-1
Loss ratios or Constant Arithmetic Series Geometric Series
a values
@ = <= = Constant | b = = Constant b= Aa =1 r = 2% = Constant
. AP (O<b<1) an-1
: en:
Type of decline Exponential or Con- ’
stant  Percentage | Then Then: Then:
Decline Hyperbohc Decline | Harmonic Decline Ratio Decline
~1/b gt
P = Pge~t/a P= Po(x + azt) P = ____.139_‘__ iil_ol_rl
Rate-time relation- ° (1 + - P = Poet0 108

ship (P, ) .
(Straight line on
semilog paper)

(Straight line on special decline charts.
Straight line on log-log paper after shifting)

C = a(Py — P) C = 2

I

Cumulative-rate re-
lationship (C, P)

(P 1-b C =

(Straight line on special decline charts)

aoPo (log Py
— log P)

Too complicated )
— p1-b)

(Straight line on co-
ordinate paper

(Straight line on log-
log paper after shift-
ing)

(Straight line on
semilog paper)

Decline percentage
(D)

Decline constant

100
aoPob
(Straight line on log-
log paper) .
Decline proportional
to power b of pro-
duction rate

D = P

100
D = P
. aoP,
(Straight line on co-
ordinate paper)
Decline proportional
to production rate

p =10,
a
(Straight line on
semilog paper)
Decline diminishing
with time at con-
stant percentage
(geometric series)

Graphical short-
cuts on semilog
paper

Special decline
calculator

Graphical extrapo

ation construction

based on *‘three-point rule’’
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or mathematical means. There is a distinct
interrelationship between these types and
a detailed study revealed some new charac-
teristics and possibilities for simplification
of the extrapolation procedure. Among
these, the most important are:

1. A decline calculator to be used for
exponential decline curves plotted on
semilog paper. This calculator, which is
based on the slide-rule principle, makes
it possible to read off the monthly decline
percentage and the future reserve directly
from the original curve.

2. The mathematical relationship be-
tween rate-time, rate-cumulative and rate-
decline percentage for hyperbolic and
harmonic decline. ‘

3. A graphical construction method for
extrapolation of hyperbolic-type decline
curves, plotted on semilog paper. This
method is based on the three-point rule,
which is a mathematical connection be-
tween the production rates of three equi-
distant points on the curve.

4. The introduction of straight-line
decline charts for hyperbolic decline. These
charts have vertical scales arranged in such
a manner as to make straight lines out of
both rate-time and rate-cumulative curves,
belonging to the hyperbolic type. Use of
these charts facilitates extrapolation of
this type of production curves considerably.
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* SYMBOLS »
P, production rate, bbl. per month.

P, imitial production rate, bbl. per
month,

t, time elapsed since first production,
months.

v, constant time interval.
C, cumulative production from com-
pletion until time ¢, bbl.
g, positive number, representing loss
ratio on a monthly basis.
a9, positive number, representing loss-
© ratio during first month.
b, positive number, representing first
derivative of loss ratio.
D, decline, per cent per month.
Do, initial decline, per cent per month.
A, B, n, m, various constants.
' r, ratio of successive loss ratios.
log, natural logarithm.
¢, base of natural logarithm.



