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Preface

The purpose of this book is to present, in as clear a fashion as possible, a logically
structured collection of the fundamental tools of numerical methods. The methods
presented are all well suited to the digital computer solution of problems in many areas of
science and engineering. Every effort has been made to include the most modern and
efficient techniques available in the rapidly developing field of numerical methods, without
neglecting the broad base of those older, well-established techniques which are still in
widespread use.

Since the emphasis of the book is on the understanding and use of the various
methods, proofs have been included only where they might enhance understanding or
provide motivation for the study of a particular method. A number of illustrative
example problems have been integrated into the main body of the text at points where the
presentation of a method can best be reinforced by the immediate use of the method. 1In
addition, an extensive assortment of detailed solved problems has been included at the
end of each chapter, illustrating virtually every topic considered in that chapter and
illuminating the fine points and potential difficulties of the various methods. The only
mathematical background required of the reader is the usual introductory calculus
sequence. This overall approach makes the book suitable not only as a text in a
structured classroom situation, but also for self-study and as a supplement to all other
texts in the subject.

This book does not follow the currently popular practice of providing a complete
computer program for each method discussed. Based on the author’s wide experience,
this practice tends to encourage the student to simply reproduce and run the programs,
rather than to actually attempt to understand the method in depth. In addition, such
programs tend to restrict the scope of the book to a single computer language (usually
FORTRAN), while for various reasons it may be desirable or convenient for the reader to
employ other languages, such as PL/I, APL, or BASIC.

Although many of the examples and illustrative problems given in the text actually
represent the results of the mathematical modeling of physical situations, they are usually
presented in mathematical terms. Since the text is not cast in the rigid mold of any single
discipline in engineering or science, this permits an instructor to show the relevance of the
methods and problems to any desired area. However, the author would caution against
the use of complex problems involving much physical insight until the basic numerical
techniques have been mastered, since a student may become lost or misled in the physics,
and hence not gain the desired experience in numerical methods.
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Chapter 1 provides an introduction to the power (and limitations) of numerical
methods, some motivation for the engineer or scientist to study these methods, and a short
discussion of digital computing from the user’s point of view. The basic building blocks
of numerical methods, the Taylor series and the finite difference calculus, are presented in
Chapters 2 and 3.

Interpolation is the subject of Chapter 4. Despite the fact that this topic continues
to be of great practical importance, and also forms the theoretical basis for much of
numerical analysis, many current texts for some reason either ignore it completely, or do
not give it adequate attention. Chapter S is devoted to finding the roots of
equations. Many methods of root solving can be developed directly from the Taylor
series, but the concept of inverse interpolation is also useful.

Both direct and iterative methods are presented in Chapter 6 for solving sets of
simultaneous linear algebraic equations. Particular attention is given to the problem of
ill-conditioning and to the solution of very large sets of equations. In Chapter 7, the
concepts of interpolaticn are extended to functional approximation, and using the tools
gained in Chapter 6, least squares data fitting can be examined in an effective manner.

Numerical integration is considered in Chapter 8. Several highly accurate and
efficient techniques are included, and methods of dealing with singularities are examined
in some detail.

In Chapter 9, a wide variety of numerical techniques is presented for solving
ordinary differential equations. Approaches are considered for solving both initial value
and boundary value problems. The accuracy and efficiency of each of the methods is
carefully considered.

The subject of Chapter 10 is the algebraic eigenvalue problem. Much emphasis is
given to the selection of the most efficient technique to deal with the particular problem at
hand.

In Chapter 11, the book is concluded with an introduction to the numerical solution
of partial differential equations, particularly of the parabolic and elliptic types. The
power and potential of finite element methods are also discussed briefly.

This material is more than ample for a one-semester course at the junior or senior
level in any of the engineering or science disciplines. If sufficient time is not available to
cover all of the subject matter, it is suggested that Section 7.2, the more advanced portions
of Chapter 10, and Chapter 11 be considered as possible omissions which would still leave
the logical structure of the book intact.

The author wishes to express his gratitude to all of his students and colleagues who,
through their encouragement and suggestions, have made this book possible. Particular
thanks are due to Jean Stiles, who deciphered the author’s handwriting and typed the
manuscript in her usual expert manner, and to Earl Feldman, who independently verified
the flow charts by writing and running computer programs from them. Finally, the
author would like to thank Nicolas Monti and Michael Schaum of Quantum Publishers for
their continuing interest, advice, and encouragement.

RoBERT W. HORNBECK
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Chapter 1
Introductory Topics

1.0 INTRODUCTION

We will begin this introductory chapter by briefly discussing the purpose and power of
numerical methods as well as their limitations, and then presenting a justification for the
detailed study of these methods.

1.1 WHAT ARE NUMERICAL METHODS?

Numerical methods are a class of methods for solving a wide variety of mathemat-
ical problems. These problems can, of course, have their origins as mathematical
models of physical situations. This class of methods is unusual in that only arithmetic
operations and logic are employed, thus the methods can be employed directly on digital
computers.

Although in the strictest sense of the term, anything from the fingers to an abacus
can be considered as a digital computer, we will use the term here to refer to electronic
stored program computers which have been in reasonably widespread use since the
middle 1950’s. Numerical methods actually predate electronic computers by many years,
and in fact, many of the currently used methods date in some form from virtually the
beginnings of modern mathematics. However, the use of these methods was relatively
limited until the advent of the mechanical desk calculator and then increased dramatically
as, in a real sense, the methods came of age with the introduction of the electronic digital
computer.

The combination of numerical methods and digital computers has created a tool of
immense power in mathematical analysis. For example, numerical methods are capable
of handling the nonlinearities, complex geometries, and large systems of coupled equa-
tions which are necessary for the accurate simulation of many real physical situations.
Classical mathematics, even in the hands of the most ingenious applied mathematician,
cannot cope with many of these problems at the level required by today’s technology. As
a result, numerical methods have displaced classical mathematical analysis in many in-
dustrial and research applications to the extent that (for better or for worse) classical
analytical approaches are seldom considered, even for problems where analytical solu-
tions could be obtained, since the numerical methods are so easy and inexpensive to
employ and are often available as prepackaged programs.
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1.2 ARE THERE LIMITS TO THE CAPABILITY OF NUMERICAL METHODS?

The answer to this question is an emphatic ““yes.” It is the view of many laymen and of
entirely too many scientists and engineers who should know better, that if a problem can-
not be solved in any other way, all one has to do is “‘put it on the computer.” This state of
affairs is undoubtedly due to the enormous power of numerical methods which we have
discussed in the preceding section. However, it is unfortunately true that there are many
problems which are still impossible (in some cases we should use the word “‘impractical’)
to solve using numerical methods. For some of these problems no accurate and complete
mathematical nodel has yet been found, so obviously it is impossible to consider a
numerical solution. Other problems are simply so enormous that their solution is beyond
practical limits in terms of current computer technology. For example, it has been
estimated that to obtain a detailed time-dependent solution to turbulent fluid problems, in-
cluding the effects of the smallest eddies, would require on the order of 30 years. This
estimate was based on 1968 technology and is probably off by no more than a factor of 5 or
so based on today’s technology.  Of course, the entire question of practicality is strongly
dependent upon how much one is willing to pay to obtain an answer. Some problems are
so important that industry or government is willing to spend many millions of dollars to
obtain the necessary computing capacity and speed to make it practical to solve problems
which had previously been considered impractical to solve. In any case, although the
boundaries are constantly being pushed back, there remain many problems which are
beyond the reach of present technology, either in the formulation of the mathematical
model or in terms of actual computing capability.

1.3 WHY STUDY NUMERICAL METHODS?

It may seem strange, in view of their widespread use in virtually every facet of science,
technology, and government, that the author should feel an obligation to justify the study
of numerical methods. For present and prospective numerical analysts and computer
scientists, certainly no justification is necessary.

For engineers and scientists, however, the justification might appear to some to be
less apparent. In recent years many large computer programs, each requiring several
man-years of work, have been developed to simulate complex physical problems. These
programs are usually designed to be used by those without extensive knowledge of their
inner workings. In addition, there are ever-expanding libraries of subprograms to per-
form a wide variety of mathematical tasks using sophisticated numerical methods. In the
face of these facts, one might indeed wonder whether there is a need for engineers and
scientists to acquire a working knowledge of numerical methods. However, the engineer
or scientist who expects to be able to locate a prepackaged program or library subprogram
to perform every desired task will be sadly disappointed. The selection and application
of a numerical method in any specific situation is still more of an art than a science, and
the computer user who does not have the ability and knowledge to select and tailor a
numerical method for the specific problem at hand, and to carry out the actual program-
ming of the method, will find severe limitations on the range of problems which can be
handled.

Obviously, when proven prepackaged programs or subprograms are available which
are suited to the task at hand, it is by far the most efficient course to employ them. A
working knowledge of numerical methods is highly valuable even in these cases, however,



CHAPTER 1 INTRODUCTORY TOPICS 3

since the user of such programs and library subprograms will inevitably encounter
difficulties. These difficulties can stem from many causes, including the following:

(a) No complex physical situation can be exactly simulated by a mathematical
model. (This is an extremely crucial point, but is outside the scope of the
present discussion.)

(b) No numerical method is completely trouble-free in all situations.

(¢) Nonumerical method is completely error-free.

(d) No numerical method is optimal for all situations.

(There can be considerable overlap among (b), (¢), and (d). We will not be concerned
with precise definitions here, only broad concepts.) The difficulties with the numerical
methods can result in a prepackaged program or library subprogram vielding erroneous re-
sults, or no results at all. In addition, the user searching for a library subprogram to
perform a certain task may find an overwhelming variety and number of subprograms
which appear generally applicable, but the descriptive material will seldom give any indi-
cation of the efficiency of the subprogram or its suitability for solving the specific problem
at hand.

The user with any of these problems, but no knowledge of numerical methods, must
then seek out someone with the necessary information (perhaps a numerical analyst), if
indeed such a consultant is available. In this situation, however, it may be difficult for the
user to ask the right questions and for the consultant to give useable answers, since the
background of the two may be vastly different.

We can thus see that there is a strong justification for the scientist or engineer to
acquire a working knowledge of numerical methods. This knowledge enables the compu-
ter user to select, modify, and program a method suitable for any specific task, aids in the
selection and use of prepackaged programs and library subprograms, and makes it
possible for the user to communicate with a specialist in an efficient and intelligent way
when seeking help for a particularly difficult problem. Finally, it should be recognized
that the bulk of what has come to be knocwn as “methods development” (which is to all
intents and purposes the writing of large programs to simulate complex physical problems)
is done by engineers and scientists, and not by numerical analysts. Obviously, however,
the most efficient and accurate numerical techniques must be employed in such work, and
a thorough knowledge of numerical methods is essential for the engineers and scientists
involved in such a project.

We now turn briefly to a discussion of several computer-related topics which are not
numerical methods in themselves, but which are of considerable interest to anyone who
must actually implement numerical methods on a digital computer.

1.4 COMPUTER LANGUAGES

Most of the readers of this book will have had some experience in programming in a *“*high
level” computer language such as FORTRAN, ALGOL, or BASIC. These languages
allow the user to write programs in a form which includes algebraic formulas and English-
like logical and input-output statements. Such high level languages are virtually indepen-
dent of the machine on which the programs will be run. Through the use of a computer
program called a compiler (or translator), the high level program can then be converted
into the fundamental machine code of the particular machine on which the program will
actually be executed.
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By far the most widely used algebraic language for scientific purposes is FORTRAN
IV or minor modifications thereof. With a few exceptions, ALGOL is seldom used for
scientific computation today, but is widely used as a universal international language for
describing algorithms. BASIC is quite popular as a language for use on time-sharing sys-
tems and is usually used for relatively simple programming tasks. Other high level lan-
guages which the scientific user may encounter are APL (also reasonably widely used on
time-sharing systems and suitable for tasks ranging from the very simple to the highly
sophisticated), MAD (an obsolescent ALGOL-like language), and PL-1 (a powerful lan-
guage currently of interest primarily to computer scientists).

The appearance of each new language is greeted with some trepidation by the
average user since it means a new set of rules which may have to be learned, and possible
confusion with other languages. However, any reasonably flexible person will find little
difficulty in adapting to a new language if necessary. A much more important issue is the
economic one, since the development of large computer programs is very expensive, and
the conversion of large programs from one language to another can be a major task
involving many months of work. This is one of the primary reasons why FORTRAN IV
is the current scientific ‘“‘standard” and is unlikely to be displaced in the near future.

1.5 THE VERIFICATION PROBLEM

One of the most vital and yet most difficult tasks which must be carried out in obtaining a
numerical solution to any problem is to verify that the computer program and the final
solution are correct. First it must be established that the program is working as the
programmer intended, i.e., that the coding is correct. This can usually be established by
generous printing of intermediate results, and if necessary by making spot checks by hand
or desk calculator computations. The second part of the verification procedure is to
establish that the algorithm being employed will yield the correct solution. Since the
correct solution to the problem is presumably not known beforehand (or we would not
bother to obtain a numerical solution), this portion of the verification procedure will
isually be indirect. This indirect approach could consist, for example, of looking at
various limiting cases of the problem for which known solutions are available. These
limiting cases might be simulated with the program under consideration by setting certain
terms to zero, letting certain constants or conditions become very large or very small, or
by bypassing temporarily certain sections of the program and/or inserting other small tem-
porary sections.

In many cases the verification procedure can actually be more expensive and time
consuming than obtaining the final desired answer. However, the confidence which one
can place in the final results is directly related to the time and care which are invested in
the verification process. In estimating the time and cost required to obtain a numerical
solution, it is essential that allowance be made for the verification process.

Up to this point we have been concerned with the verification of a program written
by the average user to solve a specific problem. The process of verification for a general
program or library subprogram, which would be employed by many users to solve a wide
variety of problems, would be similar but necessarily even more extensive and pains-
taking, and would include a series of “worst case™ trials to test the ability of the program
to cope with known difficult problems.
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1.6 DO COMPUTERS MAKE MISTAKES?

Of course, in one sense or another, computers can and do make mistakes. We should
note, however, that the vast majority of errors encountered in the course of computation
are the user’s own errors. It is sometimes very difficult to accept that a hard-to-locate
error is one’s own. Nevertheless, the most efficient procedure in tracking down errors is
invariably to assume that this is the case, until the possibility has essentially been elimi-
nated.

If computer errors are encountered, they can be characterized as either hardware or
software errors. True hardware errors are relatively rare, and we are not in a position to
discuss them here. Software errors (which are really just some other programmer’s
errors) are more common, and could typically include errors in the computer executive
system, errors in the compiler which result in incorrect object (machine language) code,
and errors in library subprograms.

Errors in the computer executive system (also variously called the exec, monitor,
operating system, supervisor, and other names) can be quite confusing to the
user. Modern systems usually incorporate the capability of handling several programs at
once in order to most effectively utilize the hardware (this is often called multiprocessing)
or of allowing a number of users to compute and “converse’” with the system from re-
mote terminals (often called time-sharing). Some systems even combine these
capabilities. Most of the difficulties which the user encounters from the executive sys-
tem come from unforeseen interactions of one program with another. These can result in
anything from total system failure (a ‘“‘crash”) to erratic behavior and incorrect results
from the individual user’s program. These errors are seldom repeatable, and simply re-
running the program will usually rectify matters.

Errors in compilers are particularly frustrating to the user, since a high level program
which is perfectly correct can produce incorrect machine code and hence incorrect
results. Fortunately, due to extensive verification, serious compiler errors are usually
not encountered (and a list of known minor errors is usually available from the computer
systems personnel). However, with those compilers which incorporate optimization,
serious and almost unpredictable errors can occur. Optimization can be interpreted in
this context as an effort to generate the most efficient possible machine code from a given
program written in the high level language. This optimization effort includes changing
the order of operations from that specified in the high level code in order to (hopefully)
obtain the same answers in less computer time. Optimization can result in remarkable
savings in computing time in many cases, but the better the optimizer (in the efficiency
sense) the more likely it is to result in incorrect machine code. In most cases it is possible
to “turn off” the optimization facility of the compiler or to find a similar compiler without
optimization or with relatively simple and error-free optimization.* It is recommended
that this course be followed if possible in debugging and for the initial runs of a program,
and that a compiler with a very high degree of optimization be employed only for
production runs where efficiency is all-important. The highly optimized version should
of course be verified by comparison with results obtained without optimization.

*It is sometimes remarkably difficult to obtain information about whether a given compiler is an optimizing com-
piler, and whether or not it is possible to “turn off”” the optimization. However, a diligent search through the
manufacturer’s manuals will usually yield the information in some form.
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Errors in library subprograms are generally the product of ineffective verification
procedures, and usually cannot be dealt with by the user except by reporting the faulty
routine to the responsible systems personnel.

Finally, we should note that, although the errors are not mistakes in the usual sense,
any computation carried out with a finite number of decimal places will result in roundoff
error, and any numerical method has error which is inherent in the application of the
method. These errors are best discussed with the presentation of each method, and we
will not consider them further at this point.

1.7 THE NEED TO GET INVOLVED

Numerical methods cannot be simply read about, they must be used in order to be
understood. Accordingly, it is vital that the reader actually solve problems using the
numerical methods described in this book. In closing this introductory chapter, the
author would like to point out from personal experience that the best test of whether one
understands a method is not to carry out a hand calculation (although this can be useful in
the early stages of attempting to understand the logic) but to write a computer program,
and thus to relinquish personal decision making to the impersonal computer. It is
remarkable how hazy concepts can become clear under the resulting pressure to be
completely precise and unambiguous.



Chapter 2
The Taylor Series

2.0 INTRODUCTION

The Taylor series is the foundation of numerical methods. Many of the numerical tech-
niques are derived directly from the Taylor series, as are the estimates of the errors
involved in employing these techniques. The reader should be acquainted with the
Taylor series from his earlier studies, but we shall make a brief presentation of the subject
here since our emphasis will be somewhat different from that of the conventional calculus.

If the value of a function f(x) can be expressed in a region of x close to x = a by the
infinite power series

(x—a)’

fx)=fla)+&x —a)f'(a)+ o f(a)

& ;za—) f’”(a)+"'+£{%!“axf‘"’(a)+“' (21

+

then f(x) is said to be analytic in the region near x = a, and the series (2.1) is unique and
called the Taylor series expansion of f(x) in the neighborhood of x = a. It is difficult to
specify general conditions under which the series (2.1) will exist and be convergent, but it
is evident that all derivatives of f(x) at x = a must exist and be finite. If the Taylor series
exists, then knowing f(a) and all of the derivatives of f at x = a, we can find the value of
f(x) at some x different from a, as long as we remain “sufficiently close” to x = a.

If as |x — a| is increased, a point is reached where the power series (2.1) is no longer
convergent, then we are no longer *‘sufficiently close” to x = a and are outside the radius
of convergence of the power series. Some series will converge for all |x — a| (have an
infinite radius of convergence) while others will converge only for values of |x — a| below
a certain limit. If the series is convergent, then the value of f(x) will be exact if an
infinite number of terms are taken in the series. It is much more interesting and useful to
us, however, to find out how well we can approximate f(x) near x = a by taking only a few
terms of (2.1).

This can be graphically illustrated by examining Fig. 2.1. Suppose we wish to find

f(b). From (2.1),
fb) = f(@)+ (b — a)f (@) + LS (@) + L gy - 2.2)

If only the first term of (2.1) is used, then the function is assumed to be a constant, f(a), as
shown in Fig. 2.1a. If the first two terms are used, then the slope of f at x = a is taken

7
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Fig. 2.1 Approximations resulting from truncating Taylor series.

into account by using a straight line from f(a) with a slope f’(a) as shown in Fig.
2.1b. Considering three terms allows the use of the curvature due to f"(a) as shown in
Fig. 2.1c, etc. Each additional term improves the accuracy in the approximation for f(b).

It will be useful for us to adopt some standard terminology and conventions about
the truncation of a Taylor series. We begin by examining the error made in truncating a
Taylor series. The error in the Taylor series (2.1) for f(x) when the series is truncated
after the term containing (x —a)" is not greater than

dn+lf (Ix __al)n+l
dx" M (n+1)!

(2.3)

where the subscript “max” denotes the maximum magnitude of the derivative on the
interval from a to x.

It would seem that nothing can be gained from this error bound, since if the value of
the (n + 1) derivative of f on the entire interval must be known to evaluate the error, then
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the value of f(x) on this interval would also be known, and there would be no need to
carry out the expansion in the first place. This frustrating state of affairs is fairly com-
mon in numerical analysis, however, and much useful information can be gained from
(2.3). We have no control over the behavior of f (or any of its derivatives), nor over the
constant (n + 1)!. We do have control over how close x is chosen to be to a, or in other
words on the quantity (x —a)"*'. Thus we use the terminology that the error (2.3) is of
the order of (x —a)"*, or is O(x —a)"*'. If the series expression for f(x) is truncated
after the first three terms, we say that f(x) is accurate to O0(x — a)’, since

)= (@) + (- f (@) +E52 @) + 0x - aY @2.4)

It should be noted that the use of the notation @(x —a)’ implies nothing about the
constants or derivatives multiplying (x — a)’; for example, 7(x — a)*is of @(x — a)’. Thus
the quantity G(x — a)’ might equally well be described as a quantity varying as (x — a)’.
If we take a fourth term in the series (2.1) for f(x) before truncating, we obtain
2 3
) =f@+x - a)f @+ ESL @)+ E- D gy o —ay 25)
In general, the four term representation (2.5) gives a more accurate approximation to f(x)
for a given value of x than does the three term representation (2.4). Thus one would
expect that for this function, the error term 0(x — a)* would be less than the error term
O(x — a)’ in the three term series (2.4). We can generalize this result to the statement that
if we confine ourselves to a Taylor series for a given function, then the following
relationship holds between the error terms of a series truncated at n terms and the same
series truncated at n + 1 terms:

O(x—a)"'<0x-a) 2.6)

Note that this relationship will hold whether or not |x — a| < 1, as long as we are within the
radius of convergence of the series. (Strictly speaking, (2.6) may not hold for the first
few terms of some series, particularly if (x —a) is large in magnitude. However, the
relationship will be true for large n, and for our purposes (2.6) should be considered as the
general trend.)

It should be noted that for certain series expansions some terms may vanish. For
example, a truncated series representation of f(x) composed of the first four terms of (2.1)
might have exactly the same error as a truncated series composed of the first five terms of
(2.1). See Problem 2.2 for an illustration of such a case.
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lllustrative Problems

21

2.2

2.3

Find the Taylor series expansion for sin x near x =0 using the series (2.1).

Since we are expanding about x =0, a =0. The series (2.1) becomes
sin (x) = sin (0) + x cos (0) — sm 0)— 37608 ) + sm )+ -

and since sin(0) =0 and cos (0) =1,

3 5

. X x
sinx =x -7+t
3t 5!

Truncate the Taylor series for the sine found in Problem 2.1 to give a representa-
tion of O(x)". Show that this representation is in fact of 0(x)’.

From Problem 2.1,
sin (x) = sin (0) +x cos (0)— x_ sin (0) — X cos )+ 0(x)*
=X == + o(x)*
But if we carry one more term in the series,
sin (x) = sin (0) + x cos (0) — sm - cos ) + x! sm O+ O(x)
we see that this additional term is exactly zero since sin (0) =0. Therefore

. x’ s
sin(x)=x —-§'—+ O(x)

This two term representation is thus actually of @(x)’ rather than O(x)".

Using the Taylor series expansion for e* about x =0, find ¢°° to 0(0.5)°. Bound
the error using the error expression (2.3) and compare your result with the actual
error.

From equation (2.1),

e — e(0)+xe(0)+2 (0)+ (0)+4 (0)+

3!
or
2 3 4
e* —1+x+2 +’3“+Z‘+
and if x =0.5,
o5 _ (().5)2 0.5)° (O 5)“
S=1+0.5+ A 30 al

or, to 0(0.5),

0.5y

=1+0.5+57

= 1.625

Now according to (2.3), the error in this quantity should not be greater than
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24

d’(e”)
dt’

3
O ) 0.0208333)

where max denotes the maximum magnitude on 0<x <0.5. |e"|..x = € = 1.6487213, so
the error is no greater in magnitude than

(1.6487213)(0.0208333) = 0.0343831
The actual error is
e™ —1.625 = 1.6487213 — 1.6250000 = 0.0237213

which lies within the error bound. Notice that in this case the error which was 0(0.5)* was
actually 0.0237213 or about 0.19(0.5)".

Find the Taylor series expansion about x =0 for f(x) =log. (1—x). What is the
radius of convergence of this series?

The function and its derivatives are
f(x)=1log. (1—x)

-1
1—x

f'x)=

t —_ 1
f (x) - (1 — x)2

1" _ -2
.f (x) - (1 . x)3

Using the series (2.1) with a =0, we obtain

log. (1—x) = log, (1) + x(l—‘_l—o) +—’2‘—§<(—1—‘_—10?)

+§_:<(1:2())3) +374C":<(1——60)4) o

DTN (U SO AP )
log. 1—x)= (x+2+3+4+

or

To find the radius of convergence of the series, we apply the ratio test. We take the limit

x"n+1)

x"/n
The ratio test states that the series converges absolutely (even if all terms have the same
sign) if this ratio is less than one. Thus the radius of convergence of the series is
|x{< 1. The ratio test tells us nothing if |x| = 1, but we note that if x = +1, then we have the
negative of

1+12+1/3+1/4+---

nx
n+1

lim =H =|x|
n-—»0 n—owm

which is the familiar divergent harmonic series. If x = —1, we have the series
1-12+1/3—-1/4+---

which is convergent. The series is thus convergent for —1<x <1.
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2.5 Using the results of Problem 2.4, obtain the geometric series for 1/(1—x), |x]<1.
This series is of great value in much numerical and approximation work.

From Problem 2.4,

_ x* x* x* )
log. (1—x)= <x+2+3+4+

Differentiating this series with respect to x, we obtain

d Nl S ( 2x 3x* 4’
dx(]oge(l x))—l_ 1+2+3+4+ )

or

1
m=1+x+x2+x3+x‘+-- .

2.6 Find e*'sin (0.1) to 0(0.1)* by using the Taylor series expansion for each function
and multiplying them.

From Problems 2.1 and 2.3, we have

©.1y
31

sin (0.1) = 0.1 — —-=~ 0.1 1)2

+ 0(0.1)°, =1+0.1+~>~+0(0.1

We have taken sufficient terms in each series so that when the two series are multiplied
together, the largest error term will be ©0(0.1)*. (This will come from the product of the first
term in the sine series and the error term 0(0.1)’ in the ¢™ series.  All other error terms will be

smaller.) Then

(0. 1) 0.1y

¢*'sin (0.1) = [1 +0.1 4+ ==+ @(0.1)3][0.1 —=+ 0(0.1) ]

=0.1+(0.1 +31-(0.1)3 + 0(0.1)*

)
™' sin (0.1) = 0.110333 + 0(0.1)*

2.7 Show that f(x)=e*"” cannot be expanded in a Taylor series about x = 0.

We have

f(x) - exllz

fer=e(la)

ey = (L) - evn(Lew)

The function f(x) is bounded at x =0, but all of the derivatives of f involve negative
powers of x which result in those derivatives becoming unbounded at x =0. Thus f(x)
does not satisfy the conditions at x =0 for an expansion in a Taylor series about x =0.
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2.8 Given the function f(x) = e”, consider the following Taylor series expansions about
x=0:

fG)=fO)+xf'(0) + 1;—f"(O) +0(x)’
f(x) = fO)+xf'(0) + O(x)’

Let x = 2. Show that the error term 0(x)’ < 0(x)’ despite the fact that (2)* > (2)*

The two series are

x2
2

e =1+x+0(x)

e*=1+x+5-+0(x)

If we let x =2,
2 2 3
e’ =1 +2+—2—+ 0(2)
e’=1+2+0Q2)
From tables, e’ =7.3891, so
7.3891 =5+ 0(2)°
7.3891 =3+ 02y
and thus the error terms are
0(2) =2.3891
0(2)* =4.3891

Note that for this problem we have been able to evaluate exactly the error terms since
we knew e”. In general, this would not be possible.

2.9 Using the Taylor series expansions about x =0, evaluate ¢~ to 0(x)".
First, we use the Taylor series for the exponential:

. 2 . 3 -
sinx _ . sin"x  sin"x sin"x
e =]+sinx + 31 + 3 + Y] +

Now we employ the Taylor series expansion for sin x, taking enough terms each time to
ensure that the result is accurate to at least 0(x)*":

esinx =14+ [x _L+ @(x)5]+[x + g(x)3]2+ [x + 2(x)3]3

30 +O0(x)

3 2 4 3 S5
=14 x X oy + EH IO O HODT | gy

3 2 6

2
=1+x+%

2 +0(x)"
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2.10 Show that f(x)=(x — 1) cannot be expanded in a Taylor series about x =0 or
x = 1, but can be expanded about x =2. Carry out the expansion about x =2.

fxy=@x~-1"

FE=3a-1n
" _— l 1 —-3/2
fix)==7x -1

f/u(x) — %(x — 1)—5/2

For an expansion about x =0, the quantities f(0), f'(0), f'(0), etc. are needed. These in-
volve noninteger powers of (—1), e.g. (—1)">. These cannot be evaluated to give real values
and thus this expansion is impossible.

For an expansion about x = 1, we need quantities such as

f=©"

F(1) =30

() =3O

While f(1) is bounded, all of the derivatives f'(1), f"(1), etc. are unbounded. Thus the
expansion about x =1 is impossible.
The Taylor series expansion about x =2 is

fo ="+ -2~ 1]

All derivatives are bounded and finite and the series is

L= G- -
fER)=1+"= 8 T 16

This series is convergent for |x —2| < 1.

211 By a technique entirely different from the Taylor series expansion, we find the
following series:

X7 2 1T
tanx——x+3 +—15_+ﬁ+"

Is this the Taylor series expansion about x = 0?

Yes, since the Taylor series expansion about x =0 (i.e. in powers of x) is unique.
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Problems

212

213

214

215

2.18

217

2.18

219

2.20

2.1

2.22

2.23

Find the Taylor series expansion for sinh x about x =0.
Find sinh 0.9 to 0(0.9)° by using the Taylor series expansion from Problem 2.12.

Bound the error on your answer to Problem 2.13 by using the error expression (2.3) and
compare your result with the actual error. (Note: sinh0.9=1.0265167, cosh0.9 =
1.4330864.)

Find the Taylor series expansion of sin x about x = /4.

Obtain the Taylor series expansion for 1/(1 — x)* by using the series for 1/(1 — x) from Prob-
lem 2.5.

Is it possible to expand log. x in a Taylor series about x =0? Discuss.

Find an expression for sin x cos x accurate to 0(x)’ by using the Taylor series for the
individual functions about x =0.

Evaluate cos (sin x) to 0(x)® by using the known Taylor series for sin x and cos x.

Examine the Taylor series about x =0 for ¢* when x =4. The fourth term in the series,
x3/3!, is larger than the third term, x*/2!. Does this mean the series is divergent? Explain
this apparent anomaly.

Consider two functions g(x) and h(x), related in such a way that g'(x) = h(x) and
h'(x) = g(x) and that g(0) =0 and h(0) =1. Find the Taylor series expansions for g(x) and
h(x) using only this information.

Show that the Taylor series expansion of f(x) = x> about x =1 simply reproduces x°.
The error function erf (x) is defined as erf(x) = 2/Vm[ie " dt. Find erf (1) to 0(1) by

expanding erf (x) in a Taylor series about x =0. (The value of erf (1) = 0.84270079 to eight
decimal places.)



Chapter 3
The Finite Difference Calculus

3.0 INTRODUCTION

In conventional calculus the operation of differentiation of a function is a well-defined for-
mal procedure with the operations highly dependent on the form of the function
involved. Many different types of rules are needed for different functions. In numeri-
cal methods a digital computer is employed which can only perform the standard arithme-
tic operations of addition, subtraction, multiplication, and division, and certain logical
operations.* Thus we need a technique for differentiating functions by employing only
arithmetic operations. The finite difference calculus satisfies this need.

3.1 FORWARD AND BACKWARD DIFFERENCES
Consider a function f(x) which is analytic (can be expanded in a Taylor series) in the
neighborhood of a point x as shown in Fig. 3.1.
We find f(x + h) by expanding f(x) in a Taylor series about x:
’ hz (/] h3 "
Fx+ Ry =)+ R () + 57 () + 37 () + - 3.0
Solving equation (3.1) for f'(x) yields

f'(x)=I—M’F—f(i)—§f"(x)—%f’"(x)+- .. (3.2)

fx)¢ '(——h——yr——h
/{\v\_/

|
|
!
[
!
t
X

Fig. 3.1

*Certain sophisticated digital computer programs have been written which can perform formal, analytical
differentiation of a rather wide variety of functions, but this topic is beyond the scope of this book.
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Problems

212

213

214

2.15

2.16

217

2.18

219

2.20

2.21

2.22

2.23

Find the Taylor series expansion for sinh x about x =0.
Find sinh 0.9 to 0(0.9)° by using the Taylor series expansion from Problem 2.12.

Bound the error on your answer to Problem 2.13 by using the error expression (2.3) and
compare your result with the actual error. (Note: sinh0.9=1.0265167, cosh0.9=
1.4330864.)

Find the Taylor series expansion of sin x about x = w/4.

Obtain the Taylor series expansion for 1/(1 — x)* by using the series for 1/(1— x) from Prob-
lem 2.5.

Is it possible to expand log, x in a Taylor series about x =0? Discuss.

Find an expression for sin x cos x accurate to 0(x)’ by using the Taylor series for the
individual functions about x = 0.

Evaluate cos (sin x) to 0(x)°® by using the known Taylor series for sin x and cos x.

Examine the Taylor series about x =0 for ¢* when x =4. The fourth term in the series,
x*/3Y, is larger than the third term, x*/2!. Does this mean the series is divergent? Explain
this apparent anomaly.

Consider two functions g(x) and h(x), related in such a way that g'(x) = h(x) and
h'(x) = g(x) and that g(0) =0 and h(0) = 1. Find the Taylor series expansions for g(x) and
h(x) using only this information.

Show that the Taylor series expansion of f(x) = x’ about x =1 simply reproduces x°.
The error function erf (x) is defined as erf (x) = 2/Vmfie " dt. Find erf (1) to 0(1)* by

expanding erf (x) in a Taylor series about x = 0. (The value of erf (1) = 0.84270079 to eight
decimal places.)



Chapter 3
The Finite Difference Calculus

3.0 INTRODUCTION

In conventional calculus the operation of differentiation of a function is a well-defined for-
mal procedure with the operations highly dependent on the form of the function
involved. Many different types of rules are needed for different functions. In numeri-
cal methods a digital computer is employed which can only perform the standard arithme-
tic operations of addition, subtraction, multiplication, and division, and certain logical
operations.* Thus we need a technique for differentiating functions by employing only
arithmetic operations. The finite difference calculus satisfies this need.

3.1 FORWARD AND BACKWARD DIFFERENCES

Consider a function f(x) which is analytic (can be expanded in a Taylor series) in the
neighborhood of a point x as shown in Fig. 3.1.
We find f(x + h) by expanding f(x) in a Taylor series about x:

FGx+ )= )+ )+ By + e+ G.D)
Solving equation (3.1) for f'(x) yields

f’(x)=w—§f"(ﬂ—%f’"(ﬂ+‘ .. 3.2)

f(X)‘r r«————h—or—h
/:\v\/

-
Ll 4

Fig. 3.1

*Certain sophisticated digital computer programs have been written which can perform formal, analytical
differentiation of a rather wide variety of functions, but this topic is beyond the scope of this book.
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Using the notation developed in Chapter 2,
£y LI 4 6y (3.3)

In words, equation (3.3) states that we have found an expression for the first derivative of
f with respect to x which is accurate to within an error order of h. We shall employ the
subscript notation

f(x +h)=fin 3.4)
fx)=Ff 3.5

Using this notation, (3.3) becomes
oo =E=by oan) (3.6)

We define the first forward difference of f at j as
Afi=fin—f 3.7)

The expression for f'(x) may now be written as
Af;
f,(X):_}l—f-'- 0(h) (3.8)

The term Afi/h is called a first forward difference approximation of error order h to
f'(x). Graphically, the expression (f;.. — f;)/h approximates the slope of the function f at
the point x by the slope of the straight line passing through f(x + h) and f(x).

We now use the Taylor series expansion of f(x) about x to determine f(x — h):

£ = h) = ) = h o)+ ey A ey 3.9
Solving for f'(x),

poo =LDIEm) By oy @3.10)
) fray =TO=LEZ 1) g G.11)

Using the subscript notation,
f(x) =-f"—:,;f";‘+ o(h) (3.12)

The first backward difference of f at j is defined as
Vi=fi—fi- (3.13)
so that the expression (3.12) for f'(x) may be written as

fr(x) =~V,—l’f"+ O(h) (3.14)

The term Vf;/h is called a first backward difference approximation of error order h to
f'(x). The geometric interpretation of the approximation is that of the slope of the
straight line connecting f(x) and f(x — h).
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Note from the error terms in (3.2) and (3.10) that both the forward and backward dif-
ference approximations are exact for straight lines (since the error term does not involve
f'(x)) but are only approximations for any other function (where f”(x) and higher deriva-
tives are nonzero).

Now that we have obtained both forward and backward difference expressions of
O(h) to the first derivative, we will proceed to find approximations to higher order
derivatives. Returning to the forward Taylor series expansion (3.1) for f(x + h),

fOx+ ) = f@) + R )+ 0+ o+ 3.15)
Performing a similar expansion about x, f(x +2h) is found as
Flx +2h) = f(x)+2hf'(x) +2h°f"(x) + %jf'"(x) +. (3.16)

Multiplying equation (3.15) by 2, and subtracting (3.15) from (3.16), the term in f'(x)
drops out, and we may solve for f'(x) to yield

f”(X) =f(x +2h)—2’fl(2x + h)+f(x) _ hf"’(X)‘*‘ . (317)

or, employing the subscript notation,
iz =2t i
fix) = f—2~—hfz-—l+ O(h) (3.18)

We have now found an expression for the second derivative of f with respect to x which is
accurate to within an error order of h. The second forward difference of f at j is defined
as

Nf; = fre = 2fii + f, (3.19)
and we may rewrite (3.18) for f"(x) as
e =L+ om) (3.20)

By using the backward expansion (3.9) to obtain f(x — h) and a similar expansion
about x to obtain f(x —2h), we can find a backward difference expression for f"(x) which
is accurate to O(h):

) = —f—_-z—%—;*—f”—z +0(h) (3.21)
The second backward difference of f at j is defined as
Vfi=fi —2fi-i+ fie (3.22)
Equation (3.21) may then be written as
\
f"(x)’—'—,;z"" O(h) (3.23)

We may now define the procedures for finding higher forward and backward differ-
ences and for approximating higher order derivatives. Any forward or backward differ-
ence may be obtained starting from the first forward and backward differences (3.7) and
(3.13) by using the following recurrence formulas:



CHAPTER 3 THE FINITE DIFFERENCE CALCULUS 19

Af; =AQA™'f) (3.24)
vV, =V(V"'f) (3.25)

In words, we can find any difference by taking the differences of the next lower
differences. For example, the second backward difference of f at j may be found as

\& i = V(Vfi) = Vfi "’Vf}—l =f} "fi—l _ﬁ—l +f}—2 =fi _2ff—1 +f}—2

Forward and backward difference expressions for derivatives of any order are given
by

d’fl _A%

ax |, " TOW (3.26)
and

a’f| _Vi

dxn . - hn +0(h) (3.27)

Note that each one of these expressions for the derivatives is of O(h).

Forward and backward difference expressions of 0(h) are tabulated in Fig. 3.2 for
derivatives of up to fourth order. It may be a convenient memory aid to note that the
coefficients of the forward difference expressions for the nth derivative starting from j
and proceeding forward are given by the coefficients of (—1)"(a — b)" in order, while
those for the backward difference expressions starting from j and proceeding backward
are given by the coefficients of (a —b)" in order.

f; i fivz fis fiea
hf'(x;) = -1 1
h*f'(x) = 1 -2 1 + O
Rf"(x) = -1 3 -3 1
RAf (x) = 1 -4 6 _4 ]

(a) Forward difference representations

fi-a fi-s fia fi-i fi
hf'(x) = -1 1

R () = 1 -2 1 + O
hf"(x) = -1 3 -3 1
hef= (%) = 1 ~4 6 -4 1

(b) Backward difference representations

Fig. 3.2 Forward and backward difference representations of O(h).
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3.2 HIGHER ORDER FORWARD AND BACKWARD
DIFFERENCE EXPRESSIONS

The difference expressions for derivatives which we have thus far obtained are of
O(h). More accurate expressions may be found by simply taking more terms in the
Taylor series expansion. Consider, for example, the series (3.1) for f(x + h):

fGx+ 1) = FG)+ B GO+ ) + 8 )+ (3.28)
As before, solving for f'(x) yields

f,(x)=f(x+hh)—f(x)_h h

3P~ fC0+ - (3.29)

But from equation (3.17) we have a forward difference expression for f”(x) complete with
its error term. Substituting this expression into (3.29), we obtain

o) ~LEEMZF0 RIS =2 W) gy ...
_b6_ Frx) 4 - (3.30)
Collecting terms,
fr(x) — _f(x +2h)+2j;fx + h)—3f(x)_%ffm(x)+ . (3.31)

or in subscript notation,

friey ==Lzt =3 o2 (3.32)

We have thus found a forward difference representation for the first derivative which is
accurate to O(h*). Note also that the expression is exact for a parabola since the error
involves only third and higher derivatives. A similar backward difference expression of
©(h®) could be obtained by using the backward Taylor series expansion for f(x — h) and
replacing f"(x) by the backward difference expression of O(h) from equation
(3.21). Forward and backward difference expressions of 0(h?) for higher derivatives can
be obtained by simply replacing the first error term in the 0(h) difference expressions by
an O(h) approximation. Forward and backward difference expressions of 0(h?) for de-
rivatives of up to fourth order are tabulated in Fig. 3.3.

Higher order forward and backward difference representations, although rarely used
in practice, can be obtained by replacing successively more terms in the Taylor series
expansions by difference representations of O(h). However, as each term is replaced, it
generates an error term which contributes to the next higher order error term and this
must be taken into account when that term is replaced by its difference representation (see
Problem 3.2).
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f; fin fivz fiaa fiva fiss
2hf'(x) = -3 4 -1
hf"(x,) = 2 -5 4 -1 + Oy
20F(x) = -5 18 | —24 14 -3
R (x) = 3 —14 2% | —24 1 -2

(a) Forward difference representations

fi-s fi-e fis fi fier f;

2hf'(x) = 1 —4 3
R f"(x) = -1 4 -5 2 + Oy

2R (x;) = 3 —14 24 -18 5

R4 (%) = -2 1 24 26 —14 3

(b) Backward difference representations

Fig.3.3 Forward and backward difference representations of G(hY.

3.3 CENTRAL DIFFERENCES

Consider again the analytic function shown in Fig. 3.1. The forward and backward Taylor
series expansions about x are respectively

Fx +h) = F0) + R () + o PO+ 2 oo+ (3.33)

Fx = ) = £ = hf () + ) =B iy + - (3.34)

Subtracting the backward expansion (3.34) from the forward expansion (3.33), we note
that the terms involving even powers of h, such as (h*/2)f"(x), cancel, yielding

f(x+h)—f(x——h)=2hf’(x)+h?f’"(x)+- .- (3.35)
or, solving for f'(x),
fl(x) - f(x + h)z—hf(x - h‘) —%‘f”’(X) e (3.36)

or

fix)= f&x+ h)2‘;1f(x —h) +O(hd) 3.37)
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Employing subscript notation,
frxy=E by oony (3.38)

This difference representation, called a central difference representation, is accurate to
O(h*. Note that the point x itself is not involved, and that from the error term in (3.36),
this expression is exact for polynomials of degree 2 (parabolas) and lower. An expres-
sion of O(h?) for f"(x) is readily obtainable from (3.33) and (3.34) by adding these equa-
tions and solving for f"(x) to yield

frey = =2t by oy (3.39)

To obtain f"(x) and f*(x) requires one additional Taylor series expansion in each direc-
tion and some manipulations similar to those carried out to obtain f'(x) and f’(x). The
central difference expressions of O(h?) for derivatives up to the fourth order are tabulated
in Fig. 3.4a. Note that the value of f(x)(f;) itself is missing from all of the representations
for odd derivatives. A convenient memory aid for these central difference expressions
of O(h® in terms of ordinary forward and backward differences is given by

ﬂ - V"f:i+n/2 + Anfy’—-n/2

+ 2 3
P TR Oh"), n even (3.40)
dn.f — V"f;'+(n~l)/2 + A"fj‘(n#l)n 2
fi-2 fi-t fi fiun fis2
2hf'(x,) = -1 0 1
h*f"(x) = 1 ) 1 + Oy
2R3 (%) = -1 2 0 -2 1
hAfe(x) = 1 —4 6 —4 1
(a) Representations of O(h)*
fis fiz fia fi fin fi+2 fies
12hf'(x,) = 1 -8 0 8 -1
12h%f"(x;) = -1 16 -30 16 -1 + Oy
8hif"(x;) = 1 -8 13 0 —13 8 -1
6h*f* (x) = -1 12 -39 56 -39 12 -1

(b) Representations of O(h)*

Fig. 3.4 Central difference representations.



CHAPTER 3 THE FINITE DIFFERENCE CALCULUS 23

Central difference expressions of 0(h*) may be obtained by employing many tedious
operations with the Taylor series expansions which will not be repeated here. These ex-
pressions for derivatives up to order four are tabulated in Fig. 3.4b.

It should be noted that a complete operator approach to central differences can also
be defined[1],* but this approach seems somewhat artificial and overly complicated for
practical purposes.

3.4 DIFFERENCES AND POLYNOMIALS

Difference expressions for derivatives and polynomials have some distinct relationships
which can be very useful. The error term for an nth difference will involve only deriva-
tives of order n +1 or higher. Thus if we consider a polynomial of order n, the nth
difference representation taken anywhere along this polynomial will be constant and ex-
actly equal to the nth derivative regardless of the mesh spacing h (since all of the error
terms will be zero).

This knowledge may be used to get some idea of how well a given polynomial will
fit data obtained at a series of equally spaced points on the independent variable. For ex-
ample, if the third differences taken at various values of the independent variable are
approximately equal and the fourth differences are close to zero, then a cubic should fit
the data relatively well. This will be discussed in more detail in Chapter 4.

These relationships between difference expressions and polynomials may be used in
an inverse fashion to find difference expressions from polynomials. For example, the
forward difference expression for f'(x) of 0(h*) should be exact for a parabola since the
first error term involves f”(x). Thus we should be able to find this difference expression
by fitting the parabola

f(x)=Ax*+Bx+C (3.42)

to the points x =0, h, 2h (these points may be chosen without loss of generality; why?)
and then evaluating f'(0):

f(x)=2Ax+B (3.43)
f=8 (3.44)
Fitting the parabola to the three points gives
fi=C (3.45)
fin=AR’+Bh +C (3.46)
fii2=4Ah*+2Bh + C (3.47)
Solving for B yields
f1©) = B =2t i3 +24,{"“ =3 (3.48)

which is identical to the forward difference expression (3.32). This polynomial approach
can be particularly worthwhile in finding difference expressions for nonuniform values of
h (see Problem 3.3).

*Numbers in brackets designate References at end of book.
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lllustrative Problems

3.1 Find the fifth backward difference representation which is of C(h).

From the recurrence scheme for differences, the fifth backward difference can be
expressed as

Vfi=V(V'f)
=fi—4fi +6fia—4fi s+ fia— (fii— 4fia + 6fis—4fis+ fis)
=fi = 5fi- + 10f; .= 10f; s + 5f s — fi-s
and

d’f v
oW

3.2 Find a forward difference representation for df/dx which is of O(h”).

The Taylor series expansion for f(x + h) is

h4

fx+h)= f(X)+hf’(X)+ f"(X)+ f’"(x)+24

ORI
Now we represent f"(x) and f"(x) by difference expressions accurate to O(h). Since the
error in the representation for f"(x) will contribute to the f"(x) term, we need to know the
first error term in the f"(x) representation. This is obtained from equation (3.17), which
gives

f"(x) =.f(x +2h)_2{l(2x + h)+f(x)_ hflrl(x)+ @\(hZ)

Substituting this in the expression for f(x + k), and collecting coefficients of f"(x), yields

f(x +2h)=2f(x + h)+f(x)]

fx+ = F0+ b )+ | I« B o+ ot

The forward difference representation of f”(x) from Fig. 3.2a is

f(x +3h)—-3f(x +2h)+3f(x + h)— f(x)
h’

fm( ) + O(h)

Since no more derivatives are to be represented, the leading error term in the f”(x) represen-
tation is not needed. Substituting for f”(x),

a1y = -+ oy + [ FEE 2R =20+ )+ )

B[ £0x + 3h) = 3f(x + 20) +3f(x + B~ f(x) .
__3_[ h ]+@(h )

Note that the 0(h*) term now has a contribution from the representation of f”(x). Solving
for f'(x) and collecting terms yields

f/(x) = 2ﬁ+3 -9ﬁ+2;_h18.ﬁ'+l - llf;_‘_ @(hs)
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3.3

3.4

3.5

Given the function tabulated at the points j, j + 1, and j + 2 shown in Fig. 3.5, find a
three-point difference representation for f.

We pass the parabola f(x)= Ax’+ Bx + C through the points x; =0, x., = h,
xj+2=3h and solve for f'(0):

i=C

f(x) h 2h
fii=Ah*+Bh+C
|
i
]
I
i

fire=9AR*+3Bh +C

Now f'(0) = B, so solving for B yields

|
|
| |
| ]
-'8,‘+9j+-‘,‘+ i+l i+2 X
o) = =2 Z s 6;:‘ L _
Fig. 3.5

Find a central difference representation of 0(h? for d’f/dx’.
From Problem 3.1,
Vi =f —5fi-1+ 10f,— 10f, 5+ 5f, s — fis
A’f; can be found in a similar manner as
A°fi= AA'f)
= f;'+5 - 4f}+4 + 6ﬁ+3 - 4f;’+2 + f}+l - [_ﬂ'—m - 4ﬁ+3 + 6ﬁ'+2 - 4ﬁ'+| + .ﬁ]
= fivs— Sfrea+ 10fi3— 10fis2 + 5 — f;
Applying equation (3.41) directly:

Ef _Vhot+ AL,

2
axs s T o)

or

g;‘iz {f}.n - 5_fj+] + 10f, - 10fj..| + Sf}_z““ﬁ',g
+ [ fivs— Sfia+ 10f0 — 10f; + 5fi- — fi2}2R° + O(R?)

— ﬁ‘+3 — 4f;'+2 + 5f;+12';155ﬁ—l + 4fi—2 ’_ﬁ—i 4 @(hz)
Given the following equally spaced data:
X 0 1 2 3 4
fi(x) 30 33 28 12 —-22

Find f'(0), f'(2), f'(4), and f"(0) using difference representations which are of O(h)*.

At x =0, a forward difference representation must be used since no points are avail-
able in the backward direction:
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ey — —4 (2 +4f(1) —3(0) 2
)= 2() +0(1)

=7to O(1y

£(0) = —28 + 4(323) =3(30) _

At x =2, we have a choice of several representations. We arbitrarily select a central
difference representation of G(h):

+ O

(2= 12;33 =—10.5 to (1)

At x =4, a backward difference representation must be employed:

- UO=HOLID gy

3(=22)—-4(12) +28 _
2

—43 to O(1Y

@)=

3.6 The following data represent a polynomial. Of what degree? What is the coeffi-
cient of the highest degree term?

X 0 1 2 3 4 5

F() 1 0.5 8.0 35.5 95.0 198.5

We will take forward differences at each point (backward differences could be used as
well).

First differences:
Afo=fi—f=05-1=-05
Afi=f,—f=80-05=75
Afr=fi—f.=355-8.0=275
Afy=fi~f;=95.0-35.5=59.5
Af,=fi—f,=198.5—95 = 103.5

Second differences:
Afo=Afi—Afo=75-(—0.5)=80
Nfi=Af,—Afi=275-75=20.0
N, = Afi— Af; = 59.5-27.5=32.0
Afy = Af.— Afy = 103.5—59.5 = 44.0
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3.7

Third differences:
A'fy= A’f,— A, =20.0—8.0=12.0
AMf = A, = A%, = 32.0-20.0 = 12.0
Af, = A, — A'f, =44.0—32.0=12.0

Since the third differences are constant, the polynomial is of third degree. The for-
ward finite difference representation of the third derivative is, in general,

d’f _A¥f

FrE ARl

For a third degree polynomial, however, this expression is exact, so

Integrating,
gxiéz 12x + C,
%=6x2+ Cx+0GC
f=2x3+c,1‘2—2+ Cix + Gy

So the coefficient of the highest order term is 2.

The following function represents physical data taken at equally spaced intervals:

b 0 0.5 1.0 1.5 2.0 2.5 3.0

f(x) 1.00 0.80 0.20 0.25 0.31 0.38 0.44

Find f'(1.5) to 0(0.5)".

In Problem 3.5 we simply chose forward, central, or backward difference expressions
for the derivatives, depending on whether we were near the beginning, center, or end of the
table. In practice, this approach is often too naive, depending on the behavior of the
function. Plotting f(x) for the present problem, we obtain the curve in Fig. 3.6.

We wish to find f'(1.5) to 0(h)*, which means a three-point representation will be
needed. A three-point backward representation would require f(1.5), f(1.0), and
£(0.5). The value of f(0.5) would obviously influence the answer in such a way as to give an
incorrect result, and the use of f(1.0) would also appear undesirable since there is apparently
a drastic change in the behavior of f(x) occurring very close to x = 1.0, and the behavior at
x =10 could be quite uncertain. We must therefore reject a backward difference
representation. A central difference representation of f'(1.5) would involve f(1.0), which is
undesirable for the reasons discussed before. A forward difference representation would
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fx)4

0 1 1 1 1 i H
0 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 3.6

SR ]

involve f(1.5), f(2.0), and f(2.5). Over this region the function is smooth and well be-
haved, so we choose this representation:

~f(2.5) +4f(2.0) - 3f(1.5)

fa.s= 50.5) + (0.5
, _ —0.38+4(0.31) — 3(0.25) _ s
5= 20.25) =0.22 to 7(0.5)

3.8 Consider the function f(x) =sin 10@mx. Find f'(0) using forward difference rep-
resentations of @(h) and O(h)’ with h =0.2. Compare these results with each
other and with the exact analytical answer. Discuss the implications of these re-
sults.

The exact solution is
fl(x)= %(sin 107x) = 107 cos 10mx

f(0) =107 = 31.41593
Using h =0.2, the forward difference representation for f'(0) of O(h) is

£0) = %;]‘(O)+ 0(0.2) = sin 1017(0.23;sin 1077(0)+ 0(0.2)
ey Sin2mw =0 _
fO)="—5—=0t000.2)
The forward difference representation for f'(0) of O(h)’ is
s —1(0.4) +4£(0.2) — 3f(0) 2
f= 202) +0(0.2)
__ =sin 10w (0.4) + 4 sin 107r(0.2) — 3 sin 107 (0) 2
= 202) +0(0.2)
__ —sin (4m) +4 sin (27) — 3 sin (0) - )
= 200.2) +0(0.2*=0to €0(0.2)

It should be apparent that no matter what difference representation is chosen, the
result will be zero, since the function will always be evaluated at intervals of 27 in its
argument. Thus h = 0.2 is a very bad choice for a mesh size for this problem since it spans
one complete period of the function as shown in Fig. 3.7.
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fot

Fig. 3.7

In order to obtain a meaningful answer for a finite difference representation of f'(0) it
would be necessary to use a much smaller h, perhaps on the order of h = 0.01 or smaller. It
should be evident that the choice of a mesh size in numerically differentiating a function
should be made only after careful examination of the behavior of the function.

3.9 Consider the function

X 0 1 2

f(x) 0 0.707M 1.0000

Find f’(0) by using a forward difference representation of O(h) with h =1 and
h =2. Extrapolate these resuits to h = 0 and compare with the answer obtained
by using a forward difference representation of O(h)* with h = 1.

The representation of O(h) yields

)= M = ]—5—0 =0.5 to O2)
f(0)= f) ;f(o) = 0'707]] —0_ 0.7071 to O(1)
04
0.9142 ¢
0.7071
0.5000
0 1. é ;

Fig. 3.8
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Linear extrapolation to h = 0 yields (Fig. 3.8)
f'(0) =0.7071 + (0.7071 — 0.5000) = 0.9142
Using a representation of O(h)’ with h =1 yields

() = fD WD =3O o1
)= o) +o

Fy="1 1.0000—;4(0.7071) ~0.9142 to O(1)

Thus linear extrapolation to h = 0 of results obtained using representations of O(h)
and O(2h) yields an answer which is accurate to @(h). This conclusion is true in general
and can be very useful in certain circumstances as we shall see in later chapters.

1/2

Given the function f(x)=x"*+7x, find f'(0) by numerically differentiating the
function. Use a difference representation of 0(h)’ with h = 1.

A numerical answer Will not be given. While we could readily carry out the numerical
differentiation, the result would be meaningless as an approximation to f'(0). Differen-
tiating the function analytically,

fi(x)= %x"’2+7

Hence f'(0) is infinite. The only way in which we might recognize the true character of f'(0)
would be by taking the difference representation for a number of different values of h, each
one smaller than the one before. We would find that the result would be larger each time h
was reduced, and would not approach a limit. If there is doubt about the character of a
function at the point of interest, this approach can be very valuable. It also provides the
best way to decide if the chosen mesh size for a given problem is sufficiently small. (See the
next problem.)

Given f(x) =sinx. Find f'(1) by using a central difference representation of O(h)’
with h =0.2. Is this a sufficiently small mesh size for this problem?

It should immediately be apparent that the problem statement is ambiguous. What is
meant by “sufficiently small”’? Let us arbitrarily decide that we would like the result to be
accurate to two decimal places. The central difference with h =0.2 is

sin (1.2) —sin (0.8)

! —_ v
fia)= >02) +0(0.2)
Pl = 0.9320390—40.717356 — 0.53671 + 0(0.2)

Now we must decide if the value of h chosen is sufficiently small. We have no way of
knowing how good this result is since there is nothing to compare it with (presuming for the
moment that we do not know how to differentiate sin x analytically). Thus we take another
difference representation using h = 0.1, one-half of its previous value:

sy _ Sin (1.1) = sin (0.9) N
FQ =00 " 0(0.1)

)= 0.8912070——20.78332'Z = 0.53940 to 010.17
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The change in the answer was approximately 3 in the third decimal place. To be sure of our
answer to two digits, it would be safest to cut the mesh in half once more and examine the
change. Using h = 0.05,

__sin (1.05) —sin (0.95)

2
ffay= 20.05) + 0(0.05)
1) = 0.8674230—10.813416 — 0.54007 + 0(0.05)"

The change this time was only about 6 in the fourth decimal place and it would appear we can
have confidence in the first two significant digits. (The exact answer is cos(1)=
0.54030.) So while the original mesh size gave the answer correct to two places when
rounded off, we could not be sure of this without also obtaining results for two smaller mesh
sizes.

3.12 Evaluate the accuracy gained by using a central difference representation of
O(h)* as compared to a forward difference representation of @(h) in evaluating
(d/dx)(e™) at x =1. Use h =0.1.

The forward difference representation is

3.004166 —2.718282

f(l)— 01 +O‘(O = 01 +0(0.1)
=2.85884 to 0(0.1)
The central difference representation is
et—e 3.004166 — 2.459603 )
@)= 2(0 1) =+ 00.1} = 02 +0(0.1)

=2.72282 to 0(0.1Y

The exact answer is, of course, ¢' =2.718282. The error in the forward difference represen-
tation is

2.85884 —2.71828 = 0.14056, or 5.15%
The error in the central difference representation with the same mesh size is
2.72282 —2.71828 = 0.00454, or 0.17%

The very large gain in accuracy of the central difference representation over the simple for-
ward difference representation is apparent.

3.13 Compare the central difference result of the preceding problem with a forward dif-
ference representation of @(h)* with h =0.1.

The forward difference representation of O(h)’ is

_el,2+4el.1_3e1,0

, _ 2

£l = . +0(0.1)
_ =3.320117+ 4(3.004166) ~3(2.718282) | o o
= 0.2 )

=2.70855 to 0(0.1)



32 NUMERICAL METHODS

The error is
2.70855—2.71828 = —0.00973, or 0.36%

The central difference representation of 0(h)* had an error of 0.17% so it is still the
most accurate for this function, but the errors of the two O(h)’ representations are quite
comparable.

3.14 Given the function f(x) =tan 40x. Find f'(0.175) using a backward diiference rep-
resentation of O(h) with h = 0.075.

0,175 = FO-175) = £(0.100) _
f(0.175) = 0.075 + 000.075) =

tan (7.000) — tan (4.000)
0.075

+ 00.075

, _087145—1.15782
£'(0.175) By 3.81831 to €(0.075)
The only problem with this result is that it is absolute nonsense.
Examining a plot of tan 40x near x = 0.175 (Fig. 3.9), we find that the differencing has
spanned a discontinuity in f(x), and the answer even has the wrong sign! As in Problem 3.8,
the moral is to be aware of the character of the function before blindly using difference rep-

resentations.
tan 40x ¢ : : / Actual slope
|
| ! /
| ! /
[ | /
|
f
| —— Computed slope
| I[ ——— _——
{ |
I |
| |
| |
1 |
I }
i L 1 :
0.0785 0.100 0.1178 0.175 X

0.1570

Fig. 3.9

3.15 When attempting to perform numerical operations with experimental data, one of
the main concerns is the effect of the inevitable errors or noise in such data on the
result. Consider the numerical differentiation of equally spaced experimental data
when this error is of two very simple types: (a) a constant error, ¢, in the data at
each point, and (b) an error alternating in sign but constant in magnitude, e.g. — € at
one point, + € at the next, —e at the next, etc. Find the effect of such errors in the
data on numerical differentiation. Consider examples of both low and high order
derivatives.
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3.16

A constant error € (type a) will cancel out of all difference expressions for derivatives
since the sum of the coefficients of all terms in any difference expression is zero. For

example,

(Here we have denoted the “‘true” value of the function as f.) This result would hold for
any difference expression of any order. Thus error of this type causes no problem.
If the error is alternating (type b), then the effect is entirely different. Consider

ooy (=€) +4(fi+e)=3(f—€) s _—finT4fia—3f 4e 5
Fx)= > + @(h) =y, + O(h)

Here the error is additive. Consider the third derivative representation of the same order:

fm(xi) = ~3(ﬁ+4'— E) + 14(ﬁ+‘ + 6)_242({;;2— €)+ 18(ﬁ+1 + 6)—'5(ﬁ - E)+ @(h)ﬂ.

_ '—3fj+4+ 14ﬁ'+3"‘ 24f,‘+2+ 18ﬁ+| - Sf, 3_26 2

The error in this representation is much higher. This type of error is thus not only harmful,
but also causes increasing difficulty when attempting to make difference representations of
higher order derivatives. This type of error also causes more difficulty with difference rep-
resentations of high error order for a given derivative than with those of lower order, since
the higher error order representations have more and larger coeflicients.

In the course of performing many numerical calculations, roundoff error will inevit-
ably occur. This error tends to be quite random in nature. What effect might this
have on numerical differentiation?

Random error will obviously not always have the same sign, and tends to act more like
the alternating error (type b) discussed in Problem 3.15. Thus there is a tendency for the
roundoft error to accumulate in a difference expression rather than to cancel. In addition,
the effect can be even more serious for representations of higher order derivatives as
discussed in Problem 3.15.

Problems

3.17 Find a forward difference expression of ¢(h) for d°f/dx".

3.18 Find a forward difference expression for f'(x) which is of 0(h)’ by fitting a cubic to four
equally spaced points. This expression should be the same as that obtained in Problem 3.2.

3.19  Given a function f defined at three unevenly spaced points x;, X;.,, and x;... The spacing of

these points is such that x;.,=x; +6h, where 6 is any positive number, and x,,=
X+ h. Find a three-point difference representation for f"(x;.,).
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3.23

3.24

3.25

3.26

3.27

3.28
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Write a computer program to find the first derivative of sin x at x = 57/8 using forward and
backward difference representations of O(k) and O(h)* and central difference representa-
tions of O(h)’ and O(h). Use h = /10 and h = 7/20. Compare the results with each
other and with the exact answer.

The following tabulated function represents points on a polynomial. What is the degree of
the polynomial?

X 0 1 2 3 4 5 6 7

f(x) 0 -2 -8 0 64 250 648 1372

Given the function f(x) = (sin x)*. Write a computer program to find f'(1) using a central
difference representation of O(h)>. Begin with h = 0.2 and reduce the mesh size by a factor
of 2 for each calculation until the third decimal place in the result does not change on
successive calculations.

Suggest a reasonable mesh size (or sizes) for the numerical differentiation of the function
f(x)=sin (x/100). Justify your selection.

For a function f(x) at a point x;, Af;/h =0.23751 and Vf;/h =0.24369 with h =0.1. Find the
numerical values of the central difference representations of O(h)* for f'(x;) and f"(x;).

For any given difference representation of a derivative, the coefficients must add to
zero. Why?

A typical “biased” difference representation for f'(x;) might be GV, +3Af)/h. Evaluate the
first error term (not the error order) in this difference representation and compare with the
first error term of a central difference representation using the same points.

Compare the actual error made by using the biased difference representation of Problem 3.26
with that of the central difference representation of (k) in evaluating d(sin x)/dx at
x =q/3. Use h=0.1.

Averaging the forward and backward difference representations for f'(x;) of O(h) results in
the central difference representation of @(h)’. What error order results if the forward and
backward difference representations for f'(x;) of ©@(h)* are averaged? (Note that it will be
necessary to know or find at least the first error term in each of these representations.)

*In this chapter and all subsequent chapters the asterisk indicates problems for which a computer solution is
recommended.



Chapter 4

Interpolation and Extrapolation

4.0 INTRODUCTION

Often scientific experimentation or numerical computation results in values for a function
only at discrete points along the independent variable for that function. Such a function
is shown in Fig. 4.1. These values of f(x) may be spaced either evenly or unevenly along
x. In this chapter we shall discuss methods for finding the value of f(x) between the
tabulated points (interpolation) or outside the range in x of the tabulated points
(extrapolation). This chapter also serves as an introduction to the concept of functional
approximation. A more detailed treatment of functional approximation is reserved for
Chapter 7.

)4 .

Fig. 4.1

4.1 GENERATION OF DIFFERENCE TABLES

We begin by considering data which are tabulated at evenly spaced intervals in
x. Consider, for example, Table 4.1.

Table 4.1
x 0 1 2 3 4 5
f(x) -7 -3 6 25 62 129

35
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A forward difference table can be generated by taking forward differences at each
point in x, then taking differences of the differences, etc. A forward difference table
generated from Table 4.1 would be Table 4.2. Note that the lower half of the table cannot
be filled in since one entry is lost in each column every time a new set of differences is

taken.

Table 4.2
x fx) Af A*f N’f Af A’f
0 =7 4 5 5 3 1
1 -3 9 10 8 4
2 6 19 18 12
3 25 37 30
4 62 67
5 129

In a similar manner, a backward difference table can be generated by taking back-
ward differences at each point in x, then taking differences of the differences, etc. The
result is Table 4.3. Note that the lower half of the table has been filled. The entries in
the backward difference Table 4.3 are the same as those in the forward difference Table

4.2 except that they appear on different lines.

Table 4.3
X f(x) vf vif v’f vf \%
0 -7
1 -3 4
2 6 9 5
3 25 19 10 5
4 62 37 18 8 3
5 129 67 30 12 4 1

A central difference table can be generated in a very similar fashion following a
purely mechanical scheme. We leave a space between each line of data, and define the
lines containing the original data as full lines and the lines between the full lines as half
lines. We then take differences as in the forward and backward difference tables, but
alternate the entries between half lines and full lines. The central difference operator 8 is
convenient to use in this context. The definition of the operator is

8fj+l/2 = fi+1 “ﬁ (4-1)
Note also that
8(8"f)=6"""f 4.2)

The central difference table is Table 4.4.
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Table 4.4
x fx) f 8’f 8'f 5f 5°f
0 -7
4
1 -3 5
9 5
2 6 10 3
19 8 1
3 25 18 4
37 12
4 62 30
67
1
5 29 |

We now fill in the gaps in the table by taking the arithmetic mean of the values above
and below each gap. This results in Table 4.5.

Table 4.5

x fx) f 8*f 8°f 8‘f 8°f
0 -7
0.5 -5 4

1 -3 6.5 5

1.5 1.5 9 7.5 5
2 6 14 10 6.5 3
2.5 15.5 19 14 8 35 1
3 25 28 18 10 4

3.5 43.5 37 24 12
4 62 52 30
4.5 95.5 67

5 129

It is worth noting that the difference Tables 4.2, 4.3, and 4.5 show that a polynomial
would fit the data points fairly well since successively higher differences became smaller
in magnitude.

It is possible to fill out the empty regions in any of the tables by assuming that the
function is a polynomial. This will be discussed in detail in Sec. 4.2 in connection with
interpolation.

4.2 GREGORY-NEWTON INTERPOLATION FORMULAS

We are now ready to consider methods of using a tabulated function and the difference
tables to find values of the function between the tabulated points. Although the function
is known only at the discrete tabulated points, we begin by assuming that the function is
analytic over the entire range of interest. This is helpful in the development, and in any
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case, if “good” values are to be obtained for the function between the tabulated values,
then the actual function represented by the discrete points should be reasonably smooth
and well behaved. If the function is analytic, then it should be possible to find the value
f(x) at any point between the tabulated points by using the Taylor series expansion of f(x)
about one of the tabulated points. We arbitrarily designate this point at x =0. For the
present, the discussion is restricted to evenly spaced points. The function might appear
as shown in Fig. 4.2.

fx)4
*
! ‘ | !
| T | : 1 !
|
! ! . I | ! | |
J ! [ [ | ! | |
[ I [ [ ! ! ! ! N
—4h ~3h —2h —h 0 h 2h 3K ah x
Fig. 4.2
The Taylor series expansion about x =0 is
x? x’
f(x) =f(O)+Xf'(0)+§f”(0)+§f”’(0) +oe (4.3)

None of the values for the derivatives are known, but difference expressions are available
for these derivatives as obtained in Chapter 3. For example,

o =520+ o(h) 4.4)

Substituting the difference representations for each one of the derivatives and keeping
careful account of all of the error terms, (4.3) becomes

£ = O+ af+ XE g, XEZIIC I g (4.5)
The remaining terms can be readily obtained by induction. This formula is called the
Gregory-Newton forward interpolation formula. The differences are of course obtained
from the forward difference table. The x axis in the difference table can be shifted so
that any desired point corresponds to x =0.

An entirely similar formula may be found for backward differences as

£(x) =f(0)+%Vfo+%@\72f0+x(x * ;l,);lx 2R g (4.6)

This is the Gregory-Newton backward interpolation formula, which may be carried out by
induction to as many terms as are needed.

The point chosen as x =0 is called the base line in the difference table. It is a
widespread practice, which we shall follow, to eliminate h from the interpolation formulas
by rescaling the independent variable x so that the spacing between lines in the table is 1
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unit. The variable x will be positive if below the base line in the table and negative if
above the base line.
Employing the rescaled x, equations (4.5) and (4.6) become

Gregory-Newton forward formula:

£x) = £+ xafyy + XD prg, 4 XEZDO =D oy 4.7
Gregory-Newton backward formula:
7o) = O+ x(Vfy + X Dyrg, o XO T DD (4.8)

We can now use these formulas together with the difference tables discussed in Sec.
4.1 to interpolate for intermediate values of f(x). The best accuracy will in general be
obtained if the base line in the table has a relatively large number of entries (since more
terms of the interpolation formulas can be used) and if x is less than 1 in magnitude (since
each succeeding term in the series will tend to decrease more rapidly in magnitude). The
usual rule of thumb employed in interpolation is to pick the base line as the line in the table
closest to the point of interest, thus resulting in the smallest value (in magnitude) of x. In
order to ensure a reasonably large number of entries in the base line of the table, we will
usually want to use forward differences if near the top of the table and backward differ-
ences if near the bottom. Interpolation near the center of the table is best achieved with
central differences for several reasons which will be discussed in the next section.

Referring to the difference tables generated in Sec. 4.1, we shall present examples of
interpolation and draw some general conclusions. Suppose that we wish to find f(1.1) for
the following tabulated function:

x 0 1 2 3 4 5

f(x) -7 -3 6 25 62 129

The forward and backward difference tables resulting from this function were given as
Tables 4.2 and 4.3 respectively. Note that since x = 1.1 is near the top of the table, there
are many more entries in the forward difference Table 4.2 near this point. Accordingly,
we choose the Gregory-Newton forward formula (4.7). We select x =1 as the base line
(shown as shaded in Table 4.6) and shift the origin in the forward difference table to this
line. The result is Table 4.6.

We now wish to find f(0.1) in this table, since this was f(1.1) before the origin was
shifted. The spacing between lines of the table is 1, so no rescaling is necessary.

Formula (4.7) becomes

fx)=(=3)+x©) += ( —D gy 4 X —;)!(x~2)

x(x - 1)(x 2)(x —3)
4!

®

€] (4.9)
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Table 4.6
Old x | New x fx) Af A*f Af A'f A’f
0 -1 -7 4 5 5 3 1
1 0 -3 9 10 8 4
2 1 6 19 18 12
3 2 25 37 30
4 3 62 67
5 4 129

The series must stop at this point since there are no more entries in the base line of the

table. Thus (4.9) is actually a polynomial of degree four rather than an infinite

series. Interpolation of the type being carried out here is thus often called polynomial

interpolation. In fact, it may be easily shown (see Problem 4.1) that the polynomial (4.9)

is the one which fits exactly all of the points f(0), f(1), ..., f(4) from the base line to the

bottom of the table. (A fourth degree polynomial is required to fit five arbitrary points.)
Substituting x = 0.1 into (4.9) yields

§(0.1) = (=3)+(0.1)® +

0.1)(=0.9)(=1.9)(~2.9)
* 24 @

=—340.9-0.45+0.228 - 0.08265 = —2.40465

0. 1)(2— 0.9) (10)+ 0.1)(— 069)(_ 1.9) ®)

Now that a value for f(0.1) has been obtained by interpolation, the question of the
accuracy of this value immediately arises. Accuracy in this context means the difference
between the number f(0.1) = —2.40465 which we have calculated by polynomial interpola-
tion, and the “true” value of f(0.1). This “true” value would be the value of f(0.1)
determined by the same means as the tabulated values of f(x) were obtained, e.g. from an
experiment, as the result of numerical calculations, etc. In the present case, since we
have no knowledge of the origin of the tabulated values of f(x), we cannot even speculate
as to what the true value of f(0.1) would be or as to the error in the interpolated
value.* Even in the best of cases, we can only estimate the true behavior of f(x) between
the tabulated points, based on our knowledge of the physical or numerical situation. The
answer to the original question concerning the accuracy of the interpolated value for f(0.1)
must then be that we simply do not know. However, if the true function f(x) is well
behaved, then the interpolated value will be reasonably accurate. One measure of this
behavior which has been mentioned earlier is that if the higher order differences of a
tabulated function become small, then polynomial interpolation will usually be quite
accurate. Certainly, if we have any reason to suspect that f(x) would not behave in a
smooth, continuous fashion between the tabulated values, then we should not expect
polynomial interpolation to provide meaningful values.

*It is possible to give an expression for the error in polynomial interpolation, but this expression is usually
useless in a practical sense since it requires knowledge of the behavior of f(x) between the tabulated
points. We shall, however, find this error expression of value in a different context in Sec. 4.5.
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In general, taking as many terms as practical in the Gregory-Newton interpolation
formulas will give the most accurate interpolated value, although there is no guarantee
that this is the case. Each additional term in the interpolation formula actually increases
the degree of the interpolating polynomial by one. Since we have used all of the available
entries in the base line of the difference Table 4.6 to obtain f(0.1), it would appear that the
fourth order interpolating polynomial (4.9) is the best we can do. However, it is possible
to increase the number of entries in the base line. The highest difference in the table is
A’f =1 in the top line. If it is assumed that all 5th differences are constant at 1, the
empty spaces in the table may be filled, and (4.9) results in Table 4.7. If the Gregory-
Newton forward interpolation formula (4.7) is applied to any line in Table 4.7 as a base
line, the resulting 5th degree polynomial may be shown to be the polynomial which exactly
fits all of the six points in the table (see Problem 4.2).

Table 4.7
New x f(x) Af NS Af Af Af
-1 ~7 4 5 5 3 1
0 -3 9 10 8 4 1
1 6 19 18 12 5 1
2 25 37 30 17 6 1
3 62 67 47 23 7 1
4 129 114 70 30 8 1

Recalculating f(0.1) using the additional term now available due to the added entry in
the base line yields

0.)(=0.9(—1.9)(—2.9(—3.9) )
120

= —2.40465 +0.01612 = —2.38853

f(0.1) = —2.40465 +

The contribution of this additional term is relatively small. The effect of filling out the
table would be much greater if the base line were farther down in the table.

Interpolation using the Gregory-Newton backward difference formula and the back-
ward difference table is identical in concept to the forward difference interpolation just
discussed.

4.3 INTERPOLATION WITH CENTRAL DIFFERENCES

Interpolation near the center of a set of evenly spaced tabulated values is best accom-
plished by using central differences. A central difference table is first generated as
discussed in Sec. 4.1. Then an interpolation formula must be chosen. There are many
interpolation formulas using central differences, but we shall present only two of the most
commonly used. These are
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Stirling’s formula (full lines as base):

22D (5y,)

x(x2—D(x*-4)
51

f(x)= f(0)+x(6yo)+ (5 Yo) +

x*(x*=1

L TR

8*yo) + (&y)+- -+ (4.10)

Bessel’s formula (half lines as base):

-’ 1/4) x(x>—1/4)

f(x) = f(0) + x(8yo) +~——57— (8 )+——§——( *Yo)

L& —1/4‘)1('x —9/4)( vo + LG —1/4;)'(x —9/4)( o)+ - -

(4.11)

In order to employ these formulas, the origin of x must be shifted to the base line,
and x rescaled so that the spacing between full lines of the table is made 1. Since we
have a choice as to whether the full lines or the half lines of the difference table will be
used as the base line, x need never be larger than =0.25. This results in very rapid
“convergence” of the interpolation formula in the sense that only a few terms are needed
to obtain ‘“‘accurate” polynomial interpolation. (This actually means that only a few
terms are required to obtain a value which lies essentially on the highest order interpolat-
ing polynomial available from the base line entries.)

To illustrate central difference interpolation, we shall find f(2.7) for Table 4.1 which
resulted in the central difference Table 4.5. The spacing between full lines in this table is
already 1, so no rescaling is necessary. The coordinate x = 2.7 is nearest x = 2.5, so this
half line is chosen as a base line (shown shaded) and the coordinate shifted accord-
ingly. The result is Table 4.8.

In the shifted coordinate, we wish to find f(0.2). Since we are using a half line as a
base, Bessel’s formula (4.11) is used:

£0.2) = 15.5-+0.2(19) + 04 - 025) (1 0.2(0.02 ~025) o
, (0.04-0.25)(0.04 ~2.25) 0.2(0.04 — 0.25)(0.04 — 2.25)
24 3.5)+ 120 M

=15.5+3.8—1.47—-0.056 + 0.06768 + 0.00077 = 17.84245

Note that the terms decrease rapidly in magnitude.

One point of caution should be mentioned concerning the values of f(x) on the half
lines in the central difference table. (These are the values at old x =0.5, 1.5, 2.5, 3.5, and
4.5 in Table 4.8.) These were determined by averaging the values above and below them
in the difference table, and are not accurate values obtained by polynomial
interpolation. Bessel’s formula takes this into account when interpolation is done with
the half lines as a base, but if a value of f(x) directly on a half line is needed, it should be
obtained by using Bessel’s formula with that half line as a base and with x =0.

As with the forward and backward difference tables, the empty regions of the central
difference table can be filled out in order to provide additional entries in the base line, but
it is often not necessary due to the rapid ‘“‘convergence” of the central difference interpo-
lation formulas.
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Table 4.8
Old x New x f(x) 5f 8 f &8*f 5*f 8°f

0 —-2.5 -7
0.5 -2 -5 4

—-1.5 -3 6.5 5
1.5 -1 1.5 9 7.5 5

—-0.5 6 14 10 6.5 3
2.5 0 15.5 19 14 8 35 —1
3 0.5 25 28 18 10 4
35 1 43.5 37 24 12
4 1.5 62 52 30
4.5 2 95.5 67
5 2.5 129

4.4 INTERPOLATION WITH NONEQUALLY SPACED DATA;
LAGRANGE POLYNOMIALS

For various numerical or experimental reasons it is often inconvenient or impossible to
obtain data at equally spaced intervals. Since all of our previous interpolation theory is
based on equally spaced intervals, we must adopt a different approach, but the concept of
polynomial interpolation will be retained.

Consider a series of points f(x;) where the x; are in general not evenly spaced, and i
can take on all integer values from 0 to n (which means that there are n +1 such
points). One possible approach to polynomial interpolation between the x:’s is to simply
fit a polynomial of degree n to these n + 1 points. A typical example is shown in Fig. 4.3
forn =17.

fx)¢

Fig.4.3 Seventhdegree polynomial fitted to eight unequally spaced points.

In order to find the n + 1 coefficients of this nth degree polynomial so that it can be
evaluated at any desired intermediate value of x, it would seem necessary to solve n + 1
simultaneous linear equations. Instead, we will not actually solve for these coefficients,
but will construct the polynomial in a different way.
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We can define a polynomial of degree n associated with each point x; as
Pi(x) = Aj(x —xo)(x —x)(x —x2) -+ - (X = X5 0(x —Xj+1) * -+ (x — %) 4.12)

where A; is a constant, and where the factor x — x; is omitted. Equation (4.12) may be
written in a shorter notation as

Pi(x) = A ] (x - x) (4.13)
P
When x is equal to any of the x; corresponding to a data point (except x;), the value of this
polynomial is zero since the factor x; — x; will be zero. However, when x = x;, the value
of the polynomial is not zero since the factor x — x; is missing. Thus if we denote one of
the data points as X,

{0’ kA (4.14)
Pi(x) = = :
* Ain(xi—xi)s k=j
i=0
If A; is defined as
A=t
H (X — x)
i=
then (4.14) becomes
0, k#j
P,-(xk)={1’ k=] (415)

Thus the P;(x) are a set of nth degree polynomials, defined in such a way that each
one passes through zero at each of the data points except for the one point x, where
k =j The P;(x) are called Lagrange polynomials.

We now form the following linear combination of the P;(x):

pu(x) = 3 0P, () (4.16)

Since (4.16) is a linear combination of nth degree polynomials, it is also an nth degree
polynomial. If we select any one of the points at which data are available, say x,, then

Pr(X2) = fF(X0)Po(x2) + f(x)P1(x2) + f(x2)Pox2) + -+ - + (X0 ) Pu(X2)

But since each of the P;(x,) is zero except for P(x,), which equals 1,

Pn(x2) = f(x2) Pox2) = f(x2)

At x,, this nth degree polynomial yields the value f(x;). It can easily be seen that for any
of the data points x;, the polynomial becomes f(x;). Thus the polynomial p,(x) is the
desired polynomial of degree n which exactly fits the n + 1 data points.

Interpolation with this polynomial can best be illustrated with an example. Con-
sider the following set of data:
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i 0 1 2 3
X; 1 2 4 8
(%) 1 3 7 11

Suppose we wish to interpolate for f(7). Then
p3(7) = 1Po(7) + 3P (7)Y +TPA7) + 11Px(7)

=20 -4 -8) _
A=2)(A=2)1-8) 0.71429

T-DA-H7-8 _
2-DR2-H2-8)

_0=-DT=-2(7-8) _
P =G=ha=2a—9~ '*

_-D0=-20-4 _
P = e DE—2E 4~ "3

f(7) = ps(7) =0.71429 + 3(— 1.5) +7(1.25) + 11(0.53571) = 10.85710

Po(7) =

P1(7) = 1.5

This is the value of the interpolating polynomial at x =7.

It should be noted that polynomial interpolation of this type can be dangerous
toward the center of the regions where the independent variable is widely spaced.
Although the polynomial is “tied down” at the data points, it is free to wander, possibly
excessively, between widely spaced data points.

4.5 CHEBYSHEV INTERPOLATION; CHEBYSHEV POLYNOMIALS

When it is known beforehand that interpolation will be carried out on a certain interval of
x, and if there is complete freedom of choice in the selection of the values of x where data
will be obtained, then there are advantages to choosing these values of x in a certain
way. If the values of x are chosen properly, the effect is a very desirable tendency to
minimize the maximum error in interpolation.

To show this, we quote without derivation the error made in polynomial
interpolation. (For the derivation, see Ref. 2.)

n (n+1)
E(x)=g(x—x;)j(rn +(1’)’!) (4.17)
The x; are the n + 1 values of x at which data are available and f(x) is the continuous func-
tion (generally unknown) which is to be approximated by the interpolating
.polynomial. The (n + 1)th derivative of f in (4.17) must be evaluated at some n which is
a function of x and which is within the range of the x;, but is otherwise unknown. In gen-
eral, since f(x) is fixed for a given problem and f(x) and n are unknown, the only way in
which we can influence this error is in the choice of the x; at which data are taken. We
shall attempt to choose the x; in such a way that the maximum value of II}., (x — x;) on the
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interval of interest is minimized (the so-called minimax principle). This tends to mini-
mize the maximum value of the error E (x), but since f“*"(n) may not peak at exactly the
same value of x as does II7_, (x — x;), there is no guarantee of this overall minimax be-
havior.

Note first that IT7-, (x — x;) is a polynomial of degree (n + 1) with a coefficient of 1 for
the term in x”*'. We now restrict x to the interval —1=<x < 1. This is not a serious
restriction since, as we shall see, any finite interval can be transformed into this
interval. Consider next a set of polynomials called Chebyshev polynomials, which are
defined by

T.(x)=cos (n cos™' x) (4.18)

where T, (x) is the Chebyshev polynomial of degree n. The first few Chebyshev polyno-
mials are

To(x)=1

T{x)=x

Ta(x)=2x>—1

Ts(x) =4x>—3x (4.19)

Tux)=8x"—8x*+1
Ts(x) = 16x>—20x> + 5x
To(x) =32x°—48x*+18x°— 1

Since the generating function (4.18) is a cosine, these polynomials have a maximum mag-
nitude of 1. We now define a new set of polynomials given by

() =2 (4.20)

By examining the Chebyshev polynomials (4.19) it is apparent that dividing by 2"™' pro-

duces in the #.(x) a set of polynomials having a coefficient of 1 for the term in x". We

state without proof (see Ref. 2 for proof) that the polynomial ¢, (x) has the smallest upper

bound of all polynomials of degree n having a coefficient of 1 for the term in x".
Thus if we can make

[T =50 = @) “.21)

we will have minimized the maximum value of II7., (x — x;) on the interval —1 < x < 1 and
as far as possible minimized the maximum error. Since both sides of (4.21) have a
coefficient of 1 for x"*', we can satisfy the equality if the x; are the roots of the polynomial
Yr..1(x). These are the same as the roots of the Chebyshev polynomial T,.,(x).

The roots of T,..(x) are given by

X, = COS [(22'2121)77] m=0,1,2,....n (4.22)

These roots tend to be packed more densely near the ends of the interval than at the
center. For example, for T«(x), the roots are
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Xo = 0.96592583 x3 = —0.25881905
x, = 0.70710678 x4 =—0.70710678
X2 = 0.25881905 x5 =—0.96592583

The complete procedure for choosing the points at which to take data and for
carrying out the interpolation can now be described. Suppose we wish to take data on
the interval a =<z < b at n + 1 points. (Remember that x has been temporarily restricted
to the interval —1=<x <1.) These points should be located on the interval —1sx <1
according to (4.22). Their location on a <z <b may be found from the equation

z =%[(b —a)x +b+al (4.23)

Taking the data on the z, i =0,1,...,n, gives a set of values of f(z). In order to
interpolate for f(z) at any arbitrary z, it is only necessary to carry out the Lagrange inter-
polation for nonequally spaced intervals discussed in Sec. 4.4. See Problem 4.10 for an
example of Chebyshev interpolation.

4.6 INTERPOLATION WITH CUBIC SPLINE FUNCTIONS

One of the difficulties with conventional polynomial interpolation, particularly if the
polynomial is of high order, is the highly inflected or “wiggly” character which it is
possible for the interpolating polynomial to assume.

A smoother interpolating function can usually be produced by mechanical means
such as a French curve or, more to the point of this discussion, by forcing a flexible elastic
bar to pass through the desired points. The mathematical analog of this flexible elastic
bar is the cubic spline function. Interpolation using the cubic spline is currently very
popular, particularly for interpolation in relatively noise-free tables of physical properties.

The construction of a cubic spline interpolating function can be briefly described as
follows[2]. Asin Sec. 4.4, we are given a series of points x; (i =0,1,2,...,n) which are
in general not evenly spaced, and the corresponding functional values f(x;). Now con-
sider two arbitrary adjacent points x; and x;.;,. We wish to fit a cubic to these two points
and use this cubic as the interpolating function between them. We denote this cubic as

F.(x) = ao+ a\x + ax*+ asx* (i <sSx<x.) (4.24)

There are clearly 4 unknown constants in (4.24), and only two conditions are immediately
obvious, namely that F(x;) = f(x;) and Fi(x...) = f(x..,). We are free to choose the
two remaining conditions as we like, to accomplish our desired objective of
“smoothness.” The most effective approach is to match the first and second derivatives
(and thus the slope and curvature) of F;(x) to those of the cubic F, ,(x) used for
interpolation on the adjacent interval x;_; < x = x.. If this procedure is carried out for all
intervals in the region x,=<x <x, (with special treatment at the end points as we will
discuss later), then an approximating function for the region will have been constructed,
consisting of the set of cubics Fi(x) (i =0,1,...,n —1). We denote this approximating
function for the entire region as g(x) and call it a cubic spline.

To actually construct g(x), it is convenient to note that due to the matching of
second derivatives of the cubics at each point x;, the second derivative of g(x) is
continuous over the entire region x, <x <x,. This second derivative might appear as
shown in Fig. 4.4.
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Note that the second derivative varies linearly over each interval. (The second de-
rivative of a cubic is a straight line.) Due to this linearity, the second derivative at any
point x, where x; <X < X, iS given by

X

g"(x) = £"(x) + T [g" () — 8] (4.25)

Integrating this equation twice and applying the conditions that g(x;) = f(x:;) and g(x:.\) =
f(xi+1), we find that for xi <x = xi.,
_ _g"(x) [(X.-+| —x)’
g(x)"E(x)_ 6 Axi

L 8 [(" — %) Ay (x - xi)]

— Axi (X4 —x)]

6 Ax;
+ 700 |22 o |22 (4.26)

where Ax; = x;., — Xx. Equation (4.26) provides the interpolating cubics over each inter-
valfori =0,1,...,n — 1. Since the second derivatives g"(x;} (i =0,1,...,n) are still un-
known, these must be evaluated before we can use (4.26).

The second derivatives can be found by using the derivative matching conditions:

Fi(x:)=F/_i(x) (4.27)
and
F'(x:)) = F{_,(x;) (4.28)

Equation (4.28) is simply equivalent to stating that g"(x;) is the same when x; is ap-
proached from either side. Applying these conditions to (4.26) for i =1,2,...,n — 1 and
collecting terms yields a set of linear simultaneous equations of the form

= f(x"*‘)_f(xi)__f(xi)'_f(xi—l) . _
~ [ (Ax.)? (Ax)(Ax) ] (i=12,...n—1 (4.29)
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If the x; are evenly separated with spacing Ax, then (4.29) is considerably simplified and
becomes

[11g"(xi-1) +[41g"(x:) +[1]g"(xis) = 6 [f (i) = @{gj)z S (’""')] (4.30)

Whether the equations are of the form (4.29) or (4.30), there are n — 1 equations in the
n -+ 1 unknowns g"(xq), g"(x.),...,8"(x.). The two necessary additional equations are
obtained by specifying conditions on g”(x,) and g"(x.). It is usually simply specified that

2"(x0) = 0 (4.31)

and
2"(x.) =0 (4.32)

The resulting g(x) is then called a natural cubic spline. This corresponds physically to
letting the elastic bar mentioned earlier assume a natural unrestrained straight line beyond
the region of interest.

The set of equations (4.29) or (4.30) is now complete and can be solved for g"(x,),
g"(x2),....g"(x.—1). The inconvenience of having to solve a set of simultaneous linear
equations is tempered somewhat by the fact that the set seldom need be very large, and
that each equation contains at most three unknowns. In Chapter 6, we will examine a
very simple method for solving even very large sets of the form (4.29) or (4.30). Such
sets are termed tridiagonal.

We will illustrate cubic spline interpolation with an example. Suppose the follow-
ing unevenly-spaced tabulated function is given:

=
—~
—_
=
S’

LRV S =)
SO N B
—_

w

—

We will approximate f(5) by interpolation on a natural cubic spline. First, we set g"(1) =
g"(10)=0. Now, writing (4.29) for i =1,

@-1 26-11 ., ver  [(15-9)  (9—4)
[(6—4)] (°)+[<6—4)Jg @ +{le (6)”6[(6—402 (6—4)(4—1)]

or
58" @) +g"6) =4

Similarly, we find for i =2 that
0.66667g"(4) +3.333332"(6) + g"(9) = — 11.33333
and for i =3,

3g"(6) +8g"(9) = -8
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Solving these three equations simultaneously, we find
g"(4) = 1.56932, g2"(6) = —3.84661, g"(9) =0.44248

Since we wish to approximate f(5), then we must use the cubic F(x), which is appropriate
for the interval 4 <=x <6. From (4.26),

F(5)=8@ [(6”5)3 —(6—4)(6— 5)] +87©) [(5 =D’ 6—a)s —4)]

6 L(6-4 6 (64
“s|=5] 15 [e=5)

Inserting the previously determined values for g”(4) and g"(6), we find
Fi(5) = 12.56932

This is the desired interpolated value.

4.7 EXTRAPOLATION

If a function f(x) is known only on the interval a < x < b, but values of f(x) are needed
for x < a or x > b, then extrapolation is required. Even under the best of circumstances,
extrapolation contains a strong element of uncertainty. Unlike interpolation, where the
function is firmly anchored on both sides of the point where a value is to be obtained, in
extrapolation the function is fixed on only one side and is relatively free to wander on the
other side.

If the function is known at discrete, evenly-spaced points, then the Gregory-Newton
forward or backward polynomial interpolation formulas are commonly employed for ex-
trapolation, with the last known point used as the base line. (The choice of a forward or
backward formula will of course depend on whether x > b or x <a.) In order to obtain
meaningful answers using this type of extrapolation, it is particularly important that the
function be well suited to polynomial interpolation. As discussed earlier, this means that
higher order differences in the difference table must approach zero.

If the function is known at discrete, unequally-spaced points, then the Lagrange in-
terpolation formula may be used directly for extrapolation by inserting the desired
x. Since no difference table is available for evaluation of the character of the function,
this type of interpolation requires particular care.

It is often necessary to extrapolate other types of functions, such as analytical func-
tions defined only on a certain range or functions available only as curves on a graph
(instrument calibration curves, experimental correlations, etc.). The many possible ap-
proaches to such problems are beyond the scope of this book, but a universal rule which
should be applied to all extrapolation is not to accept extrapolated values without intelli-
gent skepticism.

Some of the possible pitfalls of extrapolation are illustrated in Problem 4.8.
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llustrative Problems

4.1

4.2

In Sec. 4.2 it was stated that the application of the Gregory-Newton forward inter-
polation formula to any base line in a forward difference table would yield a
polynomial which would fit exactly all data points below the base line in the
table. Verify this for the polynomial (4.9) which resulted when x = 0 was used as
a base in Table 4.6.

The polynomial (4.9) is

fX)==3)+x9)+ x(xz— D 10y + XX = 16)(X ~2) g)
x(x —Dx —2(x ~3)
24 @)

If x =1, all terms drop out except the first two, since the factor x — 1 appears in all other
terms. Thus

f(H=-34+(1)9=6
For x =2, only the first three terms remain, yielding

2(1)

fQ) =-34+29+=2(10)=25

Similarly,

3 (10)+ 320 )3

f3) =-3+39)+=+-(10) +——"—

and

1@ =3 +49) + 22 10+ 10D g 20D )

All of these values agree with the entries in Table 4.6.

Also in Sec. 4.2, it was stated that when all of the empty spaces in a difference table
are filled in, the polynomial resulting from the Gregory-Newton interpolation for-
mula using any line as a base would fit exactly all of the data points in the table.
Partially verify this for the Table 4.7 by computing f(—1) using the line x =3 as a
base.

Using the Gregory-Newton forward interpolation formula for f(—1) with x =3 as a
base yields

f(—1) =62+ (—4)(67) + o 4)2(’ ) an+ - 4)(_65)(_ 6) 23)

D=5 (=4 (= 5= 6)(= (- 8)
+ 24 M+ 120

)

=62 — 268 + 470 —- 460 + 245 — 56 = —7

which is the entry in Table 4.7 for f(—1).
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4.3 The following is the tabulation of an actual thermodynamic quantity:
X 0 0.2 04 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 22 24
f11.0000.916 | 0.836 | 0.740 | 0.624 | 0.40-0.29* | 0.224 | 0.240 | 0.265 | 0.291 | 0.316 | 0.342 | 0.368
*The curve is essentially a vertical straight line at x = 1.0.
Find £(0.23).
Since x = 0.23 is close to the top of the table, we choose to employ Gregory-Newton
forward interpolation. Because the function f(x) appears to behave smoothly for 0 < x <
0.8, only this range of x will be used in generating the difference table. Because of the
discontinuity in f(x) at x = 1, the table should not include or span x = 1.0. Wechoose x = 0.2
as a base. Rescaling and shifting the x axis, the difference table is Table 4.9.
Table 4.9
Oid New
X X f Af A*f A'f A'f
0 -1 1.000 —-0.084 +0.004 -0.020 0.016
0.2 0 0.916 —0.080 -0.016 —0.004
0.4 1 0.836 —0.096 -0.020
0.6 2 0.740 -0.116
0.8 3 0.624
The higher order differences tend to eventually decrease so that polynomial interpola-
tion should be adequate. The point x = 0.23 on the old x scale is the same as x = (.15 on the
new x scale (0.03 is 3/20 of the interval between lines). Applying the Gregory-Newton for-
ward interpolation formula for f(0.15) yields
£(0.15) = 0.916 + (0.15)(~ 0.080) +(—°'1—51(2;°'—85—) (=0.016)
n (0.15)(— 0.;35)(— 1.85) (~0.004)
=0.916 —0.012 + 0.00102 — 0.0001572 = 0.9049
4.4 Find f(0.78) for the function of Problem 4.3.

Since x =0.78 is near the bottom of the range 0<x <0.8 where the function is
smoothly behaved, we employ backward difference interpolation. As before, the point of
discontinuity x = 1.0 should not be included or spanned in generating the difference table,
which is given by Table 4.10.
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Table 4.10
x f vf Vif v’f v'f
0 1.000
0.2 0.916 —0.084
0.4 0.836 —0.080 +0.004
0.6 0.740 —-0.096 —-0.016 —0.020
0.8 0.624 ~0.116 —-0.020 —0.004 0.016

We choose x = 0.8 as the base line. On this and all succeeding problems we will not
explicitly rescale and shift x, since the x value to be used in the interpolation formulas is
easily found. The point x =0.78 is 2/20 of the distance from x =0.8 to x =0.6 in the
negative x direction. Thus the x to use in the interpolation formula is x = —0.1. The
Gregory-Newton backward formula (4.8) then yields

§(0.78) = 0.624 + (= 0.1}(—0.116) +

+ (- 0.1)(2.9)(1.9)

£0.D0.9) 12)(0'9) (~0.020)

_ (—0.1)(0.9(1.9(2.9)
(—0.004) + >4

(0.016)
=0.624 +0.0116 + 0.0009 + 0.000114 — 0.0003306 = 0.6363

4.5 Given the following tabulated function:

b -1 0 1 2 3 4 5 6

f(x) -0.93 1 3.07 5.40 11.95 41.32 144.75 | 431.32

Find f(2.2) by using Gregory-Newton forward difference interpolation and central
difference interpolation. Compare the effectiveness of the two methods.

We first prepare forward difference Table 4.11.

Table 4.11
x f(x) Af A'f Nf A'f N’f Af
- -0.93 1.93 0.14 0.12 3.84 10.80 7.20
1 2.07 0.26 3.96 14.64 18.00 7.20
3.07 2.33 4.22 18.60 32.64 25.20 7.20
5.40 6.55 22.82 51.24 57.84 32.40

11.95 29.37 74.06 109.08 90.24
41.32 103.43 183.14 199.32
144.75 286.57 382.46
431.32 669.03
1100.35

NN R WN = O e
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At first glance, this table would seem to indicate that f(x) is not well suited to
polynomial interpolation, since through most of the table, the higher order differences in-
crease in magnitude. However, one of the fifth differences decreases and the sixth differ-
ences are actually quite small. The two available sixth differences are also equal. This
means that interpolating polynomials of degree five or six would probably give acceptable
results, while polynomials of degree three or lower would probably be unacceptable.

If the table had been terminated, for example, at third differences, we would have
concluded that polynomial interpolation would not be acceptable, and under the cir-
cumstances this conclusion would be correct. (The highest degree interpolating polyno-
mials which could be generated with three differences would be third degree, and these
would be inadequate.)

In order to be able to evaluate the two interpolation schemes which we will examine,
we will disclose that the function from which the tabulation was prepared was a sixth degree
polynomial, and that evaluating this polynomial at x = 2.2 yields f(2.2) = 6.08078.

We choose x =2 as a base, and use the Gregory-Newton forward interpolation for-
mula with x =0.2. This gives

0.2)(— 068)(_ 1.8) (51.24)

f(2.2) =5.40+0.2(6.55) + (22.82) +

" 0.D(— 0.8);; 1.8)(—=2.8) (57.84)

N (0.2)(—0.8)(— 1.8)(—2.8}(—3.8)
120

0.2(-0.8)
2

(32.40)

or
F(2.2) = 5.40 + 1.310].710 — 1.8256]. 844 + 2.459521; 30302

— 1.943424]; 400096 + 0.8273664 16 2278620 = 6.2279

The number at the base of the bracket on each new term is the partial sum of all terms up to
and including that term. Note that the result is not a good approximation to the exact value
of f(2.2) = 6.08078 until the final term (which corresponds to a fifth degree polynomial con-
tribution) is included. The result would have been exact if there were one more entry in the
base line of the difference table.

Now consider central difference interpolation. We first prepare central difference
Table 4.12 near x =2.

Table 4.12

x f(x) of 8°f 8’f 8*f 8°f
-1 —-0.93
—-0.5 0.035 1.93

0 1 2.00 0.14

0.5 2.035 2.07 0.20 0.12

1 3.07 2.20 0.26 2.04 3.84

1.5 4.235 2.33 2.24 3.96 9.24 10.80

2 5.40 4.44 4.22 11.28 14.64 14.40

2.5 8.675 6.55 13.52 18.60 23.64 18.00

3 11.95 17.96 22.82 34.92 32.64

3.5 26.635 29.37 48.44 51.24

4 41.32 66.40 74.06

4.5 93.035 103.43

5 144.75
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4.6

Since x = 2.2 is nearest to the full line x =2, we choose this as a base line and employ
Stirling’s formula (4.10) with x =0.2:

(0.04)
2
n 0.04)(0.04— 1)
24

£(2.2) = 5.40 +0.2(4.44) + 0—'21(%22

4.22)+ (11.28)

0.2(0.04 — 1)(0.04 — 4)
120
= 5.40 + 0.888] 255 + 00844, 3726 — 0.36096 ], 01100
—0.02342]; gss02 + 0.09124]; gr026
=6.07926

(14.64) + (14.40)

Not only is this answer more accurate than the forward difference formula with the same
number of terms, but it is also notable that each one of the partial sums in this central
difference formula is more accurate than any of the partial sums of the forward difference
formula with the exception of the final value! The more rapid convergence of the central
difference formula is obvious, and this method should be chosen whenever the value of x for
which f(x) is to be found is sufficiently far from the ends of the table to allow a reasonable
numbers of entries in the base line. (Incidentally, both interpolation formulas would
give exact results if one more term were included in each. Why?)

The following tabulated function represents data taken at equally-spaced
intervals. It was thought that the data would result in a2 smooth function, generally
similar in character to a second degree polynomial. However, there appears to be
a significant error in one of the data points. Find this point and ‘“‘correct” it.

X I 2 3 4 5 6 7 8

f(x) 0.812 0.642 0.691 0.893 1.454 2.164 3.092 4.240

We first prepare forward difference Table 4.13.

Table 4.13
x f(x) Af A Af A'f
i 0.812 ~0.170 | 0219 ~0.066 0.272
2 0.642 0.049 0.153 0206 | —0.416
3 0.691 0.202 0.359 ~0210 0.279
s | 0893 |  0.561 0.149 0.069 | -0.067
5 1.454 0.710 0.218 0.002
6 2.164 0.928 0.220
7 3.092 1.148
8 4.240
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The first impression of the table is that it shows little evidence that f(x) could have the
general behavior of a second degree polynomial. Many of the higher order differences in-
crease instead of decrease, and the third differences, with the exception of the bottom entry,
certainly are not close to zero. However, it should be noted that an error in a single entry in
f(x) propagates across and upward in the table, affecting two entries in the Af column, three
in the A’f column, etc. This tends to mask the true character of f(x). We note that the top
entry and the bottom two entries in the A’f column are approximately constant at 0.220. If
we postulate that the entry for f(x) at x = 4 is incorrect, then the remaining three entries in
the A’f column are incorrect also as are all elements within the dotted lines. Setting the top
two of these second differences to 0.220, and working back to the left to make all elements
within the dotted lines consistent with these second differences, we obtain Table 4.14.

Table 4.14
x fx) Af N’f
i 0.812 —-0.170 0.219
2 0.642 0.049 0.220
3 0.691 0.269 0.220
4 [ 090 | 0489
5 1.454 0.710 0.218
6 2.164 0.928 0.220
7 3.092 1.148
8 4.240

The remaining second difference (encircled) is given by Af|,—s— Af].-.=0.710—0.489 =
0.221. Since this is essentially the same as the assumed second differences, we can be
reasonably confident we have found the error, and that f(4) = 0.960 is more nearly “correct”
than the original value of 0.893. The function f(x) now closely resembles a second degree
polynomial since A’f is virtually constant. Tt should be noted that such “correction’ can be
very dangerous unless one is very certain that the point is actually in error.

It was stated in Sec. 4.4 that in Lagrange interpolation, if the spacing between any
two points was large compared with the spacing of all other points in the table, then
the polynomial could “wander” in that widely spaced region resulting in excessive
error in approximating the actual function. Consider the function f(x)=
sinx, 0<x < Evaluate the effect of point spacing on the cubic approximation
to f(x) obtained by using four points in the Lagrange interpolation formula.

In order to keep the comparison as simple as possible, we will always use the two end
points, x =0 and x =, and vary the spacing of the two interior points. Rather than
plotting all of the polynomials, we will simply compare the peak value f(7r/2) =1 with the
value for x = w/2 from the polynomial approximations. We first consider the following
spacing:
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4.8

i x f(x)

0 0 0

1 0.392699(7/8) 0.382683
2 2.748889(7w/8) 0.382683
3 3.141593(m) 0

(The values of f(x) are of course obtained by evaluating sinx at the corresponding
values of x.)

For this case the center spacing is 6 times the spacing between the interior points and
the ends. Using the Lagrange interpolation formula (4.16) yields f, ,x(7/2) = 0.875, which
is in error by about 13%. Shifting the interior points to x = 7/4 and x = 37r/4 results in a
center spacing of 2 times the spacing between the interior points and the ends. The
Lagrange formula for this case yields fino(7/2)=0.943, which is in error by about
6%. Using x = 57/16 and x = 117/16 results in almost equal spacing of all points and yields
faorox(712) = 0.968, which is in error by about 3%. The results presented here should con-
vey some impression of the errors involved when the function to be approximated is very
smooth and well behaved. A function which might, for example, include inflection points
between the widely-spaced data points would yield much more inaccurate polynomial ap-
proximations.

Given the following function:

X 1 2 3 4 5

f(x) 100.000 25.000 H.11 6.250 4.000

Extrapolate to find f(5.7).

We first need a difference table. Since x = 5 will be used as a base, a backward differ-
ence table will provide the most entries in that line. The result is Table 4.15.

Table 4.15
x f(x) vf Vif Vf vV
1 100.000
2 25.000 —75.000
3 1.111 —13.889 61.111
4 6.250 —4.861 9.028 —52.083
5 4.000 —2.250 2.611 —6.417 45.666

It is clear upon examining the table that the differences all increase in magnitude to-
ward the right of the table. The function is thus very poorly suited to polynomial interpola-
tion (or extrapolation). We could simply stop and state that polynomial extrapolation is too
dangerous in this case, but it is instructive to see just how bad such extrapolation can be, and
also whether it is possible to salvage a reasonably accurate answer. If we apply the
Gregory-Newton backward formula (4.8) to the line x =5 as a base, and use all entries in the
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base line, the resulting fourth degree polynomial is the one which fits exactly all five points in
the table. (You can prove this to yourself if you wish; see Problem 4.1.) Since x =5.7 is
0.7 units below the base line, we use x = 0.7 in the interpolation formuia. This yields

£(5.7) = 4.000 +0.7(—2.250) + W(z.sl 1)

+ 0.7 1(.57)(2.7) (—6.417)+ (0.7)(1.72)22.7)(3.7) (45.666)

=4.000—1.575+ 1.554 — 3.436 +22.620 = 23.163

This value for f(5.7) certainly appears absurd in terms of the other tabulated values of f(x),
but in general it is impossible to estimate by how much an extrapolated value is in
error. However, in this case we have the advantage of being able to disclose the function
which was used to make up the original table. The function was f(x) = 100/x>. Using this
function, f(5.7) =3.078. The extrapolation based on the fourth degree polynomial is thus
completely worthless. In order to decide whether polynomial interpolation is of any value
in this case, consider the following table:

6.7

Original function 3.078
linear 2.425

Type of second degree 3.979
polynomial |third degree 0.543
fourth degree 23.163

The linear extrapolation was obtained by taking two terms of the interpolation formula, the
second degree by taking three terms, etc. While none of the extrapolated values could be
called accurate by any means, it is clear that the linear and second degree extrapolations are
the “‘best.”

If polynomial extrapolation must be done with poorly behaved functions, then very
low degree extrapolation is usually the safest, but even this should be carried out only for
values of x very close to the tabulated region.

If a function to be extrapolated cannot be well approximated by a polynomial, a
useful device can be to plot f(x) vs. x on log-log graph paper. This reduces an
amazingly large variety of functions to essentially straight lines or to smooth curves
which are easy to extrapolate. The numerical equivalent of this graphical
procedure is to tabulate log.f(x) vs. log.x, and then carry out polynomial
extrapolation. Describe this procedure and evaluate its accuracy for the function
of Problem 4.8.

The tabulation of the function given in Problem 4.8 becomes

x*=log. x 0 0.693 1.099 1.386 1.609

FX(x*)=log. f(x) 4.605 3.219 2.408 1.832 1.387
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4.10

and we wish to find f*(log. 5.7) = f*(1.740). This extrapolation could be accomplished by
using the Lagrange interpolation formula (note that x* is not equally spaced). However, we
can first check to see if f*(x*) is nearly linear. An estimate of the first derivative at
x*=1.609 is the simple backward difference

1387—1.832 —0.445
1.600-1.386 ~ 0223 9%

A similar difference at x* = 1.386 yields

1.832—2.408  —0.576 _

1386 - 1,090 ~ 0287 2007

These values are close enough to use linear extrapolation:
F*(1.740) = 1.387 + (— 1.996)(1.740 — 1.609) = 1.126 = log, f(5.7)
f(5.7)=3.081

This extrapolated value is virtually identical to the value of the original analytical function at
x = 5.7, which was 3.078. In fact, the error is due only to roundoff. If we consider the
original function, f = 100/x? and take the natural log,

log. f=log. 100 — 2 log. x
F*(x*) = log, 100 — 2x *

so f*(x*) is linear in x*, with a slope of —2.

Given the function
f(x)=sin*x+2cos(3x), O<x<m

This continuous function can be sampled at any value of x inthe range 0 < x < = to
provide data points. Construct two different fifth degree interpolating polyno-
mials which approximate this function over the entire range by sampling the func-
tion at six points using the principles of (a) Chebyshev interpolation and (b)
equally-spaced polynomial interpolation. The polynomials should, of course, fit
the sampled points exactly. Plot the original function and the interpolating
polynomials on the same graph and compare them.

We first employ Chebyshev interpolation. The function f(x) must be sampled at the
six roots of Te(x"), —1=<x'=1, converted to the interval 0<x < #. This conversion is
accomplished by using (4.23). In the notation of the present problem,

X =%[(17 ~0)x; + 7 + 0] =§x;+-’23
(Here x| has taken the role of x; in (4.23) and x, has taken the role of z.) The six roots of
Te(x") were given in Sec. 4.5. These roots, the converted x, and the corresponding f(x;) are
shown in Table 4.16.
The fifth degree interpolating polynomial can now be obtained from the Lagrange
polynomial formula (4.16):

psc(x) = Z;f(x,-m(x)

where the P;(x) are given by (4.14).
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Table 4.16

i X} X flx)

0 —0.965926 0.053524 1.977134
1 —0.707107 0.460076 0.575988
2 ~0.258819 1.164244 —1.034340
3 +0.258819 1.977347 2.721584
4 0.707107 2.681516 —0.181677
5 0.965926 3.088068 —1.971407

Rather than use the Gregory-Newton formula to generate the polynomial for equally
spaced points, we shall employ the Lagrange formula. (The polynomial is unique and could
be obtained either way.) To obtain six equally-spaced points, the spacing is /5.

i Xi f(x)

0 0 2.000000
1 /5 -0.272540
2 27/S —0.713530
3 3w/5 2.522538
4 45 0.963531
5 T —2.000000

The fifth degree interpolating polynomial obtained from these equally-spaced data is

pse(x) = E FO)P(x)

Sample values from the two interpolating polynomials psc(x) and psgz(x) are plotted in Fig.
4.5 along with the original function. Note that both functions approximate the original
function very well except that psz(x) becomes somewhat inaccurate near the ends of the
interval, x =0 and x = «. This concentration of the error near the ends of the interval is
characteristic of polynomial interpolation which is based on equally spaced points. The
error for the polynomial p;z(x) reaches a maximum magnitude of about 0.6, or 30%, near
each end of the interval. The maximum magnitude of the error for the polynomial psc(x)
based on the Chebyshev zeros does not exceed about 0.3 (15%), or about one-half that of
pse(x). In order to prove that psc(x) has the minimum maximum error of all fifth degree
interpolating polynomials it would be necessary to examine an infinite number of other
polynomials. However, psc(x) is obviously better than psg(x) in the minimax sense, and
since it also seems to approximate the function just about as well as psg(x) at points far from
the ends of the interval, it would seem the better choice for this problem.

In this problem, as well as in Problem 4.7, we have actually illustrated the use of
interpolating polynomials as simpler functional approximations to an originally rather com-
plicated function. Interpolation theory is an excellent introduction to functional approxi-
mation, which will be treated in more detail in Chapter 7.
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Problems
4.11 Given the following tabulated function:
x 0 1 2 3 4 5
f(x) -7 -4 5 26 65 128
This tabulated function is a polynomial. Find the degree of the polynomial and the coeffi-
cient of the highest power of x.
412 Prepare a forward difference table for the following function:

X 1 2 3 4 5

f(x) 6 10 46 138 430

Now, assuming the function is a polynomial, fill out all blanks in the table and interpolate for
f(4.31) using forward difference interpolation with x =4 as a base line.
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Given the following tabulated function:

X 0 0.3 0.6 0.9 12 1.5 1.8

—3.000 —0.742 2.143 6.452 14.579 31.480 65.628

f(x)

Find (a) f(1.09), (b) £(0.93), (c) f(1.42), (d) f(0.21).

Using Lagrange interpolation, find f(4.3) for the following function:

X 0 1.0 2.0 3.8 5

fx) 0 0.569 0.791 0.224 —0.185

Write a computer program to perform Gregory-Newton forward interpolation. The pro-
gram should require as input an arbitrary number (8 or less) of evenly-spaced values of x, the
corresponding values of f(x), and the intermediate value of x at which f(x) is desired. The
output should include the difference tabie and the interpolated value of f(x).

Write a computer program to perform Lagrange interpolation. The input should include an
arbitrary number (8 or less) of arbitrarily-spaced values of x, the number of such values, the
corresponding values of f(x), and the value of x at which f(x) is desired. (If you are using
FORTRAN, remember that zero subscripts are not allowed, and some suitable adjustments
will have to be made to the formulation in this chapter.)

Employ the program written for Problem 4.15 to find f(1.3) for the following function:

x 0 1 2 3 4 5 6 7
fGx) 4 -2357

—250 — 881 — 1667 —2493 | —1295 2450

Using the program written for Problem 4.16, find f(6.3) for the following function:

x 0 1.2 1.7 2.8 4.4 58 7.0 8.0

1.000 0.671 0.398 | —0.185 | —0.342 | 0.092 0.300 0.172

fx)

Resolve Problem 4.13 by using the Lagrange interpolation program written for Problem
4.16. Should the results agree? How closely? Discuss the relative advantages and disad-
vantages of using polynomial interpolation based on difference tables as compared with
Lagrange interpolation, assuming equally-spaced data.

Using the principles of Chebyshev interpolation, construct a sixth-degree polynomial ap-
proximation to f(x) = e ™" sin x on the interval 0 <<x <47. Plot the polynomial and the
original function on the same graph and comment on the approximation.
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Using a natural cubic spline, interpolate for f(3.4) given the following equally-spaced func-

tion:

X

1

3

4

f(x)

11

12

15

11

Again using a natural cubic spline, find f(9) given the following unequally-spaced tabulated

function:
X 3 7 15 22 30

f(x) 1 -8 -22 -9 12

Given the following function:
x 0 0.5 1.0 1.5 2.0 2.5
f(x) 2.014 3.221 4.701 7.710 13.594 23.580
Find £(3.0).
Given the following tabulated function:
x 1.0 2.0 3.0 4.0
f(x) 150 36.75 17.33 9.19

Find £(5.0).




Chapter 5
Roots of Equations

5.0 INTRODUCTION

Root solving typically consists of finding the values of x which satisfy relationships such
as

Ax*+ Bx*=Cx+D
or

tan Kx = x

These are not truly equations in the sense that they are only satisfied for certain values of
x. Depending on the problem, these values of x may be real or complex and may be
either finite or infinite in number.

The procedure for finding the roots will always be to collect all terms on one side of
the equal sign; for example,

Ax*+Bx>*—Cx—-D=0
or

tan Kx —x =0

For any values of x other than the roots, these equalities will not be satisfied, so that in
general

Ax’+ Bx*~Cx —D = f(x)
or

tan Kx —x = g(x)

Finding the roots of these equations is now equivalent to finding the values of x for which
f(x) or g(x) is zero. For this reason the roots of equations are often called the zeros of
the equations.

We now examine methods of finding the roots of a general function f(x). Unless
otherwise stated, we shall deal only with finding the real roots of equations with real
coefficients.

64
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5.1 BISECTION

Bisection is a “brute force” technique for root solving which is too inefficient for hand
computation but is ideally suited to machine computation. Consider first the simplest
possible case: a function f(x) which is known to have one and only one real root in the
interval a <x <b. Such a function is shown in Fig. 5.1.

)4

(=]

Fig. 5.1

The root may be located as accurately as desired by the following strategy. Bisect
the interval at its midpoint, x.. = (a + b)/2. Now compute f(x..)*f(b). If this product is
negative, then the root is in the interval x,, <x < b since f(x) has changed sign in that
interval. If the product is positive, then f(x) has not crossed the axis between x,. and b,
and the root must be in the interval a <x <x,. Select the interval which contains the
root, bisect it, and repeat the entire procedure. The process is repeated until the root is
located as accurately as desired. If the root is assumed to be at the midpoint of the last
interval found to contain it, the maximum error in the root will be no greater than one-half
the size of this interval. It is useful to represent this algorithm in flow chart form. The
left and right ends of the interval are designated as x; and xz respectively, and the final
error acceptable in the root as e. The flow chart is shown in Fig. 5.2.

If there is the possibility of more than one real root in the interval a < x < b, then the
strategy must be considerably more complex. If f(x.)*f(xz) <0, then there are an odd
number of roots in the subinterval, while if f(x, )*f(xz) >0, then there are an even number
of roots in the subinterval (or none). Bisection will always find a root if the subinterval
chosen for the next bisection is one in which f(x.)*f(xz)<0. However, if there are
several roots, several bisections may be necessary initially in order to find a subinterval
with this behavior. No generalized algorithm will be presented for bisection on an
interval with an arbitrary number of roots. It is seldom useful to find only one arbitrary
member of a set of roots in an interval, and the complexity of a bisection algorithm to
avoid finding the same root more than once would be very great.

As we shall see in our discussions of all of the root-solving methods, there is no
substitute for a prior rough knowledge of the behavior of the function and the approxi-
mate location of the roots. This makes it possible to use a small enough initial subinter-
val for bisection to isolate any desired root. The approximate behavior of the function
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INPUT
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Fig. 5.2 Bisection.

can be determined from a graph plotted on a computer, either on a plotter or the line
printer, or from a computer tabulation of the function at reasonably fine intervals. Often
even simple hand computations or plotting will be sufficient to avoid such frustrating ex-
periences as finding an unwanted root or missing the desired root. An additional advan-
tage of a rough plot of the function is that such a plot often makes it possible to identify
the presence of troublesome tangent points, where the function touches the x axis, but
does not cross it, resulting in a multiple root. Bisection will neither locate these tangent
points nor indicate their presence. Bisection will, however, find any multiple root at
which the function crosses the axis.

5.2 NEWTON’S METHOD (NEWTON-RAPHSON)

Consider a point x, which is not a root of the function f(x), but is ‘“reasonably close” to a
root. We expand f(x) in a Taylor series about xo:

£06) = £+ (x = 2 (o) + S g - 5.D)

If f(x) is set equal to zero, then x must be a root and the right-hand side of (5.1)
constitutes an equation for the root x. Unfortunately, the equation is a polynomial of
degree infinity. However, an approximate value of the root x can be obtained by setting
f(x) to zero and taking only the first two terms of the right-hand side of (5.1) to yield

0= f(x0) +(x — x)f (X0) (5.2)

Solving for x gives

X =Xo— ff((’;‘;)) (5.3)
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or

. f(xo)
f'(x0)

Now x represents an improved estimate of the root, and can replace x, in (5.3) to yield
an even better estimate of the root on the next iteration. The general expression for
Newton’s method can thus be written as

X—=Xo=8= (5.4)

(n+l) o (n) _ s+ _ f(x(”)) 55
x x 8 G (5.5)
where the superscript n denotes values obtained on the nth iteration and n + 1 indicates
values to be found on the (n + th iteration. This iterative procedure will converge to a
root for most functions, and if it does converge, it will usually do so extremely rapidly. A
flow chart of the algorithm is shown in Fig. 5.3.

d INPUT

Xo, €

ROOT «x

v

aﬁ—ﬂx—) » N/ |8l<e \Y

Fig. 5.3 Newton’s method.

The algorithm is terminated when the magnitude of the computed change in the value
of the root, 8, is less than some predetermined quantity e. This does not guarantee an
accuracy of e in the root. Although more sophisticated convergence analyses are pos-
sible, a useful and conservative rule of thumb is to choose € as one-tenth of the permis-
sible error in the root. An additional point should be made concerning Fig. 5.3, and in
fact all flow charts given in this chapter. No error exits have been provided in case the
method diverges or does not find a root in a reasonable number of iterations. A computer
program written from this flow chart should include such exits as the programmer feels
necessary, but it should be noted that these exits require logic which will increase the
running time of the program. If enough is known about the character of the function,
such exits may not be necessary.

Despite its rapid convergence, Newton’s method has some difficulties with certain
types of functions. These difficulties can best be examined, and the most intelligent use
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made of this powerful method, by considering the graphical interpretation of the
algorithm. Figure 5.4 shows the first iteration for a typical function. The next guess for
the root, x*°, is the intersection with the x axis of a straight line tangent to the function at
Xo. The value x‘” is much closer to the root than the original guess x,. and it is clear that
succeeding iterations will converge rapidly to the root.

fx)4
tan § = x—(f.%)}; = —f'(Xo)
f(x0)
P Root
o x® \ x
5

Fig. 5.4

Consider next the simple oscillatory function shown in Fig. 5.5. The first guess, xo,
is reasonably close to the root A. However, the tangent line strikes the axis at x‘°, which
is closer to the root B. The next iteration vields x®, and it becomes clear that the
procedure will converge to the root B. This iliustrates one of the possible difficulties of
Newton’s method; an initial guess which is close to one root may result in convergence to
a different more distant root. There is no simple method for avoiding this type of
behavior with certain functions. However, the rough plots or tabulations of the function
discussed earlier will usually be sufficient to permit first guesses from which the method
will eventually yield the desired roots. In any case, these plots will ensure that the
programmer is aware of the presence of any roots which the method may have missed.

Newton’s method also has a tendency to home-in on a local minimum or maximum in
a function (not a root) and then as the zero slope region is approached to be thrown far
from any region of interest. The algorithm can also occasionally oscillate back and forth
between two regions containing roots for a fairly large number of iterations before finding
either root. These difficulties can be readily avoided with some prior knowledge of the
behavior of the function.

It should be noted that some difficulty will be encountered in attempting to use
Newton’s method to find multiple roots. For smooth functions, these multiple roots cor-
respond to points where the function becomes tangent to the x axis and then may or may
not cross the axis. This behavior means that as f(x) approaches zero, so does
f'(x). While Newton’s method can be shown to be formally convergent for such roots,
the rate of convergence is slow, and in practice can make the computation of multiple
roots difficult and expensive. A modified Newton’s method, which is very well suited to
multiple roots, will be discussed in the next section.
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Fig. 5.5

In the illustrative problems at the end of this chapter, specific examples are pre-
sented which demonstrate some of the possible difficulties in the use of Newton’s method
for general root solving.

5.3 MODIFIED NEWTON'S METHOD

The difficulty of Newton’s method in dealing with multiple roots leads us to consider a
modification of the method discussed by Ralston[3]. As before, we wish to find the roots
of a function f(x). Define a new function u(x), given by

u(x) = f(’;) (5.6)

The function u(x) has the same roots as does f(x), since u(x) becomes zero everywhere
that f(x) is zero.

Suppose now that f(x) has a multiple root at x = ¢ of multiplicity . (This could
occur, for example, if f(x) contained a factor (x —¢)".) Then u(x) may be readily shown
to have a root at x = ¢ of multiplicity r, or a simple root. Since Newton’s method is
effective for simple roots, we can apply Newton’s method to u(x) instead of
f(x). Applying equation (5.5) gives

el ) sl u(x)
x o - ur(x(n)) (5.7)

X
Equation (5.6) gives u(x), and this can be differentiated to yield

ey = OO = FOOf"(x)
u (x)_ (f'(x))2

or

ey — 1 $COF(x)
u (x) =1 (fl(x))2 (5.8)
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The algorithm may be written in flow chart form as shown by Fig. 5.6. This al-
gorithm is somewhat more expensive than the conventional Newton’s method in the sense
that it requires the computation of f"(x), but the algorithm retains the same convergence
rate as the conventional Newton’s method regardless of the multiplicity of the root.

INPUT
Xo, €

X €= Xo

P iti)

f'x)

L 4

_fOf"(x)
(f'(x)

w(x)e1

_ulx)
u'(x)

XxXe—x+8

——-]‘i( 18] <e )Y———o ROOT « x

Fig. 5.6 Modified Newton’s method.

The advantage of this method over the conventional Newton’s method in finding
multiple roots is illustrated in Problem 5.6. See also Problem 5.7.

5.4 THE SECANT METHOD

The secant method is essentially a modification of the conventional Newton’s method with
the derivative replaced by a difference expression. This is advantageous if the function
is difficult to differentiate, and is also convenient to program in the sense that it is only
necessary to supply a function subprogram to the method rather than subprograms for
both the function and its derivative. Replacing the derivative in (5.5) by a simple differ-
ence representation yields
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(n)y
x(n+1)____ x(n) — 8(n+l) — [f(x(”)) _{(;(x()rr—l)]/s(n) (5.9)

To use this method, f(x“ ) must be saved. This is the value of f from two iterations
previous to the present one. Since no such value will be available for the first iteration,
two different initial guesses for the root, x, and x¢, must be supplied initially to the
algorithm. This algorithm is shown in Fig. 5.7.
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Xo, Xoo, €

|

8 «— Xo— Xoo

X < Xo

|

fora = fxo0)
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ot
8 = fudlS

!

Xex+9d
!

N
fold « f“w Q—-——{ |8| <€ }—' ROOT « x

Fig. 5.7 The secant method.

For most functions, the secant method will not be as rapidly convergent as the
conventional Newton’s method, but its advantages may outweigh this somewhat de-
creased convergence rate. If f'(x) is very time consuming to evaluate, then the secant
method may actually require less computer time than Newton’s method.

5.5 ROOT SOLVING AS INVERSE INTERPOLATION

Suppose that in the neighborhood of a root of f(x) we tabulate f(x) at intervals of x (not
necessarily evenly spaced). Interpolation, as we have seen in Chapter 4, consists of
finding a value for f(x) at some predetermined x between the tabulated points. Root
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solving, on the other hand, consists of finding the x at which f(x) takes on a predetermined
value (zero). Root solving thus may be thought of as inverse interpolation. However, in
order to actually use interpolation methods, it is necessary that f(x) be an invertible func-
tion of x. This means that in the region of interest, to every value of f(x) there must
correspond one and only one x. (This must be true for all points in the region, not just the
tabulated ones.) The function f(x) may be shown to be invertible if, in the region, f(x) is
continuous and differentiable and f'(x) does not pass through zero. Under these condi-
tions we may write x as x(f).

Consider as an example the function f(x) = tan x — 2x tabulated at intervals of 0.05
near a root (Table 5.1). This function satisfies the conditions of invertibility on the
interval shown. The table may thus be considered as an unevenly spaced tabulation of
x(f) vs. f. In order to find the root, we must find x(0).

Table 5.1
x f(x)
1.05 —0.3566846
1.10 —0.2352402
1.15 —0.0655030
1.20 +0.1721513

It may be shown (see Ref. 3 for a complete discussion) that many of the iterative
root-solving techniques (including Newton’s method) may be interpreted as inverse
interpolation. However, we shall consider here only the simplest inverse interpolation
technique, polynomial interpolation on x(f). This method will find an approximate value
for the root, with the accuracy of the approximation depending on the spacing of the
tabulated points and the behavior of f(x) in the neighborhood of the root.

Returning to the Table 5.1, we employ Lagrange polynomial interpolation to find
x(0). It is convenient to rewrite Table 5.1 in the form of Table 5.2.

Table 5.2
i f x(f)

—0.35668 1.05
—0.23524 1.10
—0.06550 1.15
+0.17215 1.20

LUS I N5 R )

Now,
x(0) = p3(0) = 1.05P(0) + 1.10P,(0) + 1.15P»(0) + 1.20P5(0)
where

(0+0.23524)(0 + 0.06550)(0 — 0.17215)

(—0.35668 + 0.23524)(— 0.35668 + 0.06550)(~ 0.35668 —0.17215) _ 014184

Py0) =
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and similarly
P(0) = —0.47895
P0) = 1.22976
P3(0) =0.10734
which yields
x(0) = p3(0) = 1.16514

The exact root is 1.16556, so this answer is in error by about 4.2 X 107,

5.6 A BRIEF NOTE ON SPECIAL METHODS FOR
FINDING ROOTS OF POLYNOMIALS

All of the methods which have been discussed in this chapter will find most of the real
roots of polynomials with real coefficients. (As has been mentioned, many of the
methods do have difficulty in finding multiple roots corresponding to points where the
function is tangent to the x axis.) However, there exist techniques specifically suited to
finding all of the roots, single or multiple, real or complex, of polynomials with real
coeflicients.

We shall not give the computational details for any of these methods, since the
algorithms are quite complicated, particularly if provision is made to find all multiple and
complex roots. Ralston[3] gives complete descriptions of many of these methods with
discussions of convergence rates and applicability to digital computation. These tech-
niques include Graeffe’s root-squaring method, the Lehmer-Schur method, and various
methods based on synthetic division.

lllustrative Problems

5.1 The function f(x)=x>—0.9x —8.5 has one real root in the interval 2=<x <3,
How many bisections would be required to locate this root to an accuracy of
€ =10"%?

Since the root is originally known to be in an interval 3 -2 =1 unit wide, after one
bisection the root will be isolated to an interval 1/2 unit wide. After two bisections the
interval will be 1/2? unit wide, and after n bisections the interval will be 1/2" unit wide. If
the algorithm in Fig. 5.2 is used, then the root is assumed to be at the center of the last
interval found, and the error in the root will be no more than one-half of that interval. Thus
the error criterion will be satisfied if

%(51;>=2—,,1;7<e or ?‘l‘_ﬁ'<10~6
Since 1/2*° =0.9536 x 10"%, n = 19 bisections will be sufficient. Note that this answer is
completely independent of the character of the function f(x) (assuming that f(x) crosses the
axis once and only once in the initial interval).



74 NUMERICAL METHODS

5.2 Find the roots of f(x)=e ™2 ~x)—1.

f(x)“

Fig. 5.8

A rough plot of this function is shown in Fig. 5.8. The function has a root somewhere
between x =0 and x =2, reaches a minimum somewhere near x =6, and then appears to
flatten out. By looking at the analytical form of f(x), it is apparent that f(x)—> —1 as
x>, It is also apparent that there are no negative roots. We will employ Newton’s
method (Fig. 5.3) to find the root. It would appear that x = 1 would be a good first guess, but
to show the strong convergence rate of Newton’s method, we shall pick a poorer guess,
x =3. This gives

F(3) = —1.472366, f'(3)=—0.354275
so

— 1.472366 _

8=~ 0354275

—4.155999

which yields an estimate for x of
x=x+8=3.0—-4.155999 = — 1.155999
The next iteration vields

- f(—=1.155999) _ 3.213548 _
FC1155999) 2388477 3047

x=Xx+8 =—1.155999 + 1.345437 = (.189438

8:

The next four iterations give

x =0.714043, 8 =0.52461
x =0.782542, & =0.06850
x =0.783595, 8 =0.00105
x =0.783596, 8 =0.890 x 107

The last value of x is the root accurate to six decimal places.
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5.3

5.4

The rapid convergence rate with such a poor guess might tend to inspire such con-
fidence in the method that one could question the need for the rough plot of f(x). This false
confidence can be dispelled by guessing x =8. This gives

f(8) =—1.812011, f'(8) =0.067668
and
—1.812011 _
8= ~0.067668 26.778107

x=x+8 =8+26778107 = 34.778107
The next iteration yields
x = 869.1519

along with a computer underflow in the exponential routine. What has happened is that
the guess was beyond the local minimum around x = 6, and the method is now proceeding
vainly toward x =+ attempting to find a root as the function asymptotically approaches

fx)y=-1.

Find V7 by using root-solving methods.

This problem may be restated as finding the roots of x*—7=0. The roots occur as
positive and negative pairs. We shall seek only the positive root. Newton’s method will
be used:

fey=x-17, flix)y=2x
Since 3=V9, x,=3 should be a reasonable guess. The first iteration is

- fG) 3T
8=y = "3 = 03333333

x=xo+ 8 =3—10.3333333 = 2.6666667
The second iteration is

_ (266666677 _
8=~ GeoteeTy = 00208333

x=x+ 8 =2.6666667 — 0.0208333 = 2.6458334
The third iteration is
8 = —0.0000820, x =2.6457514

All eight digits of this value of x are correct! We have carried seven decimal places in this
problem to illustrate the power of Newton’s method in taking square root. In fact, New-
ton’s method is used for virtually all square root routines for digital computers as well as on
those desk calculators which include a square root capability.

Find the smallest positive root of the function
f(x)=x’sinx|—4
A rough sketch of this function is shown in Fig. 5.9. The function closely approaches

the x axis near x = 2.4, but a closely spaced tabulation of the function in this region indicates
no root. The smallest positive root is thus between x =3 and x =4. This function has a
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f(x) ¢

% 2

Fig. 5.9

discontinuous derivative at x =3 (actually at x = 7) and at various larger values of x as
well. Root-solving methods based on the use of the derivative or difference approximations
must be used with care for this function, not only because of the discontinuities but also
because of the local maximum near x =2.4. Bisection would thus seem to be the safest and
simplest approach, since all of these factors can simply be ignored. With initial values
of x; =3.2 and xz = 3.6, the bisection algorithm (Fig. 5.2) produces a root of x = 3.478508
accurate to € = 107° in 19 bisections.

For purposes of illustration, we will also apply the secant method (Fig. 5.7) to this
problem. To begin this algorithm, we need two closely spaced initial guesses for the root;
we choose xo,=3.6 and x =3.7. Now,

f(3.6) = 1.735055, f(3.7) =3.253452
The difference estimate of the derivative is

f3.6)—f3.7) _ —1.518397 _
TS0 = 1518397

Then
5= f(3.6) _  1.735055 _

~1s.18397 1518307 0114269

and x = xo+ 8 =3.6—0.114269 = 3.485730. For the next iteration, the derivative is esti-
mated by

f(3.485730) — f(3.6) _ —1.635724

348573036 —0.11a270 43145

and
_ f(3.485730) _  0.099331 _

0= =T1431455 ~ 1431455

x=x + 8 = 3.485730 — 0.006939 = 3.478790

~0.006939
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5.5

Two more iterations give x =3.478508 with & =0.347x 10", This value of the root is
identical with that obtained from bisection.

Suppose now that we had not bothered to find out the behavior of the function, but
simply picked two values of x, say x,=2.8 and x4 =2.9, to use in applying the secant
method. These values seem reasonably close to the root, but are actually far enough away
to result in disaster, since they are to the left side of the discontinuity in the derivative at
x = . The first iteration produces x =2.576. Many more iterations result in values of x
scattered rather randomly from x = 1.007 to x =2.643 and it becomes obvious that the
method is attempting to find the nonexistent root at the local maximum near x =2.4. This
process will never converge to anything unless the method accidently hits a point on the
function with a sufficiently small siope to throw the next guess far from the local maximum
and into a region where a root exists.

Find the smallest positive root (other than zero) of
f(x)=cos x coshx — 1
A rough sketch of this function in the range of the first positive root is shown in Fig.

5.10.

fx) ¢
20 F

Fig. 5.10

We choose the secant method and pick two first guesses of x, =4.4 and x4 =4.5. Six
iterations yield a value for the root of

x =4.73004, 8§ =0.442x 10"

This root is correct to the five decimal places shown and was easily obtained.

Much more interesting is the failure of the secant method which occurs if we are
slightly less accurate with our first two guesses. Suppose we guess x =3.8 and x, =
3.9. Four iterations with the secant method produce

x =—3.63597, 8 =—0.407x107%*

Our first impression would be that we have found a negative root (it is not unusual for a
root-solving algorithm to produce a root rather distant from the initial guess) and that we
have located this root extremely accurately since 8 is so small. Infact, this value of x is not
a root of f(x) at all! We will follow the steps of the secant method algorithm to find out
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exactly what happened. We first note from Fig. 5.10 that the guesses x, = 3.8 and xo0 = 3.9
are slightly to the left of the local minimum at x =4. The difference approximation to the
derivative is

f(3.8)— f(3.9) _ —18.68744 — (—18.93875)
—0.1 - -0.1 h

—2.5131

Since the points are so close to the local minimum, this is a relatively small slope, and
corresponds to the dotted line shown in Fig. 5.10. The value of § is
f(3.8) = —18.68744 _

TSl —asi3 %8

6 —
and
x=x+8=3.8-7.43598 = —3.63598

Graphically, this is the point at which the dotted line intersects the x axis. The function
f(x) is an even function, so f(—x)=f(x). We would thus expect f(—3.63598) to be
reasonably close in value to f(3.8), and we find

f(—3.63598) = —17.70966

The next difference approximation to the derivative becomes

f(=3.63598) — f(3.8) _ —17.70966 — (— 18.68744) _ _ 0.11591
—3.63598 3.8 —8.43598 oo

This is a very small slope, and corresponds to the virtually horizontal line joining f(3.8) and
f(—3.63598). The intersection of this line with the x axis will obviously be very far out the
negative x axis. To find the location, we compute

f(—3.63598) _

6 = 011591 - 134.68077

and thus
x=x+8=-—3.63598 — 134.68077 = —138.31674

Due to the character of cosh x, this could result in a very large value of f(x), and in fact, we
find
F(—138.31674) = 0.5655 x 10%°(!)

The next value of 8 is
f(—138.31674) 0.5655 x 10%

§=- [f(— 138.31674) — f(— 3.63598)] [0.5655 %X 10% — (- 17.70966)]
~138.31674 — (— 3.63598) ~134.68077

The quantity 0.5655 % 10%° is so overpowering that this yields simply
5= 134.68077
x=x+8 =—138.31674 + 134.68077 = —3.63598
which puts us back to where the previous iteration started. The next 6 is

5=— f(—3.63598) - (— 17.70966)
[f(-— 3.63598) - f(— 138.31674)] [— 17.70966 — 0.5655 x 10“’]
—3.63598 - (— 138.31674) 134.68077

= —0.4074 x 107
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5.6

The method thus appears to have converged even though it obviously has not. What has
happened is that by beginning near a local minimum, we have been thrown far from
the region of our initial guess. Subsequent difference approximations to the derivatives
span such large ranges of x that they do not in any way approximate local
derivatives. Eventually, we reach such a large value of f(x) relative to the value from the
preceding iteration that the difference approximation to the slope is essentially infinite, and
the method appears to have converged regardless of the value of x which is finally reached.

Note that all of these meaningless computations could be avoided simply by initially
sketching the function, and recognizing the problems which can be caused by a local
minimum below the axis.

Find the positive real roots of the function

f(x) =x*—8.6x>—35.51x>+464.4x —998.46

A sketch of this function is shown in Fig. 5.11. This sketch is based on a tabulation of
f(x) on the interval 0= x < 10 using a very coarse interval of 1 unit.

fx)¢

200 [~

Fig. 5.11

It appears that there may be a multiple root (and a tangent point) near x =4 and a
simple root between x =7 and x =8. The root(s) near x =4 could also be two closely
spaced real roots if the function crosses the axis, or perhaps no real root(s) at all if the
function does not touch the axis (the tabulation is too coarse to tell for sure).

We begin by finding the simple root between x =7 and x =8. Newton’s method (in
Fig. 5.3) should be suitable for this root. We choose x, = 7.0 as the initial guess and ask that
the final magnitude of & be less than 10°°. We need the first derivative

fi(x)=4x*-258x*~71.02x +464.4
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Now applying the algorithm of Newton’s method,
£(7.0) = —36.4500, F(7.0) = 75.0600

_ —36.4500
75.0600

x=x+8=7.0+0.485612 = 7.485612

8= =().485612

The second iteration is

f(7.485612)=20.6451,  f'(7.485612) = 164.891
_ 206451 _
8= —Tergor = ~ 0125205

x=x+8 =7.485612 —0.125205 = 7.36041

The next three iterations yield

x =7.34857, §=-0.118x 10"
x =7.34847, 5 =-0.102x 107
x =7.34847, 8 =-0.758x10"°

The root has now been located accurately. Note that the value of & decreases very
rapidly. For most simple roots, the value of 8 on any iteration is of the order of |8° from
the previous iteration. This holds for the present problem. Newton’s method is thus said
to have a convergence rate which is quadratic for most functions.

We now turn to the possible multiple root. A finer tabulation of f(x) near x =4
reveals that f(x) becomes very small but never changes sign. Since the function is simple to
differentiate, we choose the modified Newton’s method discussed in Sec. 5.3 in anticipation
of a multiple root. We must supply subprograms to compute f(x) and the derivatives

fi(x)=4x*—258x"—71.02x +464.4, f'(x)=12x*-51.6x —71.02

We choose x,=4.0 as the initial guess, and ask that |8| on the final iteration be less in
magnitude than € = 107

f(4.0)=-3.42, f(4.0)=23.52, f'(4.0) = —85.42

Now
_f4) —3.42 __
u4) 7@ =3357 0.145408
PP i )1 C) - _ (—3.42)(—85.42) -
u'@d=1 F @Y 1 23.50) 0.471906
and
5= u4) ~0'145408=0.308129

Tuw'@ " 0.471906
x=x+8 =4.0+0.308129 = 4.308129

Three more iterations yield

x =4.300001, §=-0.812x107
x = 4.300000, & =—-0.807x 107
x =4.300000, 8 =—-0.660x10"
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5.7

Thus we have found the multiple root very accurately in four iterations. Note that the
convergence rate of the modified Newton’s method for this multiple root is quadratic.

For comparison, we can also find the multiple root by using the conventional Newton’s
method, with the same initial guess of x =4.0 and the same € of 107

f(4.0)=-3.42, f(4.0)=23.52
S0

__f@.0) =342
o= G0 - " B2 =().145408

x =x +8 =4.0+0.145408 = 4.145408

The next four iterations produce

x =4.22138, 8 =0.075974
x =4.26033, 8 = 0.038952
x =4.28007, 6 =0.019740
x = 4.29001, & =0.009939

The method is obviously converging very slowly, with each 8 only about one-half of the
magnitude of the preceding 8. This convergence rate is termed linear. In all, 19 iterations
are necessary to obtain

x = 4.300000, 8 =0.612x107

The advantages of the modified Newton’s method for multiple roots is obvious.

One very significant practical computational point should be mentioned. For the first
attempt at finding this root, the function subprograms for f, f’, and f” used the standard in-
teger exponentiation capability of the FORTRAN IV compiler to compute x*and x*. It was
not possible to obtain convergence to the desired accuracy even with the modified Newton’s
method, and in fact the estimates of the root varied from x =4.2777 to x = 4.5233 with |§|
never smaller than 0.001. It was then determined that if x* was computed as (x)(x)(x)(x),
convergence could be readily obtained. The small amount of error involved in the com-
piler’s use of the logarithm routine for exponentiation apparently resulted in the function
never touching the axis at all. (Most compilers use products of x with itself for low integer
powers of x, but shift to the log routine for high powers. The compiler used here shifted at
x*) The solution for multiple roots can obviously be very sensitive to small errors in the
computation of the function.

Find all roots of
f(x)=x>~12.42x* + 50.444x — 66.552

in the interval 4 < x <6.

A rough sketch of the function is shown in Fig. 5.12.

If there are any roots of f(x) in this interval, they are near x = 4.8 and consist of either
a multiple root or two closely-spaced simple roots. A finely-spaced tabulation reveals that
the function does go slightly negative, so there are apparently two closely-spaced simple
roots. We apply the conventional Newton’s method with a first guess of x,=4.5 and
e =10"". The method requires eight iterations to reach convergence, vielding



82

NUMERICAL METHODS

f(x) 1

04.0 6.0 ;
Fig. 5.12
X =461263,  5=0.11263
x =4.66228, & =0.04966
x=468541,  &=0.02313
x=4.69574,  §=0.01032
X =469937,  §=000364
x=469998,  §=0611x10"
x =4.70000,  5=0.184x 10"
x =470000,  §=0.168x 107

Note that the convergence rate is virtually linear, rather than quadratic, until the root is
approached very closely. This is because the function approaches the axis with a very
small and slowly varying slope, clearly very similar to the behavior near a multiple root. In
order to find the other root, we use Newton’s method with an initial guess of x =4.8 and
€ = 107, Seven iterations produce

x = 4.72000, 8 =-0250x107

with essentially the same convergence rate as before.

Since the convergence rate of the conventional Newton’s method corresponds more
closely for this problem to the rate which usually results from multiple roots, it is reasonable
to consider the suitability of the modified Newton’s method (Fig. 5.3) in this case. Using an
initial guess of x, =4.5 with the modified Newton’s method yields

x = 4.69258, & =0.19258

x =4.70134, & = 0.00876

x =4.70010, 8 =—0.00123

x = 4.70000, 5 =-0.100x 10"

x = 4.70000, §=-0.507%x10"°
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This method needed five iterations to reach a |§] of 107, and while the convergence rate is
clearly greater than that of the conventional Newton’s method, note that the second iteration
overshot the root. This overshoot is due to the presence of the second derivative in the
method. In contrast, while the conventional method required three more iterations, the root
was approached monotonically from below. If we now attempt to find the larger root using
the modified Newton’s method with x,=4.8 and € = 10", we obtain on the first iteration

x =4.71014, & = —0.08986

The first estimate has overshot the root to essentially the midpoint of the interval between
the two roots. The next four iterations yield

x =4.71024, 5 =0.106 x 10°°
x =4.71045, 8§=0212x107
x =4.71088, 8 =0422x107
x =4.71171, 5 =0.834x10°

Note that the magnitude of 8 is actually increasing on each iteration, as the method attempts
to correct the overshoot. It takes three more iterations until |§| begins to decrease and a
total of eleven iterations to converge to

x = 4.72000, 8 =0.392x10"°

Since the conventional method took only seven iterations to converge to the same root with
the same initial guess, the conventional method is clearly superior for this root. As a matter
of interest, if a first guess of x, = 4.9 is used for the modified Newton’s method, the method
overshoots so far that it converges to the smaller root (x = 4.70000) in only five iterations!

The conclusion must be that the conventional Newton’s method is superior for simple
roots, even if they are very closely spaced, if only because of its geometrically easily predict-
able behavior, and less costly computation per iteration. The modified method may con-
verge more rapidly than the conventional method in some cases and more slowly in others,
but the presence of the second derivative makes it difficult to predict when it may be best, or
even to which root it may converge.

Problems

*5.8

*5.9

Write a computer program to use bisection to find a root of a general function f(x) on the
interval a <x <b. Assume that there is one and only one simple root in this
interval. Input parameters should be a,b and the maximum allowable error in the
root. The program should be written in such a way that f(x) can be supplied as a function
subprogram.

Write a computer program to use Newton’s method to find one root of a general function
f(x). Assume that the method will converge to a root. (It may be a good idea to include
intermediate printing of important quantities in order to recognize possible
divergence.) Input parameters should be an initial guess for the root and the magnitude of
the final correction on the root (the value of & at convergence). The function f(x) and its
derivative f'(x) should be assumed to be available from function subprograms.
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*5.10

*5.11

*5.12

5.13

5.14

5.15

5.16

5.17

5.18

*5.19

5.20

5.21
*5.22

*5.23

*5.24

NUMERICAL METHODS

Repeat Problem 5.9 for the modified Newton’s method discussed in Sec. 5.3. The second
derivative f"(x) should also be assumed to be available from a function subprogram.

Repeat Problem 5.9 for the secant method. The input parameters should include two
closely spaced but different first guesses for the root as well as the value of & at
convergence. Only f(x) will be needed from a function subprogram.

Verify the general programs above by finding the positive root of f(x) = x>~ e™* This func-
tion has one and only one positive simple root located at x = 0.77288.

Find V3 accurate to six decimal places by using Newton’s method with an initial guess of 2.
Find V75 accurate to six decimal places by using Newton’s method with an initial guess of 4.

Find a real root of f(x)=x>—3.23x*—5.54x +9.84 by using the secant method with x, =
0.9 and x4 = 1.0.

Find a root of f(x)=cosx —x in the range 0<x < w/2 by using Newton’s method.

The function f(x)=x>—2e¢x + ¢ > has one multiple real root. Find this root by using
the modified Newton’s method with x,=1. Also try the conventional Newton’s method
with the same initial guess and compare the number of iterations necessary to attain the same
accuracy.

Show that the function of Problem 5.17 is a perfect square and that each of the factors has
only one simple real root. Find this root by any suitable method. How should this root
compare with the root found in Problem 5.17?

Find the first five positive roots of f(x)=tan x —2x. Be careful, since tan x -« or —®
several times in the range of x which includes these roots.

Find the zero of the following function in the indicated range by inverse interpolation:

x fx)
3.6 0.0954655
3.7 0.0538340
3.8 0.0128210
3.9 —0.0272440
4.0 —0.0660433
4.1 —0.1032733

Find all the real roots of f(x)=x"—7.223x"+ 13.447x*—0.672x — 10.223.

Given the function f(t)=e " (3sin3t)+0.3sin4t. Find the maximum value which f(t)
can attain, and the value of ¢t at which it occurs.

Find all of the real roots of f(x)=x"—12.2x*+55.57x>—111.996x +84.2724. Watch for
multiple roots.

Find the first five positive roots of f(x)=cos x coshx +1. Finding the larger roots will
require some care since cosh x can get very large.



Chapter 6

The Solution of Simultaneous
Linear Algebraic Equations
and Matrix Inversion

6.0 INTRODUCTION

The solution of sets of simultaneous linear algebraic equations (and matrix inversion) con-
sumes a significant fraction of the computer time at virtually all general purpose scientific
computer installations. The solution of such sets arises in a wide variety of problems, in-
cluding the numerical solution of ordinary and partial differcntial equations, structural
analysis, network analysis, optimization, and data analysis. Sets consisting of large num-
bers of equations are commonly encountered, and the choice of a suitable method for any
given problem which is both accurate and efficient is of prime importance. Since basic
matrix techniques are needed in this chapter as well as later ones, we begin with a
discussion of matrix terminology and operations.

6.1 BASIC MATRIX TERMINOLOGY AND OPERATIONS

A matrix is defined in this context as a rectangular array of numbers, with its size
characterized by the number of rows and columns in the array. Thus

1 7 -1 4 8 7
2 0 5 4 3 -1
A= 1 -1 2 3 1 9
6 2 -1 4 -1 1

is a 4 (row) by 6 (column) matrix. Any given element of the matrix A will be denoted by
Ay, where i is the row location and j the column location. Thus Ax;=5.

Our primary concern will be with square matrices and matrices of column dimension
1 or row dimension 1. Matrices with column dimension 1, such as

85
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are referred to as column vectors, while matrices with row dimension 1 such as
F=[1 -3 5 2]

are called row vectors.

Square matrices can have certain special configurations which are of interest. We
shall illustrate with a 4 X 4 matrix. All statements, of course, apply to square matrices of
any size. Consider

Cn €12 Ci3 Cua
C2z1 €22 C23 Cu
C-= 6.1)

Cit €32 Caz Ca
Cs1 Caz2 Caz  Cus

The diagonal consisting of ¢, €2, €33, and c. is termed the main diagonal of the
matrix. The matrix is termed symmetric if ¢; = c;. An upper triangular matrix is one in
which all elements below the main diagonal are zero. Thus

C= (6.2)
Caa

is upper triangular. Note that when large blocks of elements are zero they are simply left
blank in the matrix representation. A lower triangular matrix is one in which all elements
above the main diagonal are zero. A diagonal matrix is one in which all elements are
zero except those on the main diagonal. A particularly important diagonal matrix is

I= (6.3)
1

which is termed the unit matrix or the identity matrix. A banded matrix has all zero
elements except for a band centered on the main diagonal. Thus

Cit Ci2
Ca Cn Cn
C= 6.4)
C32 C33 Cia
Caz  Cas

is a banded matrix of bandwidth three, also called a tridiagonal matrix.
We can now define some of the basic matrix operations. Matrix addition is rep-
resented as

S=A+B (6.5)
and defined as

S = a; + bi,- (6.6)
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Thus each element of the matrix S is formed by adding the corresponding elements of A
and B; for example,

Sz = A+ b

Although A and B need not be square, they must have identical row dimensions and
identical column dimensions. The matrix S will obviously have the same row and col-
umn dimensions as A and B. Matrix subtraction is simply the negative of matrix
addition. These operations are commutative; that is,

A+B=B+A (6.7)
and
A-B=-B+A (6.8)

Matrix multiplication is represented as
P=AB (6.9)

and defined as
ps = Z. aubi; (6.10)

where n is the column dimension of A and the row dimension of B. These dimensions
must obviously be the same in order for multiplication to be defined. The resulting mat-
rix P will have the row dimension of A and the column dimension of B. Thus

SRR

1 3

and, for example,
Dz = anbi+ anbs+ ashsn
=D +@A)(-3)+(N)B)=—-1

The unit matrix I acquires its other name, the identity matrix, from the property that for a
square matrix A,

Al =A (6.11)
It is also true that

IA=A (6.12)
Matrix multiplication is obviously not in general commutative, i.e., in general,

AB# BA (6.13)

In fact, for nonsquare matrices, if AB is defined, BA may not even be defined.
Matrix division is not defined. However, if C is square, another square matrix, C ™',
called the inverse of C, can usually be defined such that

ccl=1 (6.14)
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(It is also true that C"'C =1) The conditions under which C™' exists and how it may be
obtained will be explored in later sections of this chapter. Note that if C ™ exists, then

(cYy'=cC (6.15)

We may also define the transpose of a matrix. The transpose of A is denotedas A”
and is obtained by replacing a; by a;. Thus if

1 -1
A=12 4
3 =2
1 2 3]
T
AT= [-—1 4 =2
A square matrix C is termed orthogonal if

CT — C—l (6.16)

then

The determinant of a square matrix C is denoted as det C and is defined as the sum
of all possible products formed by taking one element from each row in order starting
from the top and one element from each column, where the sign of each product depends
on the permutation of the column indices. Each product is multiplied by (— 1), where r is
the number of times the column index decreases in the product. Thus in a 4 X 4 matrix,
one term would be

C13C22C31Caa

and since the column index decreases three times (from 3 to 2, from 3 to 1, and from 2 to 1)
the sign on this product would be the sign of (—1)*, or —.  This definition is not practical as
a method for evaluating determinants except for diagonal matrices and very small
matrices. For a diagonal n X n matrix,

det C =[] ca (6.17)
i=1

For a 2 X2 matrix,
det C = €11€2— Ci2Cn (6.18)

The definition can also be used to evaluate the determinant for 3 X 3 matrices, but in
general other methods should be used for larger matrices. In particular, since some
equation-solving methods are based on diagonalization of matrices, determinants can
sometimes be easily evaluated as a by-product of equation solving. This will be dis-
cussed further in Sec. 6.6.

6.2 MATRIX REPRESENTATION AND FORMAL SOLUTION
OF SIMULTANEOUS LINEAR EQUATIONS

Consider a set of simultaneous linear equations (we arbitrarily choose four equations in
four unknowns for illustrative purposes). This set can be written as
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CuXi+t Xzt CuXxat CuXa=r

C21 X1+ CXa+ C3Xa+ CoaXs = 12

(6.19)
CaX)+ CXo+ CaaXs+ CuXa =1
CaX)+ CaxXat CasXst CauXa =14
An equivalent representation in matrix form is
Cinn Ciz Ciz Cia | X: T
Cazt €2 €2z Caa |} X2 ¥
= (6.20)
C3i €3 Caz  Csza || X3 rs
Csn Cs42 Ca3  Caadb Xy | O
or
CX =R (6.21)

where C is the square matrix of coeflicients, X is the column vector of unknowns, and R
is the column vector of the right-hand sides.

The formal solution for the unknowns in (6.21) can be found by employing Cramer’s
rule. Any arbitrary unknown Xx; is given by

det C,

*=FetC (6.22)
where C. is the matrix C with its kth column replaced by R. The number of basic
arithmetic operations (addition, subtraction, multiplication, and division) necessary to
solve for all n of the unknowns in a set of n equations using Cramer’s rule is of
0(n*). Thus if a certain amount of computer time is required to solve a set of equations
of a given size, a set twice as large will require on the order of 2°, or 16, times as long. In
comparison with other methods which we shall discuss later in this chapter, this method is
completely impractical since it is much too time consuming. However, equation (6.22)
does provide some useful insight into the solution of sets of equations, regardless of the
method employed. Clearly, if det C =0, no unique solution can be obtained.* In this
event the matrix C is termed singular, and the same term is often employed for the set of
equations as well. It might be expected that if det C is very close to zero, this might
cause some difficulty in computing the solution, and this suspicion is confirmed by actual
computational experience. This will be discussed further in Sec. 6.6.

The solution to (6.21) may also be written formally as

X=C'R (6.23)
In this chapter most of our attention will be devoted to methods of finding X directly,
without solving for C™' as an intermediate step, since this is usually the most efficient
approach. However, in practice, (6.23) is used surprisingly often to solve sets of
equations. Possible reasons for this approach include:

(a) In certain situations, solutions must be obtained for many different sets of equations
in which C stays the same and only R changes. Thus once C' is found, new

*If all elements of R are zero, then det C, = 0 since one entire column is zero. Nontrivial solutions can only be
obtained if det C =0 also. In this case, while no unique solutions are available, certain relationships exist be-
tween the unknowns. This case is of considerable value in the theory of eigenvalue problems. See Chapter 10.
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solution vectors X can be obtained by using (6.23) with very little additional
work. In these cases, solving for C™' is clearly advantageous.

(b) Information of value may be found, either directly or indirectly, from C™'. For ex-
ample, information can often be gained from C ™' concerning the “conditioning’ of the
set of equations and thus the possible effects of roundoff error on the solution (see
Sec. 6.6).

(¢) “Stock™ programs for matrix inversion which are very efficient and effective are
sometimes available at computer installations even when equation-solving programs
are not. The net efficiency and accuracy of using such an inversion routine along
with (6.23) may be better than the user can achieve by writing his own equation
solver. A philosophy concerning the use of such stock programs will be discussed
further in the next section.

6.3 AN OVERVIEW OF EQUATION SOLVING

Before getting into the details of equation solving, it is worthwhile to discuss some of the
overall concepts involved.

It has been noted by Ralston[3] that sets of simultaneous linear equations can
usually be put into one of two categories: either the coefficient matrix is dense (few zero
elements) but the set is not large, or the matrix is sparse (many zero elements) and the set
is large.

Equation-solving methods can be generally categorized as either direct techniques,
which yield answers in a finite, predictable number of operations, or as iterative tech-
niques, which yield answers that become increasingly more accurate as the number of
iterations becomes large. Until fairly recently, it was commonly accepted that direct
methods were most suitable for small sets of equations with dense coefficient matrices,
while iterative methods were best for large sets involving sparse coefficient
matrices. The current viewpoint differs somewhat from this one. Iterative techniques
are still preferred for very large sets and for large sets with sparse but not banded coeffi-
cient matrices. However, it has been found that direct methods are highly suitable for
quite large sets of equations having banded coefficient matrices. These banded matrices
are usually the result of finite difference solutions for partial differential equations, or of
finite element methods.

It should be noted that the meaning of “large” in describing the size of a set of
equations is a strong function of the computer hardware available to carry out the
solution.* This includes such items as central processor speed, amount and access time
of storage space, and word size. For example, widely-used scientific and data processing
computers which might readily be encountered by readers of this book could vary in CPU
(central processor) speed by at least a factor of 100, could vary in available storage space
from less than 8000 words to the essentially infinite space available using the virtual mem-
ory concept and some extended core configurations, and could vary in word size from less
than 7 decimal digits to 15 decimal digits in a single precision word.

To give some frame of reference, the largest, fastest machines with large word sizes
are capable of solving, by direct methods, a well-conditioned set of several hundred equa-
tions with a full coefficient matrix in a central processor time on the order of 1

*We have mercifully avoided much previous reference to computer hardware; however, for the present topic,
hardware capability is of very great importance and cannot be neglected.
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second. The large word size is essential in order to obtain a reasonably accurate solution
despite the strong tendency toward roundoff error which results from the many operations
necessary to solve such a large set. In comparison, combinations of all of the significant
hardware factors might practically limit small machines with small word sizes to the direct
solution of similar sets including no more than about 40 equations, and this might involve
central processor times on the order of minutes.

The largest, fastest machines are similarly capable in a practical sense of the direct
solution of a set of several thousand equations having a banded coefficient matrix with a
reasonably narrow bandwidth and of solving by iterative methods sets on the order of
hundreds of thousands.* On the smaller, slower machines, practical limits might be in
the range of several hundred equations for sets involving banded coefficient matrices, and
several thousand equations by iterative methods.

In this chapter the commonly employed methods for the solution of sets of simul-
taneous equations will be discussed in detail, and exercises will be provided in using these
techniques. It is essential that the reader understand and actually use these techniques to
solve problems. This provides the necessary insight into the proper choice of a method
for a given problem and into the difficulties which can be encountered with each of the
methods. However, it should be noted that virtually all computer installations have
available stock computer codes for the solutions of sets of simultaneous linear equations
and/or for matrix inversion. These codes usually employ direct techniques and are best
suited to sets of equations having dense coefficient matrices, although some stock codes
are also available for the direct solution of sets having banded matrices. When a suitable
stock code of proven accuracy and efficiency is available, it is usually best to use this code
in preference to writing a new one. For various reasons, these codes usually are far more
efficient than those which the user can write for himself, and are often particularly well
suited to the specific machine on which they are employed. The availability of highly
efficient stock programs to perform many tasks is steadily increasing, and even the most
enthusiastic do-it-yourself programmer should recognize their potential advan-
tages. These codes can only be used safely, however, if the user is aware of the
techniques employed and the possible sources of error. Of course, special situations can
often arise in which it is advantageous to write a program specifically suited to the
problem at hand rather than to use an available code.

6.4 GAUSS ELIMINATION AND GAUSS-JORDAN ELIMINATION

In this section we shall examine the most commonly-employed direct methods for the
solution of sets of simultaneous linear equations and for matrix inversion. Despite the
fact that these methods are among the oldest known, they are so efficient and straightfor-
ward that they are the standard for digital computation.

Consider as an example the following set of four equations:

Cn Ciz Ci3 Cu X r
€y Cz2 Cx  Cu X2 _ ra (6.24)
Cyy C3z Caz  Csza X3 Y3
Csai Caz Caz3  Can X4 Ya

*When necessary, it is possible to solve sets of several million equations by iterative techniques on such
machines, but several hours of CPU time (and many dollars) are generally required.
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The solution vector to this set remains unchanged if any of the following operations are

performed:

1. Multiplication or division of any equation by a constant.

2. Replacement of any equation by the sum (or difference) of that equation and any other
equation.

Gauss elimination is simply a sequential application of these basic row operations. The

top equation is first divided by c.:

1 Cl» Cix Cu X1 ri
C21 Cx Ca3 Cos X2 r
= (6.25)
C3y Ciz C33 Cx X3 rs
Cat Ca2 Ca3 Cu X4 T4

The primes denote elements which have been changed from their original values. The
first equation is now multiplied by c., and subtracted from the second equation. This

yields

1 Cl2 Cis Ch X ri
0 Cn  Chi Ch || X2 s
= (6.26)
C3t Cz2 Ciz  Csa X3 ¥
Cs1r Ca2 Caz  Cua Xa Ya

The first equation can now be multiplied by ¢s; and subtracted from the third equation,
then multiplied by c.: and subtracted from the fourth equation. During these operations
the first row is termed the pivot row and c., the pivot element. The entire first column
below ¢, has now been cleared to zero and the set appears as

1 ¢ ¢ cul[x rh

0 ¢ ¢ cullx rh

0 o ’ ’ = ' (6'27)
32 C;z Cy || X3 F3

0 ¢ ¢ cullx, rl

The second row now becomes the pivot row and ¢, the pivot element. The second equa-
tion is divided by c% to make the main diagonal element 1. Multiplication of the second
equation by c¢%; and subtraction from the third equation, and then multiplication by c}, and
subtraction from the fourth equation, clear the second column below the main diagonal to
zero. Similar operations with the third and fourth rows as pivot rows finally yield

1 ¢l ¢ cuWlx ri
1 € Cu || X, ra

1 i || xs = r (6.28)
1 X4 ra

(For simplicity, we have shown only one prime on the elements which have been changed
from their original values, even though some elements have been modified several
times.) The method is sometimes termed triangularization since the coefficient matrix in
(6.28) is upper triangular. The bottom equation in (6.28) now yields directly the value of
X4 s

Xa=Tr} (6.29)
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The third equation is

X3+ ChuXs=r} (6.30)
Since x4 is known from (6.29), this may be solved for x; to yield

X3 = ri— ChX, (6.31)

Repeated back substitution, moving upward, yields one new unknown from each new
equation, and the unknown vector will have been completely determined when the top
equation is solved for x;. The flow chart for Gauss elimination is shown in Fig. 6.1.

Gauss-Jordan elimination is an adaptation of Gauss elimination which is particularly
well suited to digital computation. The method can be illustrated by starting with the
upper triangular form (6.28) which resulted from Gauss elimination:

1 ¢ ¢ cux ri
1 Cyu  Cu || X2 ri
={ (6.32)
1 cia || Xa ri
1 X4 rh

Multiplying the second equation by ¢! and subtracting the second equation from the first
yields

1 0 s cdx rY
] C'23 CQA X2 rf,
, = (6.33)
1 Cia || X3 123
1 Xa ri

(We use the double primes to denote values which have been changed from (6.28), no
matter how many times they have been changed.) The third and fourth columns can now
be cleared in a similar manner to yield

1 X, ry
1 X rh
1 P = o (6.34)
3 3
1 Xa r:t/
Thus
xl:r’ll x3:r,3( (635)
X2=17r4 X4e=r4
,= =

and the right-hand side vector has become the solution vector.

In practice, the upper triangular form (6.32) is not obtained as an intermediate step in
Gauss-Jordan elimination. Instead, the most efficient approach is to eliminate all ele-
ments both above and below the pivot element in order to clear to zero the entire column
containing the pivot element, except of course for the 1 in the pivot position on the main
diagonal. This procedure is carried out by starting with the top row as the pivot row, and
then moving downward through the matrix, using each row in turn as the pivot row. The
result is of the form (6.34). A numerical example is presented in detail in Problem
6.1. The flow chart for Gauss-Jordan elimination is shown in Fig. 6.2.
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The efficiency of Gauss and Gauss-Jordan elimination can be assessed by noting that
the number of basic arithmetic operations necessary to carry out a solution to a set of n
equations by either method is of O(n’). Recall that Cramer’s rule was of O(n”).

One computational difficulty can arise with the standard Gauss and Gauss-Jordan
elimination techniques. The pivot element in each row is the element on the main
diagonal. By the time any given row becomes the pivot row, the diagonal element in that
row will have been modified from its original value, with the elements in the lower rows
being recomputed the most times. Under certain circumstances, the diagonai clement
can become very small in magnitude compared to the rest of the elements in the pivot row,
as well as perhaps being quite inaccurate. For various reasons, this can create a very
unfavorable situation in terms of roundoff error which can result in an inaccurate solution
vector. This type of roundoff error problem can be particularly significant with large sets
of equations. The problem can be effectively treated by interchanging columns of the
matrix to shift the largest element (in magnitude) in the pivot row into the diagonal
position. This largest element then becomes the pivot element. This operation is re-
peated with each new pivot row as necessary. Every column interchange also means an
interchange of the locations of the unknowns in the unknown vector. The logic neces-
sary to accomplish this maximization of pivot elements can be quite complex, and it
hardly seems worthwhile to ask the reader to write a computer program to carry out this
logic since many stock codes are available. One such program written in FORTRAN IV
is given in the Appendix at the end of this book. Maximization of pivot elements may
also be approached by interchanging rows in the matrix (and in the right-hand side) to
bring the largest element in the column to the pivot position. An extreme strategy (which
is usually unnecessary and time consuming) is to shift both rows and columns to bring the
largest element in the entire matrix into the pivot position. Strategies to maximize pivot
elements are sometimes called ‘““‘positioning for size” or “pivoting.”

The direct solution of sets of equations having banded coefficient matrices is of
sufficient importance to deserve special treatment. As was previously mentioned, such
sets commonly arise in the numerical solution of partial differential equations and in the
use of finite element techniques. As an example, consider a set of arbitrary size having a
tridiagonal coefficient matrix:

b, [} Arx, Fry ]
a; b, C> X2 ra
as b Ca X3 rs
=1, (6.36)
anfl bnvl Cn‘l Xn—1 rn—l
L a. b, ILx. 1 Lr J

Notice that we have adopted a new notation. The main diagonal elements are denoted as
b, while the diagonals below and above the main diagonal are denoted as a and ¢
respectively. Only a single subscript is thus needed on each coefficient to denote the
row.

We now apply Gauss elimination to (6.36), starting from the top row. As the reader
can verify by carrying out each step, only one element (one of the a’s) will be eliminated
in each column, since all remaining entries below the main diagonal are zero. Also, no
entries outside of the tridiagonal band are changed from zero in the course of this
elimination process. After the bottom row has been reached, (6.36) becomes
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" T x4 j rry ]
1 ¢ X2 r;
| B Xs |_|rs (6.37)
1 Crt Xn—1 Y-
L 1 dlx. J Lre J

From the bottom row, x,. = r,, and back substitution yields the remaining unknowns very
easily.

The number of basic arithmetic operations necessary to solve this tridiagonal set is
only of 0(n), in contrast to the ©(n>) operations required for a full matrix. This small
number of operations not only results in very short computation times, but also tends to
minimize roundoff error. As a result, sets of several thousand equations of this type can
be readily solved on most machines, In addition, since no element outside of the
tridiagonal band ever enters into the solution, the entire matrix can be stored in three
vectors: a, b, and c¢. The overall storage requirements are then approximately S5n
locations for the matrix, unknown vector, and right-hand side vector. If this is compared
with the n*+ 2n locations needed for a set of equations with a full matrix, it should be
apparent why large sets of equations with tridiagonal matrices can be handled so easily.

We now present a detailed flow chart for the solution of a tridiagonal set (Fig. 6.3).

All of the discussion concerning tridiagonal sets also applies to sets of equations hav-
ing banded coeflicient matrices with wider bandwidths, although of course the number of
necessary operations and needed storage locations increases with increasing bandwidth.
These considerations may decrease somewhat the number of equations which it is practical
to solve on any given machine.

Sets of equations involving banded matrices almost invariably have large diagonal
elements, so maximization of pivot elements is not necessary. This is fortunate, since
column or row shifting could destroy the entire approach and require many additional
arithmetic operations and storage locations.

6.5 MATRIX INVERSION BY GAUSS-JORDAN ELIMINATION

In Sec. 6.1, the inverse of a square matrix C was defined by
CC'=1I (6.38)

The inverse of C exists if C is not singular, i.e. if det C# 0. Inorder to find C™, equation
(6.38) can be treated in a manner very similar to that used to solve a set of simultaneous
linear equations. The square matrix C~' assumes the role of the column vector of
unknowns X, while the square matrix I assumes the role of the right-hand side column
vector R. If a series of basic row operations applied to C and I in (6.38) transforms C
into I, then the left side of (6.38) becomes IC™" or C™'. These same operations must
transform I on the right side of (6.38) into C™ in order to preserve the equality. In the
previous section, we have seen that Gauss-Jordan elimination is a series of basic row
operations that transform a square matrix C into the identity matrix I, so this is an obvious
approach to matrix inversion.
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The method is best illustrated with an example. Consider the 3 X 3 matrix

2 1 1
cC=|1 2 1t
I 1 2

Now write C and I together, and perform the same basic row operations on each:

2 1 11 0 O
1 2 1110 1 O
1 1 2jL0 0 1

Applying Gauss-Jordan elimination to C, we divide the first row of both matrices by 2:

1 12 123fy2 0 0
{:] 2 1 0 1 0
1 1 2 0 0 1

The first column of the left matrix can be cleared by subtracting the top row from the
second row, and then from the third row:

112 12 12 0 0
[0 32 129 -1/2 1 0}
0 12 324L-12 0 1

The second row of both matrices is now divided by the pivot element 3/2, then multiplied
by 1/2, and subtracted from the top row and the bottom row. This clears the second
column of the left matrix and yields

10 1/3 2/3 —-1/3 0
0 1 1/3})—1/3 2/3 0
L0 0 4/31L-1/3 -1/3 1

Finally, clearing the third column of the left matrix, we obtain

"1 0 0 34 —-1/4 -1/4
0 1 0f—-1/4 3/4 ~-1/4
0 0 1li-1/4 -1/4 3/4

Since the left matrix which was originally C has now been transformed into I, the right
matrix which was originally I should now be C~'. To verify this, we multiply it by C:

2 1 1 344 —-14 -—-1/4 1 0 O
{:1 2 l]{— 1/4 3/4 - 1/4:l=[0 1 0:} =]
1 1 2jL—-1/4 -1/4 3/4 6 0 1

Since C™' is defined by CC ™' = I, we have found C~'. The similarity to solving a set of
equations by Gauss-Jordan elimination should be apparent.

In computational practice, maximization of pivot elements is just as valuable in
matrix inversion as in the solution of sets of equations. In addition, as the inverse is
computed, it can be stored on top of the original matrix so that virtually no additional
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storage space is needed over that required for the original matrix. The FORTRAN
1V subroutine given in the Appendix incorporates these features, and there would seem to
be little to be gained by asking the reader to carry out the logical details of the
programming. Similar programs are available at virtually every computer installation.

6.6 ILL-CONDITIONED MATRICES AND SETS OF EQUATIONS

In this section we shall use the term “‘matrix” to apply equally to a matrix to be inverted
and to the matrix of coefficients of a set of linear equations to be solved. Both will be
denoted as C. As we have seen in previous sections, the operations for inversion and
solution of a set are essentially the same.

There is no clear-cut and precise definition of ill-conditioning for a matrix. As the
name might imply, ill-conditioning can potentially result in an inaccurate inverse or an
inaccurate unknown vector for a set of simultaneous linear equations. The word “poten-
tially” is used since we will distinguish carefully between the presence of ill-conditioning
and the effects of ill-conditioning. This distinction is apparently seldom made. This
may be partially due to the fact that it is not usually necessary to be concerned about
ill-conditioning if the answers are accurate. However, it is difficult to tell if an inverse is
accurate by looking at it, and an inaccurate unknown vector can satisfy an ill-conditioned
set surprisingly well. Knowledge of the presence of ill-conditioning can thus put one on
guard against its sometimes subtle effects.

We will discuss two of the many possible ways to recognize that ill-conditioning may
be present. The first of these is to examine the inverse of the matrix directly. If there
are elements in the inverse which are many orders of magnitude larger than the elements
in the original matrix, then the matrix is probably ill-conditioned. (Some sources[3]
define ill-conditioning by this criterion.) This situation can best be recognized if the
rows in the original matrix are all normalized to have elements with a maximum magnitude
of order 1.

The second method to be considered for detecting the presence of ill-conditioning in-
volves the evaluation of the determinant of the matrix. If the magnitude of the determin-
ant is small, then the matrix may be ill-conditioned. But what does small mean? Some
normalization is necessary in order to provide a frame of reference. Conte[4] has
suggested that the matrix C be considered as ill-conditioned if

det C

n n
V2 2 ¢
i=t j=1

where n is the row and column dimension of the matrix. The quantity
VEL 2. ciis called the Euclidean norm of C. The determinant of a matrix may be
evaluated remarkably easily as a byproduct of Gauss-Jordan elimination. Since the de-
terminant of a diagonal matrix is just the product of the diagonal elements, and since
Gauss-Jordan elimination produces a diagonal matrix, it is only necessary to keep a
running product of the pivot elements. (The product is recomputed at each new pivot
row before the row is divided by the pivot element.) When the inversion or solution is
complete, this running product is the determinant of the matrix. This determinant evalu-
ation has been incorporated in the matrix inversion and equation-solving program given in
the Appendix. The program also evaluates the normalized determinant (6.39).

<1 (6.39)
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There are many other criteria commonly used for evaluating the conditioning of
matrices. See, for example, Refs. 3 and 5. Many of these criteria require the evaluation
of one or more eigenvalues of the matrix. Since eigenvalue problems will not be con-
sidered until Chapter 10, we are not able to meaningfully consider these criteria at this
point.

We now turn to the evaluation of the effects of ill-conditioning. These effects are
due to roundoff error in the calculation of the inverse of a matrix or the solution to a set of
equations. There are two simple but quite effective tests which will detect whether this
roundoff error will be significant for any given problem. Both tests require the calcula-
tion of C~'. This inverse is, of course, the end result of an inversion problem. If the
effects of ill-conditioning on the solution to a set of equations are to be assessed, then C™'
must be obtained by the same method as the solution vector is to be obtained; that is, if
Gauss-Jordan elimination would be used to obtain the solution vector, then it must also be
used to obtain C ™' for these tests. The two tests now consist simply of calculating C~'C
(or CC™") and comparing the result to I, or of calculating (C™')™' and comparing the result
to C. Significant deviation from the expected results indicates the presence of serious
roundoff error. Of the two tests, the calculation of (C™")™" is the most critical, since
roundoff is accumulated both on the original inversion and the reinversion. This test also
usually requires no additional storage space over that needed for C. (The calculation of
C7'C would in general require three times the storage space required for C. This can
exceed the available space in some cases.)

In closing our discussion of conditioning, we note that since the effect of ill-
conditioning is roundoff error, then the best defense is a large word size (many decimal
digits). The word size is usually fixed by the computer being used, but many machines
have available either hardware or software capability to provide much larger word sizes
than the standard word. This capability is usually obtained at the expense of com-
puting speed and always at the expense of storage space, but the double precision
hardware available on many scientific machines may result in only a 20-30% reduc-
tion in effective computing speed. This can be a small price to pay for accurate
answers from an ill-conditioned matrix. We also note that except in the most patho-
logical cases, it is possible to use an error correction technique to improve inaccurate
answers to a set of linear equations. The technique and its application are illustrated
in Problem 6.3.

The effects of ill-conditioning are most serious with large dense matrices and with
certain types of matrices which commonly arise in such problems as curve fitting by least
squares (see Chapter 7). In these cases the sizes of the matrices which can be handled
accurately may be severely limited by roundoff error. Problem 6.5 shows examples of
ill-conditioning and its effects.

The sparse banded matrices which result from the numerical solution of partial dif-
ferential equations and from finite element methods are usually quite well conditioned,
and very large sets can be solved without excessive roundoff error problems.

6.7 GAUSS-SIEDEL ITERATION AND CONCEPTS OF RELAXATION

Gauss-Siedel iteration is the most popular and one of the most powerful iterative tech-
niques for the solution of sets of linear equations. Consider as an example a set of three
linear equations:
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I

CuXi+ CixXo+ CiaXs =1y
CuXi+ CuXat+ CaXs =12 (6.40)
C Xy + Ca2Xo+ C33Xs = 73

We now solve the first equation for x,, the second for x,, etc. to yield

Fi— Ci2X2 — C13X3

X =
Cu
V2= C21X1— CnnX
X = 2 21X 23X3 (6.41)
C2
__ V3 C31X; —~ CnXa
Xy =—""———

Ca3

Initial guesses are needed for x,, x,, and xs. Call these x{”, x{°, and x{*. From the first

equation in (6.41) we can now find the value of x; on the first iteration as

©) ©
Fi— Cp2X2 — C13X
(ll) A 12X 2 13X'3 (6.42)

Cu

X

The second equation in (6.41) gives x5’ as

1) [
@ _ Y27 CnXi — Ca3X3
X3 =

Cxn

(6.43)

Notice that x{", which is the new value obtained from (6.42) on the current iteration, has

been used instead of x{”. This use of the most recently obtained value of each of the

unknowns is the distinguishing feature of Gauss-Siedel iteration.* The solution for x;

from (6.41) is thus

xgx) - rs— c31x(ll) _ C32X§1)
C33

(6.44)

The iterative process consists of repeatedly cycling through the solutions for the
unknowns. As each new value of an unknown is computed, it replaces the old
value. Only one computer storage location is thus required for each unknown. Pro-
gramming is also greatly simplified, since whenever an unknown is used, it is automati-
cally the most recently computed value. If the equations have the proper characteristics,
then the iterative process will eventually converge to the solution vector.

The iteration is terminated when a convergence criterion is satisfied. The two
commonly-used types of convergence criteria are absolute criteria and relative criteria.

An absolute convergence criterion is of the form

IXEH])— xgz)' <e (6.45)
If (6.45) is satisfied for all x,, then the change in each unknown from the previous iteration
(1) to the current iteration (I + 1) is no more than e. This type of criterion is most useful
when the approximate magnitudes of the x; are known beforehand. With such a criterion

*A different iterative process, called Jacobi iteration, employs all of the old values of the unknowns until the
sweep through all equations has been completed, and then replaces the old values with the newly-computed val-
ues in a block. Current opinion appears to be that Jacobi iteration has no significant advantages compared with
Gauss-Siedel, and has a considerably slower convergence rate. We shall not discuss this method further.
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it is possible to choose € such that, for example, the solution is considered converged
when the change in each x; is less than 1 unit in the fourth decimal place on two successive
iterations. This of course does not mean that the fourth decimal place is accurate to 1 unit
for each of the x;; the actual accuracy of the x; is dependent on the convergence rate of the
process, which can vary widely for different sets of equations. Some knowledge of the
accuracy of the converged values in any given problem can usually be obtained by
observing the results of several iterations near convergence.
A relative convergence criterion is of the form

@+ ®
l "c(.‘ﬂ_‘“)' <€ (6.46)

This type of criterion is the safest choice if the magnitudes of the x; are not known
beforehand, and corresponds to specifying the maximum allowable percentage change in
each unknown on two successive iterations.

For very large sets of equations, it may be impractical to test each unknown for
convergence since excessive amounts of computer time may be involved in the testing
procedure. Convergence testing in such cases is usually individually tailored to the
problem at hand and may consist of testing only certain critical unknowns or of using
T x 0 — x P or Sifx (P — x{]° as quantities to be compared with some predetermined
convergence criterion.

Whether the iterative process is convergent or divergent does not depend on the
initial guess supplied for the unknowns, but depends only on the character of the equa-
tions themselves. However, if the process is convergent, then a good first estimate of the
unknowns will make it possible for the convergence criterion to be satisfied in a relatively
small number of iterations. A poor first guess can prolong the iterative process consider-
ably (but will not cause divergence).

The sets of equations which are best suited to iterative techniques are those in which
the main diagonal elements are the largest elements (in magnitude) in each row. In the
example set (6.40) this would mean that c,,, ¢, and c;; would be the largest elements in
their respective rows. Convergence cannot be guaranteed unless

sl > Zl s (6.47)

i#j

for each value of i (each row). However, in practice, convergence can be obtained with
much weaker diagonal dominance than this. In many cases convergence can even be
obtained if a few of the equations have diagonal elements smaller than some other ele-
ments in those equations. Examples of Gauss-Siedel iteration are shown in several prob-
lems at the end of the chapter. We will defer the presentation of the flow chart until after
the discussion of relaxation.

Relaxation originally evolved as a very sophisticated hand computation technique
for solving large sets of simultaneous linear equations iteratively. The overall approach
is not well suited to digital computer use because of the extensive logic required. How-
ever, some of the original concepts are embodied in the simple but powerful computer
oriented method which we will now discuss briefly.

The method basically consists of calculating the value of each unknown by Gauss-
Siedel iteration and then modifying the value before it is stored. The fundamental opera-
tional equation for this so-called “point” relaxation is

X?H) — XE“‘*‘)\(XEHU*—XE')) (6.48)



104 NUMERICAL METHODS

As before, we will consider iteration (I + 1) as the current iteration and iteration (/) as the
preceding iteration. The quantity x{*"" is the value of the unknown obtained on the
current iteration by using Gauss-Siedel iteration. The quantity A is a pure number in the
range 0 < A <2, which is called the relaxation factor. The effect of this factor can be

seen more easily if (6.48) is rewritten as
x51+l) = /\xgl+1)*+ (1 - A.)x?) (649)

If A =1, then the Gauss-Siedel computed value of the unknown is stored as the current
value. If 0 <A <1, then the current stored value becomes a weighted average of the
Gauss-Siedel value and the value from the previous iteration. This is termed
underrelaxation. If 1<A <2, then the current stored value is essentially extrapolated
beyond the Gauss-Siedel value. This is termed overrelaxation. (For A >2 the process
diverges.) We might note that the term ‘““Gauss-Siedel value” is a slight misnomer here
(unless A = 1), since the values from the current iteration which are utilized in its
computation are not Gauss-Siedel values themselves, but have been modified by the
relaxation formula (6.48) before they were stored.

Although definite exceptions can be shown, overrelaxation is usually employed to
accelerate an already convergent iterative process, while underrelaxation is usually em-
ployed to make a nonconvergent iterative process converge. The same relaxation factor
usually applies for all of the equations in a set, although it may occasionally be worthwhile
to use different factors for blocks of equations within a set which are drastically different
in character.

The choice of an optimum value of A is a rather complex task which is beyond the
scope of this text. See Ref. 6 for a discussion of this topic. In most circumstances it is
practical to choose the value of A by trial and error. The use of relaxation factors is
particularly important and useful in solving iteratively the very large sets of equations
which result from the numerical solution of partial differential equations. Several exam-
ple problems at the end of this chapter illustrate the choice and use of relaxation factors.

A flow chart for Gauss-Siedel iteration including a relaxation capability will now be
presented (Fig. 6.4). To obtain Gauss-Siedel iteration with this algorithm, set A =1. An
absolute convergence criterion has been used in Fig. 6.4. A relative criterion can be
substituted if desired.

In Sec. 6.3 it was stated that iterative techniques are used to solve the very largest
sets of equations, perhaps sets as large as on the order of one hundred thousand
equations. Very large sets of equations invariably have sparse coefficient matrices, and it
is essential from a storage space standpoint that any solution technique to be used for such
sets take full advantage of this sparseness, and only require the storage of those elements
which are nonzero. Iterative techniques can easily satisfy this requirement in all cases,
while direct techniques only satisfy the requirement if the coefficient matrix is banded, or
in some cases if special programming techniques are used. However, the primary reason
that such large sets can be handled with iterative techniques but not with direct techniques
is that the roundoff characteristics of iterative techniques are much better. With direct
techniques, roundoff error can be incurred with each mathematical operation, and simply
accumulates until the final answers are obtained. When iterative techniques are used, the
presence of roundoff error in the unknowns at the end of any given iteration simply results
in those unknowns being somewhat poorer estimates for the next iteration. For practical
purposes, the roundoff error in the final converged values is only that accumulated in the
final iteration.
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In closing this section on iterative techniques, as well as the chapter on linear equa-
tions, we should note that Gauss-Siedel iteration (including relaxation) is the most widely-
used technique for solving nonlinear sets of simultaneous equations. Problem 6.10 is an
illustration of a possible approach to such problems.

Ilustrative Problems

6.1 Show the detailed solution by Gauss-Jordan elimination of the following set:

3 1 —-1}fx 2
1 4 1{x |=112
2 1 24Lx; 10

All operations will be rounded to four decimal places for compactness. When we
refer to an operation on a row of the matrix, this operation will be performed not only on the
coefficient matrix but also on the element of the right-hand side vector in the corresponding
row location. (Some texts employ the concept of an ‘“‘augmented’” matrix, which is a
nonsquare matrix of n rows and n +1 columns, with the right-hand side vector as the
(n + th column. All row operations then automatically include the right-hand side
vector.) We begin with the first row as the pivot row and 3 as the pivot element. The first
row is now divided by the pivot element:

i 0.3333  ~0.3333 || 0.6667
1 4 1 12

2 1 2 10

The first row is next multiplied by 1 (the second element in the first column) and subtracted
from the second row:

1 0.3333 —-0.33337][ 0.6667
0 3.6667 1.3333 || 11.3333
2 1 2 10

The first row is now multiplied by 2 (the third element in the first column) and subtracted
from the third row to give

1 0.3333  —0.3333 0.6667
0 3.6667 1.3333 |1 11.3333
0 0.3333 2.6667 8.6667
The first column has now been cleared. Recall that our goal is to transform the coefficient
matrix into the identity matrix, at which point the right-hand side vector will become the

solution vector. The second row now becomes the pivot row, and 3.6667 the pivot
element. Dividing the second row by the pivot element yields

1 0.3333  —0.33337][0.6667
0 1 0.3636 || 3.0909

0 0.3333 2.6667_ L8.6667
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The top element in the second column can be cleared to zero by multiplying the second
(pivot) row by 0.3333 and subtracting the second row from the first:

1 0 —0.45457[ - 0.3636
0 1 0.3636 3.0909
0 0.3333 2.6667 8.6667

The bottom element in the second column can be cleared next by multiplying the second row
by 0.3333 and subtracting the second row from the third:

1 0 —045457[-0.3635
0 1 0.3636 3.0909
0 0 2.5455 7.6365

The bottom row is now the pivot row and 2.5455 the pivot element. Dividing the bottom
row by this element gives

™1 0 —0.45457[—0.3635
0 1 0.3636 3.0909
| 0 0 1 3.0000
Multiplying the bottom row by —0.4545 and subtracting it from the first row gives
1 0 0 1.0000
0 1 0.3636 || 3.0909
0 0 1 3.0000

Finally, the second element in the third column can be cleared by multiplying the third row
by 0.3636 and subtracting it from the second:

1 0 07[1.0000
0 1 0}]2.000!
0 0 14L3.0000

The solution vector is thus

[1.0000
X =1 2.0001
L3.0000

The exact solution without roundoff error is
B

X=|2
[ 3

6.2 Given the following set of equations:

1.1348  3.8326  1.1651  3.40177[ x 9.5342
0.5301 1.7875  2.5330  1.5435 || x. | _| 6.3941

34129 49317 87643 13142 || x, | |18.4231
1.2371 49998 10.6721  0.0147 1L x, 16.9237

Solve this set by using Gauss-Jordan elimination with and without maximization of
pivot elements and compare the result.
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The exact answers to this set are
x =1 x3=1
X2 = 1 X4 = 1

The answers obtained by using Gauss-Jordan elimination in single precision on the IBM
360/67 are:

Without Maximization With Maximization
of Pivot Elements of Pivot Elements
x; = 0.9991369 x; = 1.000006
x, = 1.000077 x, = 1.000003
x; = 1.000001 x; = 1.000000
x4 = 1.000076 x4 = 1.000001

The gain in accuracy when the pivot elements are maximized (by column shifting) should be
apparent.

This small set of equations has been deliberately formulated to produce rather poor
results unless maximization of pivot elements is used. It should be clear that maximization
of pivot elements may be necessary for small sets of equations as well as large sets, and that
it is virtually impossible to identify the need for maximization by simply examining the
coefficient matrix. The best practice is simply to employ maximization of pivot elements
routinely for all equation solving unless there is some reason for not doing so (as is the case
with sets having banded coefficient matrices).

Develop an error correction technique for simultaneous linear equations and
demonstrate its use.

The matrix representation of a set of simultaneous equations is
CX=R

If we calculate the vector X by any method, it will naturally contain some error, even if only
due toroundoff. Call this calculated vector X’. Now multiply this vector by C to yield

CX' =R’

where R’ is a newly-calculated vector, somewhat different from R. If we now subtract this
equation from the original equation, we obtain

CX-X)=R~-R'

If (X —X') is denoted as E, then
CE=R~-R’

Any standard technique can now be used to solve this equation for E. Then
X=X'+E

If E could be determined exactly, then the error would be completely corrected and we
would now have the exact value of X. In fact, E will be in error for the same reasons
(roundoff, etc.) that X’ was, so that we have only accomplished a partial correction. If
necessary, the process can be repeated as many times as necessary to obtain an accurate
solution vector.
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To illustrate the method, we reconsider Problem 6.2. The calculated solution vector
X' obtained for that problem when maximization of pivot elements was not used was

0.9991369
1.000077
1.000001
1.000063

as compared to the exact answer of all I's. We multiply this vector by the original coeffi-
cient matrix to form CX':

1.1348  3.8326  1.1651 3.4017 || 0.9991369
0.5301 17875  2.5330  1.5435 ] 1.000077
3.4129 49317  R.7643 1.3142 || 1.000001
1.2371  4.9998 10.6721  0.0147 | 1.000063

CX' =

The result of this multiplication is the modified right-hand side vector R':

9.5337769
6.3939005
18.4206430
16.9230290

R'=

Now

9.5342000 - 9.5337769 0.0004231
6.3941000 — 6.3939005 | | 0.0001995
18.4231000 — 18.4206430 { | 0.0024570
16.9237000 ~ 16.9230290 0.0006710

R-R'=

Using this vector as the right-hand side, we can solve the set
CE=R—-R’
for E by Gauss-Jordan elimination to yield

0.0008632
E-= —0.0000772
—0.0000009

—0.0000763
The improved estimate of X is given by

0.9991369 + 0.0008632 1.0000001
X'+ E = 1.0000772 —0.0000772 | | 1.0000000
1.0000010 — 0.0000009 | | 1.0000001

1.0000763 — 0.0000763 1.0000000

The errors in the elements of this corrected unknown vector are no more than 107. The
vast improvement is apparent, and no further correction is necessary.

In order to obtain the best results from this correction technique, the calculation of R’
and R — R’ should be done using double precision arithmetic. The remaining calculations
can be done in single precision.

If it is known beforehand that error correction will be required, then the most efficient
method is to calculate C~' rather than to solve the set, since once C™' is known, it can be
used to calculate both X' and E.
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Solve the following set of equations:

4 3 —1ilx, 6
7 =2 3fix,| =19
5 —18 13 ]){ x; 3

For purposes of illustration, we begin by using a Gauss-Jordan program written from
the algorithm in Fig. 6.2. This program does not employ maximization of pivot
elements. The resulting solution vector is

1.586206
X = | —0.4482759
~—1.000000

In order to check the accuracy of these answers, we substitute them into the first equation:
4(1.586206) + 3(—0.4482759) — 1(— 1.000000) = 5.9999963

which is very close to the correct value of 6. Substitution into the other two equations
shows that the solution vector also satisfies them to a high degree of accuracy. From all
indications, we should feel secure that we have obtained an accurate solution. However,
consider the following vector:

0.6206896
X =1 2.1724137
3.000000

This is obviously very different from the original solution vector. If we substitute this
vector into the first equation, we find

4(0.6206896) + 3(2.1724137) — 1(3.000000) = 5.9999995

which is again very close to the correct value of 6. Substitution in the other two equations
yields similar accuracy. Something is obviously very wrong when two entirely different
sets of unknowns satisfy (virtually exactly) the same set of equations. We might speculate
that the set is very ill-conditioned, and perhaps in a sense that is true; however, the problem
would seem to be more basic. In an effort to trace the difficulty, we empioy the subroutine
given in the Appendix which maximizes pivot elements, and also supplies the magnitude of
the determinant of the coefficient matrix. This subroutine yields

—0.5000000
X =] 6.000000
16.00000

and |det C|=2.7657 x 10~°. This solution vector does not even come close to satisfying any
of the three equations! The most informative piece of information, however, is the mag-
nitude of the determinant. Recall that the determinant is defined as the sum of various
products of elements in the matrix. No divisions are involved. For the present problem
the coefficient matrix is composed entirely of integer elements, so the determinant must be
an integer, or, practically speaking, as near to an integer as can be calculated using floating
point arithmetic and allowing for a reasonable amount of roundoff error. The computed
value for |det C| of 2.7657 X 107’ can thus only mean that the determinant, if computed with-
out roundoff error, is exactly zero. The set is thus singular, and no unique solution exists,
which explains our earlier problem with multiple solutions.

The present problem was contrived by forming the third equation as a linear combina-
tion of the first two equations. In practice, it is quite common in certain physical problems
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to accidently form a singular set by applying a physical principle which is not independent of
the other physical principles used to construct the set. This singular character of the set can
sometimes be difficult to detect, particularly if the results of the solution happen to be
physically reasonable. Maximization of pivot elements can often help, since the resulting
“solution vector” will usually not satisfy the equations. Evaluation of the determinant of
the coefficient matrix can also be helpful, as we have shown in the present problem.

A classical example of an ill-conditioned matrix is the so-called Hilbert
matrix. This is a symmetric matrix of the form

1 12 1/3 1/4 ce 1/n
1/2 1/3 1/4 1/5 ces HYn+1
H=]|1/3 1/4 1/5 1/6 e 1f(n+2)
1/n Yn+1) 1UYn+2) 1Un+3) --- 1/2n

Formulate and solve several problems involving the inverse of this matrix and the
solution of sets having it as the coefficient matrix, in order to examine the signs and
effects of ill-conditioning. Consider several values of n.

Consider the following set of three equations:

112 137x 11/6
[1/2 1/3 1/4i||ix2:|=|:13/12
1/3 1/4 1/51Lx; 47/60

The coefficient matrix of this set is the Hilbert matrix H with n =3. The right-hand side
vector has been chosen so that the exact solution vector is

This permits easy observation of the effects of ill-conditioning on the solution vector as well
as on the coefficient matrix. We begin by inverting the coefficient matrix, using the Gauss-
Jordan subroutine given in the Appendix. The computed inverse is

9.000121 —36.00063 30.00061

H'= [— 36.00069 192.0036  —180.0034 :l
30.00066  —180.0034 180.0033
Recall that if the maximum elements in each row of a matrix are of order 1 (which is true of
H in the present case) then the inverse of an ili-conditioned matrix will have elements which
are much larger than 1 in magnitude. The ill-conditioning in this sense is obvious for the
present problem. Another measure of the conditioning is to evaluate the normalized deter-
minant of the matrix and compare the result to 1 (this criterion was given as equation (6.39),
page 100). The subroutine used to obtain the inverse also supplies this information, and we
find

|det H|

33

=0.001319
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which is another definite indication of the presence of ill-conditioning. In order to examine
the effects of ill-conditioning, we will use the same subroutine to reinvert the matrix and thus
find (H™')". If the effects of ill-conditioning are significant, then this reinverted matrix wili
show significant variations from the original matrix H. The reinverted matrix is

0.4999948  0.3333294  0.2499971

0.9999908  0.4999933  0.3333282
(H—])—l =
0.3333294  0.2499973  0.1999979

which shows some error, but 5 decimal places of the original matrix have been
retained. The solution vector which results from multiplying H ' by the right-hand side is

1.000031
X =1 0.9999542
1.000046

The elements of this vector are in error in the fifth decimal place as compared to the correct
solution vector of all 1's. Thus for this case we have detected the presence of ill-
conditioning, but have not found its effects to be very serious.

Consider next a similar set of 5 equations:

112 13 1/4 15[ x 137/60
12 13 1/4 15 1/6]| x. 87/60
13 14 15 1/6 17 || x| =] 459/420
174 15 1/6 1/7 1/8{] x, 743/840

s 16 1/7 18 /94| xs 1879/2520

For reasons of space we will not reproduce the entire inverse; however, the largest element
in the inverse is 177807.6, or six orders of magnitude larger than the elements in the original
matrix. The normalized determinant is

=6.2638x 107"

These are indications of severe ill-conditioning. To assess the effects, we examine

1.0049 0.5034 0.3361 0.2522 0.2019
0.5037 0.3360 0.2521 0.2017 0.1681
(Hy'=| 03363 0.2521 02016 0.1680 0.1440
0.2525 0.2018 0.1680 0.1440 0.1259
0.2021 0.1682 0.1440 0.1260 0.1119

The errors have clearly become significant for this case, since the third decimal place in
almost all of the elements of this reinverted matrix are incorrect. The solution vector,
which should be all 1’s, is found to be

0.9992676
1.015625
X = 0.9140625
1.2421875
1.0039063
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The effects of ill-conditioning are apparent. Clearly, sets any larger than this will cause
considerable trouble. It is interesting to examine the solution vector (which should be all
1’s) for n = 6:

0.9946289

1.285156

0.4375000

8.000000

~—6.000000
3.187500

This result is complete nonsense and the solution has been clearly overwhelmed by roundoff
error. As might be expected, (H '} for n = 6looks quite different from H. If the solution
vector is obtained directly by Gauss-Jordan elimination without finding H™' as an inter-
mediate step, then the number of arithmetic operations is smaller and the solution vector
does not become complete nonsense until n = 8.

These results were obtained on the IBM 360/67 in single precision arithmetic (which
uses essentially a seven digit word). Larger Hilbert matrices can be inverted with meaning-
ful results if double precision arithmetic is employed, or if other machines with larger word
sizes are used.

Carry out the first three iterations of the Gauss-Siedel method for the following set
of equations:

8x1 + 2x: + 3X3 =30
xl'—9x;+2x?, = 1
2x,+3x,+6x; =31
The set is strongly diagonally dominant, so no rearrangement is needed and Gauss-

Siedel iteration should converge. Solving each equation for the unknown which has the
largest coefficient (in magnitude) gives

xl:30~2§2—3x3, x2=1—x_’;2x3, x3=31—2)é,—3x2

We use an initial guess of

1
X=11
1

The first iteration is

X = _32_:_2(_181:__3(_12 =13.1250
2 1231250-2() oo
-9
e 2(3.125(6)) ~3(04583) _ 3 o9

Note that the most current estimate for x, of 3.1250 was used in solving for x., and that the
most current estimates of x, and x, were used to solve for x;. The second iteration is
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X = 30 —2(0.4583) — 3(3.8959) _

1 3 2.1745

Xo= 1- 2.1745_—-92(3 R959) _ 0.9963

Xi= 31- 2(2.1742) —3(0.9963) _ 3.0437

The third iteration gives

1 = 30 2(0.9963) - 3(3.943T) _ » (99

: 8
=3l 2(2.0222) —3(0.9899) _ 5 9977

The iteration is clearly converging. After three iterations, the estimate of the solution vec-

tor is
2.0220
X =] 0.9899
3.9977

The exact answer is
2
X=1
4

Solve the following set by Gauss-Siedel iteration:

3 -5 47 20°9[ x, 18
11 16 17 10 |] x. 26
56 22 11 —18 || x; 34
17 66 —12 7ALx, 82

At first glance the set does not seem to be suitable for an iterative solution, since the
main diagonal elements are not the largest elements in each row. However, by simply reor-
dering the equations this can be partially remedied:

56 22 11 -187x 34
17 66 —12 71| x 82
3 -5 47 20 ] xs 18
11 16 17 10 1L x, 26

The main diagonal elements are now the largest elements in magnitude in each row except
for the last row. The diagonal dominance in the first three equations is sufficiently strong
that the small diagonal element in the fourth equation may not cause divergence. Wetry an
initial guess of



CHAPTER 6 SIMULTANEOUS LINEAR EQUATIONS AND MATRIX INVERSION 115

6.8

XO =

with an absolute convergence criterion of € = 0.0001. The first iteration gives

70.339286
1.230789
0.066725
-0.144090

After 10 iterations,

X0 =

—0.930569
1.901519
1.359500

—1.729954

The process satisfies the convergence criterion after 35 iterations and gives

— 1.076888
1.990028
1.474477

—1.906078

The Gauss-Siedel procedure clearly converges with no problems for this set with Cu=
10. However, it is interesting to note that if Cu is 9 or smaller then the procedure is
divergent. Clearly, the presence of any small main diagonal elements can pose a significant
threat to the convergence of Gauss-Siedel iteration. However, if iterative techniques are
indicated for other reasons, they are definitely worth trying even in the presence of a few
small main diagonal elements. In some cases, underrelaxation of the offending equation(s)
can turn a divergent procedure into a convergent one.

X(lo) -

X:

Given the following set of equations:

5 4 4 4x7 (17
5 6 5 5||x|_|2
6 6 7 6||x| |25
7 7 7 8llxd L29

Using an initial guess of zero for all unknowns, and an absolute convergence criter-
ion of € =0.0001, carry out iterative solutions with various relaxation factors and
compare the number of iterations necessary to attain convergence.

The exact solution to this set is
1
1
i
1
For all iterative solutions considered here, the answers obtained were accurate to at least 3

decimal places. The relaxation factors employed and the corresponding number of itera-
tions necessary to attain convergence are tabulated below:
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A Iterations to Convergence
0.8 54
1.0 48
1.2 53
1.5 84
1.7 147

It is apparent that Gauss-Siedel iteration (A = 1) is best for this set.
scheme is to be employed for almost any problem, Gauss-Siedel iteration should be tried

In fact, if an iterative

The exception is for problems such as Problem 6.9, where previous experience makes
it quite clear that overrelaxation will accelerate convergence in almost all cases.

Searching

for a nearly optimum A is clearly advantageous only if virtually the same set (perhaps with a
slightly different coefficient matrix or right-hand side) is to be solved many times.

116
first.
6.9
-2 1
1 =2
1

1
-2

Given the following set of 10 equations:

1
1 -2 1
1 =2 1
1 -2

Explore various solution methods.

%07

X3

0.5
-1.5
-1.5

—-1.5
—-1.5

| +0.5_

This set (although quite small) is typical of the sets of equations which arise from the

numerical solution of partial differential equations.

The matrix is tridiagonal, and in this

case is clearly small enough that direct methods should be used. However, similar (but
much larger) sets are often solved by iterative methods, so we will explore the use of these

techniques as well.

The most effective direct method for such a set is the Gauss elimination algorithm for
tridiagonal sets (Fig. 6.3), which yields the following results:

X = 6.4091
x,=12.3183
x3=16.7274
x4 = 19.6365
xs = 21.0456

We now turn to the iterative methods.

Xs =20.9547
x; =19.3637
xs =16.2728
X =11.6819
Xo= 5.5909

Gauss-Siedel iteration with an initial guess of

x; = 10 for all x; and with an absolute convergence criterion of € = 0.001 yields

X = 6.4054
x,=12.3113
x;=16.7181
x,=19.6258

xs=21.0344

xs =20.9439
x; =19.3543
xs = 16.2653
xs = 11.6767
Xp= 5.5883
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in 80 iterations. These values are reasonably accurate (to 2 decimal places in most cases)
and the accuracy could be improved as much as desired by using a smaller convergence
criterion (at the expense of additional iterations).
Sets of this type are often well suited to overrelaxation. Using a relaxation factor of
= 1.7 and the same initial guess and convergence criterion as before yields essentially the
same answers as does Gauss-Siedel iteration, but requires only 27 iterations. Some addi-
tional searching might yield a more nearly optimal value of A, which would mean that even
fewer iterations would be required. However, the advantage of overrelaxation as com-
pared with Gauss-Siedel iteration for this set should be apparent from this example. The
reason that matrices of this type are encountered so often and their characteristics so well
known will become more obvious when the numerical solutions of ordinary and partial
differential equations are discussed in Chapters 9 and 11.

Given the following nonlinear set of algebraic equations:
dx +y*+z=11
x+4y+z°=18
x*+y+4z=15

Solve this set by using Gauss-Siedel iteration.

Nonlinear algebraic sets can have muitiple solutions and this could be true of the
present problem. However, the fortunate state of affairs with most sets of nonlinear equa-
tions is that the solution which is most easily obtained is the solution which is
“wanted.” For example, if the set of equations comes from a physical problem, then the
solution which is easiest to obtain is usually the only physically realizable solution. The
remaining solutions are often complex (have imaginary components) or are physically
impossible or unlikely.

A solution to the present problem can be obtained by applying standard Gauss-Siedel
iteration to the set which is already arranged in diagonally dominant form. Thus
_1l=-y'—z _18—x-2° _15—-y—x?

X="—p—" ¥y=ET g I=ETy

We use an initial guess of x =y=2z=1 and an absolute convergence criterion of
€ =0.0001. The first iteration yields

xm:“”(l)z“l

7 =2.25

_— _ 2
yo =822 5 6475

= 1.5625

L _ 1536875~ (2.257
4

After 67 iterations, the convergence criterion is satisfied, and we find
x = 1.000112, y = 1.999962, z =2.999953

In fact, for this contrived problem, an exact solution is
x =1, y=2, z=3

It must be emphasized that we had no guarantee that this iteration would converge despite
the diagonal dominance of the set, since a general theory for the iterative solution of
nonlinear equations is not available.
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It is interesting to examine the effects of relaxation on this iterative process. Using
the same convergence criterion and initial guess as before, we find the following for various
relaxation factors:

A Iterations to Convergence

0.6 41
0.8 38
1.0 67
1.2 300 (not yet converged)

We find that underrelaxation accelerates convergence, with the optimum relaxation factor
apparently near A =0.8. Even slight overrelaxation (A =1.2) slows the convergence
enormously. No general conclusion should be drawn from these results (in fact, general
conclusions can hardly ever be drawn from nonlinear problems), but the reversal of overall
behavior in this case, as compared to most linear problems, is interesting and illustrates the
degree of art rather than science which often must be exercised for the most effective solu-
tion of nonlinear problems.

Problems

*6.11

*6.12

*6.13

6.14

Write a computer program to solve a set of simultaneous linear equations by Gauss-Jordan
elimination. Assume that no maximization of pivot elements is required. The program
should be capable of solving sets of equations of arbitrary size, but no larger than 20 x 20.

Write a computer program to solve a tridiagonal set of simultaneous equations by Gauss
elimination. The three diagonals of the coefficient matrix should each be stored in one
dimensional arrays to minimize storage and to eliminate unnecessary operations on zero
elements. The program should be capable of solving sets of equations to arbitrary size, up
to n = 100.

Write a computer program to solve a set of simultaneous linear equations by Gauss-Siedel
iteration or by point relaxation. The program should be capable of solving sets of arbitrary
size, but no larger than 20 X 20. Input should include the initial guess for the unknowns, the
convergence criterion (which may be absolute or relative, as you prefer), and the relaxation
factor.

Solve the following sets by using Gauss-Jordan elimination:

(3 -2 7 s
(a) -2 4 =3||xl=t12
—1 9 4dlxd L27
r2 =5 -979rx7] [-4
(b) 7 1 14 x:|=| 8
-3 7 —-1llx] L 2
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*6.15

*6.16

*6.17

*6.18

*6.19

Solve the following sets by using the Gauss-Jordan program written for Problem 6.11:

3 -5 6 4 -2 =3 87 x7 [ 477
1 1 -9 15 1 -9 21{x 17
2 -1 7 5 -1 6 11| x 24
(a) -1 1 3 2 7 -1 -2lxl=| s
4 3 1 -7 2 1 1|x 13
2 9 -8 11 -1 -4 —1| x| |-10
L7 2 -1 2 7 -1 9llw) L 34
1=l 2 5 =7 -8[x] [-12
3 -9 1 -1 8 1lx 8
-1 1 9 -9 2 3{x 2
®) 1 7 2 -3 -1 4llx]|7| 4
7 1 -2 4 1 -1l{x 15
L2 3 -9 12 -2 7dlx 50

Repeat Problem 6.15 by using the Gauss-Jordan subroutine in the Appendix to solve the sets.

Solve the following tridiagonal set of 10 equations by using the Gauss elimination program
written for Problem 6.12:

-4 1 Tx,'} ‘-271

1 -4 1 X2 —-15
1 -4 1 X3 ~15
1 -4 11]x —15

9
1 —allxe] L-15]

Construct a natural cubic spline which fits all of the following points, and interpolate for
f(7.3):

x 1 2 3 4 5 6 7 8 9 10

f(x) ] 0995 | 0.980 | 0.955 | 0.921 | 0.878 | 0.825 | 0.765 | 0.697 | 0.622 | 0.540

(Note: This problem is not out of place. The matrix of coefficients of the set of equations
which arises in the course of solving this problem is tridiagonal, and the program written for
Problem 6.12 should be used.)

Solve the following set by using the Gauss-Jordan subroutine in the Appendix. Examine
the solution and the magnitude of the determinant, and comment.

8 3 -9 7 41 x 10
2 -1 6 17 1 x: 21
4 3 -7 1 6|l x; ]=| 10
12 -1 6 14 2 1| x4 28

12 2 1 9 104Lx;s 38
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*6.21

*6.22

6.23

*6.24
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Solve the following sets by Gauss-Siedel iteration:

r7 1 27« 47
(a) -1 4 -1 xz]{w}
L 3 15 20dlx 87
r1 -10 2 477 x, 2
o) 3 1 4 12} x| |12
9 2 3 X3 21
| —1 2 7 3L x, 37
m 17 1 4 3 -1 2 3 =7 [T
210 -1 7 =2 1 1 =4 x 43
-1 1 -8 2 -5 2 -1 1] xs -11
“e) 2 4 1 -11 1 3 4 =1j|x| | -3
1 3 1 7 -15 ) 4 i xs -61
-2 1 7 -1 2 12 -1 8 || xe 52
3 4 5 1 2 8 —19 2 || x -73
L 5 1 1 1 -1 1 =7  10JdLxed L 21
r2 -1 4 -1 5 1 2 x 7 [ 247
1 -1 4 3 7 1 5] x 53
-1 2 -1 -7 1 -1 1 x -10
*(d) 1 12 1 -8 4 -3 71| x |=| 91
8 4 5 -4 1 -1 5] xs 27
2 3 9 -1 4 2 1] xs 43
L 4 3 1t 2 -1 12 -ijlxd L 47

Solve the tridiagonal set given in Problem 6.17 by using Gauss-Siedel iteration.

Repeat Problem 6.21 by using relaxation with relaxation factors of 1.3, 1.6, and
1.8. Compare the number of iterations required to the number needed for Gauss-Siedel
iteration. Which is best for this problem?

Carry out the error correction technique described in Problem 6.3 to improve the answers
obtained in Problem 6.5 for n =3. Use the computed inverse of H given in Problem 6.5 to
obtain the error vector E.

Solve the following nonlinear set by Gauss-Siedel iteration:
Sw+x’+y+z=87
wi—6x+2y—2z=73
w—x+4y+2z"=17.29

2wH+x+y +11z =347



Chapter 7

Least-Squares Curve Fitting
and Functional Approximation

7.0 INTRODUCTION

In this chapter we will consider briefly the approximation of functions. The subject is
much too long and complex to cover in detail here. Entire books devoted to the subject
include Rice[7] and Meinardus{8]. However, we will attempt to provide enough infor-
mation to enable the reader to construct some simple approximating functions, and to
recognize and use the most common and effective approximating functions for digital
computers. Methods will be examined for the approximation of both continuous func-
tions and functions available only at discrete points.

In the case of functions available only at discrete points, we will consider approxi-
mation by simple continuous functions, such as polynomials. Actually, we have already
introduced one variety of such approximations in Chapter 4. In that chapter, we con-
structed polynomial approximations to functions available at discrete points, and termed
these polynomial approximations “interpolating polynomials.” In the present chapter we
will show how simple approximations can be constructed which can be used to smooth
noisy experimental or numerical data, and to provide a simple analytical expression in-
stead of a collection of scattered points.

In approximating continuous functions, the objective is usually to provide a ‘‘sim-
pler” form than the original function. The approximation should be simpler than the
original function either in the sense that it is easier to handle analytically, or (more to the
point of this text) that it is easier and/or faster to evaluate on a digital computer. As was
the case with functions available at discrete points, Chapter 4 also provided an introduc-
tion to the approximation of continuous functions. Polynomial approximations to con-
tinuous functions were constructed by using the concept of Chebyshev interpolation, in
which the continuous function to be approximated was sampled at specific points (the
zeros of the Chebyshev polynomials) and a polynomial was generated by using Lagrange
interpolation. This approximating (or interpolating) polynomial tended to have
minimum-maximum error in approxXimating the original function.

We reopen the discussion of functional approximation by again considering a
function available only at discrete points.

121
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7.1 LEAST-SQUARES FITTING OF DISCRETE POINTS

In constructing the interpolating polynomials of Chapter 4, the primary purpose was to
provide information between tabulated points, and, as accurately as possible, to force the
interpolating polynomial to assume exactly the value of the tabulated function at each of
the points where the function was supplied. Consider, however, the nature of much ex-
perimental data. Typically, such data include noise due to many different effects.
(Hopefully, if the experiment is well designed, the data do not include systematic error
which would tend to shift all of the data in one direction.)* The noisy data from an
experiment might appear as shown in Fig. 7.1. (We assume the x values are accurate.)

f(x)ﬂ' . ./ ~
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«
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~
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}/
. ~
P ~
7 . e A .
X
Fig. 7.1

Using our knowledge of interpolation, it would be possible to construct (perhaps
using Lagrange interpolation) a polynomial which fits the data exactly at each of the
points. However, such a polynomial would not only include all of the noise in the data, it
would necessarily be of a very high degree, and would oscillate wildly, perhaps straying
far from the immediate region which contains the data. Such a high degree polynomial
would also be very unwieldy to use as a continuous function which is representative of the
data.

A better functional approximation to the data would be one which is simple in form
(perhaps a polynomial of relatively low degree) and which tends to ‘““smooth” the data
(reduce the noise). If the noise in the data is assumed to be essentially random in
character, then a reasonable smoothing functional approximation to the data in Fig. 7.1
might be the straight line which we have drawn “‘by eye” through the points. We must, of
course, have a more precise and automatic way of constructing such approximating func-
tions than by eye.

If the function to be approximated is f(x), and the approximating function is denoted
as g(x), then a measure of the accuracy of the approximation is the magnitude of the local
distance between the two functions given by

*We will not attempt to discuss methods for recognizing or assessing noise or systematic error in experimental
data. See any book on the analysis of data, such as Pugh and Winslow [9].
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d(x)=|f(x)—g(x)| (7.1)

The approximating function g(x) should now be chosen such that, in some sense, d(x) is
minimized over the entire region of x where the approximation is to apply.

The sense in which d(x) is minimized is clearly a vital factor in determining the
character of the approximation. We have previously encountered minimization of d(x)
in the Chebyshev sense: the minimization of the maximum value of d(x) over the
interval. This criterion is usually not an effective one to use in selecting a continuous
functional approximation to noisy data, simply because it permits individual points which
may be badly in error to exert an overpowering influience on the approximating
function. A single point, such as the point labeled “A” in Fig. 7.1, can force the
approximating function to shift drastically toward it in order to minimize the maximum
error which would tend to occur at that point. A much more favorable sense in which to
minimize d(x) for this type of approximation is in the least-squares sense. If we denote
the x coordinates at which data are available as the x;, and if there are n such coordinates,
then d(x) is minimized in the least-squares sense if

E=3 di(x) (7.2)

is minimized.
For the approximation of functions known at discrete points, the most commonly-
chesen form for g(x) is the polynomial. Thus if g(x) is of degree I,
gx)=ao+ ax +ax’+-- -+ ax' (7.3)

and from (7.2),

E =3 1f(x) - gf = 3 [g0u) — P = 3 [g(e) ~ f(x)F 7.4)
Using (7.3), equation (7.4) becomes

E=an [ao+ ax + axxi+- -+ ax;—f(x)F (7.5)

The parameters which can be varied in order to minimize E are the (I + 1) coefficients of
g(x). The minimization can be accomplished by setting equal to zero the partial deriva-
tives of E with respect to each of these coefficients:

ad, (7.6)

The proof that (7.6) indeed does provide a minimum can be found in many references, in-
ciuding [5]. The set of equations (7.6) provides (I + 1) equations in the (I + 1) unknowns
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ag, Ay, As, - . ., 4. Toillustrate the form of these equations, we will carry out the details of
the differentiation for the first equation:
a n
a—aT,:TZ Ao+ axi + axxi+ -+ axi— f(x)P
0 5 “ { 3 }
— —_ 2 —_
 a ] Z L ol B

2[ao+ aixi + aoxi+ - - -+ axi— f(x)ID) =0

or, dropping the factor of 2 and summing term by term, we find

na, + [i xi]ad— [En: x?]a2+ ceet [En: x!] a =Z f(x) (7.7)

i=1 i=1 i=1

Similarly, the second equation is

(3 5ot |3 st]act [ 2 xt]ase 4 [ w7 ]a = 3w (7.8)

i=1 i=1 i=1 =1

It can be readily inferred from (7.7) and (7.8) that the complete set of simultaneous linear
equations in the coefficients of the polynomial is

B n E Xi 2 x3 e Z xi ] _ao— _z f(x)
in Zx? ZX? Exl‘H a inf(x.-)
Sxi Zxr Zxb o x| e [=] 2 xifn) (7.9)

| >xi 2x Xxito xd ] a | 2 xif(x) |

where X signifies =7 ,.

Standard equation-solving techniques, such as Gauss-Jordan elimination, may be
used to solve the set (7.9), but unfortunately the set is very poorly conditioned. The
number of equations which can be solved (and thus the degree of the approximating
polynomial) is severely limited in most cases by roundoff error, and I = 7 or 8 will usually
produce meaningless results on most machines using single precision arithmetic. One of
the problems is the large variation in the magnitude of the coefficients in any given row;
Sx!is obviously much larger (or smaller) in magnitude than XZx; for any reasonably large
value of . Double precision arithmetic can be of enormous help in maintaining accuracy
and is recommended where available for least-squares work.

Fortunately, relatively low order polynomials are usually the most useful for data
fitting; higher order polynomials tend to simply reproduce the noise in the data and should
not be used without good reason. By far the most widely-used functions for data fitting
are straight lines, and data are often replotted on different scales (such as log-log scales)
until the data assume such a form that a straight line is a reasonably good
approximation [9, 10].

The choice of the degree of polynomial to be used for the fitting of data can be
somewhat difficult. The best situation is one in which it is known a priori that the data
should fall on a polynomial of a given degree. This degree of polynomial is then the
obvious choice. Qualitative judgments can often be made by examining the data; for
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example, if the data appear to contain one inflection, then a cubic is the obvious
choice. Other methods of choice based on the observation of =, d*(x;) or on statistical
analysis are also possible but are beyond the scope of this text.
Examples of the use of least-squares curve fitting are given in Problems 7.1-7.3.
It should be noted that functions other than polynomials can also be used to
approximate data in the least-squares sense. See Problem 7.2 for an example.

7.2 THE APPROXIMATION OF CONTINUOUS FUNCTIONS

The “best” approximations to continuous functions are usually considered to be approxi-
mations which minimize the error in the minimax (minimum-maximum error) sense.
Unfortunately, it is often very difficult to find the best approximation of a certain class to a
given function, and we must settle for an approximation to the best approximation. For
example, instead of finding the best quadratic to approximate a function, we might have to
be satisfied with a quadratic which is reasonably close to the best quadratic. Good ap-
proximations to continuous functions usually have an error d(x) (defined by (7.1)) which
oscillates about zero in the region of interest in such a way that the positive peaks are
approximately equal to the negative peaks. Such behavior is sometimes referred to as
minimax behavior even if the approximating function is not the best in its class (i.e. even if
the peaks do not have the minimum magnitude of all functions of that class). The ap-
proximation methods to be examined here have this desirable behavior.

The simplest and most common form of approximation to a continuous function is
some type of polynomial. In fact, whenever a power series representation (such as a
Taylor series) is used to calculate a function, then a polynomial approximation is actually
being used since the power series must be truncated at some point, and a truncated power
series is a polynomial.

We will begin our discussion of the approximation of continuous functions by
examining a method for improving the efficiency of truncated power series, or, in other
words, of obtaining better accuracy with fewer terms. This is called telescoping a power
series or economization. As we will see, this method also has direct application to the
approximation of any polynomial.

Chebyshev Economization

The Chebyshev polynomials were defined in Chapter 4, and the first few polynomials were
given. We require a somewhat expanded list for our present purposes:

To(x)=1

Tix)=x

Tox)=2x"—1

Ty(x)=4x>—3x

Tx)=8x"—-8x>+1 (7.10)

Ts(x) = 16x° —20x* + 5x
Teo(x)=32x°—48x*+ 18x* — 1

To(x) =64x"— 112x° + 56x° — 7x

Te(x) = 128x° —256x°+ 160x* —32x° + 1
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If more of these polynomials are needed, they can be obtained from the recurrence rela-
tionship

T.i(x) =2xT,(x)— T, (x) (7.11)
Remember that these polynomials have a maximum magnitude of 1 on the interval
-1=s=x=1.

For our purposes, it is also worthwhile to “invert” these polynomtals by listing the
powers of x in terms of the T.(x). These are

x2=%(T(,+ T

o
=131 +1)

2

x“=%<3n+4n+ T) (7.12)
x5 = '1]_6(]0T| + 5T3+ T5)
x"=§]§(10T0+ 15Ta+6Tu+ T)
x7=612(35T1+21T3+7T5+ )
Xt = ]—;—8-(35T0+ 56T, + 28T, + 8T, + Ty

The T,(x) have been written simply as T,.
Now consider a function which can be represented by a power series, such as

e~x=I_x+___;+___+.)£__... (7.13)

Since it simplifies this example, we shall restrict x to the interval —1<x =<1. This re-
striction is not a serious one since any finite interval @ < y < b can be mapped onto the
interval — 1< x <1 by the formula

_2y—b-a
e (7.14)
If the alternating series (7.13) is truncated after the term in x°, the error will be no greater

than 1.6152 x 10~°. Using the Chebyshev polynomial representations of the powers of x,
the truncated form of (7.13) can be written as

Y 171 171
e = TO-T;-FE[E(TO-F T‘_))]—B—;[Z(:;Tl“"T})jl

1

111
+Z§[§(3To+4T2+ T4):' —§

[%(10T.+5T3+T5)]+e, (7.15)
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where €, has a maximum magnitude of 1.6152x 107>, Collecting coefficients of the vari-
ous polynomials, we obtain

e ™™ =~ 1.2656250T, — 1.1302083 T, + 0.2708333 T-
—0.0442708T; + 0.0052083 T, — 0.0005208 T's (7.16)

We can now take advantage of the fact that the maximum magnitude of T,(x) is 1 (on
—1=x=<1). If we truncate the expression (7.16) after the term involving T;, we will
accumulate an additional error which will be no greater than the sum of the magnitudes of
the coefficients of T, and T, or 0.0052083 + 0.0005208 = 0.0057291. Now

e = 1.2656250T, —~ 1.1302083 T, + 0.2708333 T, — 0.0442708 T, (7.17)

The magnitude of the maximum possible error in (7.17) is the sum of the maximum mag-
nitude of the error in the truncation of the original series, which was 0.0016152, and the
maximum magnitude of the error in truncating (7.16 ), which was 0.0057291. This sum is
0.0073444. The Chebyshev polynomials in (7.17) can now again be written in terms of
powers of x, so that (7.17) becomes

e = 1.2656250(1) — 1.1302083(x) + 0.2708333(2x> - 1)
—0.0442708(4x° — 3x) (7.18)

Collecting the coeflicients of the various powers of x, equation (7.18) may be written as
e =0.9947917 — 0.9973959x + 0.5416667x* —0.1770832x> (7.19)

This four-term approximate expression is very similar to the first four terms of the original
series (7.13) except that the maximum error of (7.19) is 0.0073444 as compared with a
maximum possible error of 0.0516152 for the first four terms of the original series.
In fact, if we take five terms of the original series, the maximum possible error will be
0.0099485, which is still greater than the maximum possible error in the four-term
expression (7.19). The expression (7.19) is called the telescoped or economized
form of the power series. If more terms of the original Taylor series are taken before
the series is truncated, then the coefficients of the four-term approximation (7.19) will
change slightly, and the approximation can be made more accurate. However, this pro-
cess eventually “converges” in the sense that a point is reached where additional terms in
the Taylor series no longer affect the coefficients.* It is important to note that there is
no guarantee that the resulting cubic is the best cubic approximation to e ™ (in the
minimax sense or any other sense) although it may indeed be a good approximation.

In the case of (7.19), the economized series for e ™ requires two terms less than the
original series to attain essentially the same accuracy. The savings in general are highly
dependent on the character of the original power series. The economization of rapidly
convergent series (such as the present one for e ) provides relatively modest gains, while
the economized form of very slowly convergent series can provide accuracy with a few
terms that might require hundreds of terms of the original series.

This economization procedure can be used to approximate any polynomial by a
lower order polynomial over any finite interval. See Problem 7.4 for an example.

*This procedure can be automated; see Hamming[11].
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We have now studied two ways to generate approximating polynomials for continu-
ous functions: by Chebyshev interpolation on the original function (discussed in detail in
Chapter 4) and by Chebyshev economization of the power series which represents the
function. Polynomial approximations obtained by each of these methods are often used
to compute continuous functions on digital computers. However, some functions are
simply not well suited to polynomial approximation in the sense that high degree polyno-
mials are needed to obtain reasonably accurate approximations. We will next briefly
consider two types of approximating functions, the rational function and the continued
fraction, which in many cases are much more powerful than polynomials.

Rational Functions

Rational functions are of the general form

Zn: ax’
r(x)=-—o (7.20)

i bx'

These functions are thus constructed as the quotient of two polynomials. Rational func-
tions, however, are capable of behavior which is very difficult indeed to produce with
reasonably low order polynomials. For example, low degree rational functions are
capable of a single abrupt change in behavior (such as a localized bump or strong inflec-
tion) in the midst of an otherwise smooth, uninflected region. Any attempt to reproduce
such behavior with a polynomial of reasonable degree will result in a series of ripples
extending far into the regions where the function is supposed to be smooth and
uninflected. Most of the rational approximations used for practical computing have
polynomials of either the same degree or differing by one in the numerator and the
denominator. It is beyond the scope of this text to consider the construction of rational
approximations. See Meinardus[8] or Rice[7]. It should be noted that the efficiency of
rational approximations can be improved by a Chebyshev economization procedure
analogous to that previously discussed for power series[12). A typical example of an
economized rational approximation suitable for practical computation is given by
Froberg[5] as

sinx _1-0.1 335639326x°+ 0.0032811761x*
X 14 0.0331027317x* + 0.0004649838x*

(7.21)

This approximation is valid in the range 0sx =<1 with a maximum error of
4.67x 107", If the Taylor series for (sin x)/x were used, seven terms of the series would
be needed to produce comparable accuracy in this range of x. Several different approxi-
mations (not necessarily of the same type) are often used in computer subroutines to
provide accurate answers over the entire possible range of the argument.

Continued Fractions

Another powerful approximating function is the continued fraction. An infinite con-
tinued fraction is analogous to an infinite power series but usually has much better con-
vergence properties. An infinite continued fraction can be written in the form
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dy
bo+ ax
b+ ax
b,+ asx
bat - - - (7.22)

c(x)=

This is usually written as

c(x)=do GiX QX G:x (7.23)

although there are other commonly-used notations. A typical example of such an infinite
continued fraction is

AR T T g e s 729

Continued fractions of the form (7.22) can be cast into other forms which are usually more
computationally efficient. Acton[12] describes some of these conversions. The expres-
sion (7.24) can thus be recast as

X 3(x?/4) 15(x%/4) 35(x7/4)  (4n’—D(x’/4)
A-x/2)+ 1+ 1+ 1+ 1+

o =14 (7.25)

The Choice between Continued Fractions and Rational Functions

When an infinite continued fraction is truncated to a finite continued fraction (as it must
always be if numbers are to be obtained), the finite fraction can be readily converted to an
algebraically equivalent rational function. Conversely, a rational function can be con-
verted to a finite continued fraction. In computational practice, one is thus confronted
with having to choose between a finite continued fraction and an algebraically equivalent
rational function approximation. Although roundoff characteristics can be important,
the determining factor is primarily the amount of computer time required for the evalua-
tion of the approximation. Seemingly small differences in running time can be magnified
enormously if the approximation might be evaluated many thousands of times in the
course of a single computer run.

Interestingly enough, the best choice is dependent on the specific machine which will
be used to evaluate the approximation. There are significant variations from machine to
machine in the relationships between the times required to perform addition, multiplica-
tion, and division in floating point arithmetic. For those machines which have roughly
comparable multiply and divide times, continued fractions are usually the best
choice. However, many machines require much longer time to perform a division than a
multiplication (by a factor of 3 or more), which makes continued fractions much less
desirable, and rational functions become the preferred form of approximation. This sub-
ject is pursued further in Problems 7.7 and 7.8.
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lllustrative Problems

7.1  Given the following noisy data:

X 2.10 6.22 7.17 10.52 13.68

f(x) 2.90 3.83 5.98 57 7.74

Fit a straight line to this data by using least squares.

For 5 data points and ! = 1 (a first degree polynomial), the least-squares equations (7.9)
are

5 2 X ay Zl f(x)

5

;x.- > x| a > xf(x)

i=1 i=1

Each element in these equations can now be computed:
5
> x=2.10+6.22+7.17+ 10.52 + 13.68 = 39.69
i=1
5
> xi=(2.10) +(6.22)* + (7.17) + (10.52)" + (13.68)° = 392.3201
i=1

5
> f(x)=2.90+3.83+598+5.71+7.74 = 26.16
i=1

5

> xf(x) = (2.10)(2.90) + (6.22)(3.83) + (7.17)(5.98) + (10.52)(5.71) + (13.68)(7.74)

i=1

= 238.7416

The set of equations is
[ 5 39.69 ][ao]z[ 26.16 ]
39.69  392.3201.L a; 238.7416
Gauss-Jordan elimination yields
a, = 2.038392, a, = 0.4023190
The required straight line is thus

g(x) =2.038392 + 0.4023190x

The data and the straight line approximation are shown in Fig. 7.2. The straight line appears
to provide a good approximation to the data.
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fx)4

g(x)=2.03892 + 0.4023190x

7.2 Given the following data:

X 0 1.0 1.5) 23] 25| 40| 5.1 60| 65| 70| 8.1 9.0

f(x) 02 08| 25| 25| 35| 43 30| 50| 35| 24| 13 2.0

X 93| 11.0| 11.3 | 12.1 | 13.1 | 140 155 | 16.0 | 17.5| 17.8 | 19.0 | 20.0

f(x)}1 -03—-13]-30]|—-40|—-49|-40]-52]-30|-35|-16]|—-14]|-0.1

Choose the most suitable low order polynomial and fit it to this data using the
least-squares criterion. Also examine methods of using the least-squares criterion
to fit other suitable nonpolynomials to the data.
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fx)4

Fig. 7.3

The data are plotted in Fig. 7.3. The data appear to show a maximum near x =5and a
minimum near x = 15. The lowest order polynomial which can reproduce such behavior is
a cubic. The least-squares equations (7.9) for this set of data (n =24) and for I =3 are

24 229.6 3060.2 46342.79 1[ ao —1.30
229.6 3060.2 46342.79 752835.2 a, | | —316.88
3060.2 46342.79 752835.2 12780148.0 a | | -6037.242
46342.79 752835.2 12780148.0  223518120.0 as —9943.3597

Gauss-Jordan elimination (in double precision) yields
a, = —0.35934718
a; = 23051112
a>=-0.35319014
as = 0.01206020
Thus
g:i(x) =—0.35934718 + 2.3051112x — 0.35319014x> + 0.01206020x"

This is the desired cubic approximation. (We should note that this set of equations is very
ill-conditioned; the normalized determinant is 3.42x 10™"". However, inverting the inverse
of the coefficient matrix produces the original matrix very accurately, so the effects of this

ill-conditioning are apparently not serious, due at least partly to the use of double precision
arithmetic.)
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We now turn to some other possible approximating functions. The character of the
data suggests the use of a trigonometric function such as the sine. We might, for example,
assume an approximating function of the form

- . TX

g:(x)=A + B sin 10

We have specified the period of the sine as 20. This would appear to be reasonable from

examination of the data, and, also important, attempting to solve for the period results in a

nonlinear problem which is much more difficult. (We will consider this problem next.)

Now applying the same least-squares method as we used in Sec. 7.1 for polynomials, we
define

E= Z [A + B sin %x.- —-f(x;)]2

The parameters which can be varied to minimize E are A and B. We obtain two equations
in A and B by setting

OE _
A~

3E _

0 and a—é—()

Inserting the expression for E,
E
A

B
B

= ZZ [A + B sin %x,— —f(x,-)](l) =0

- .o .
2; [A + B sin IOXi f(&)](smEx;)—O
Collecting terms, the equations finally become

[n]A + [; sin %x.-]B = Z F(x)

[Z sin —l%x,-]A + [E} sinzl—%x,]B = Zl Fx) sin T

For this particular problem, n = 24. Calculating the coefficients, we find
24A +1.1328096B = — 1.2999996
1.1328096 A + 11.053666B = 47.515395

Using Gauss-Jordan elimination (double precision) yields
A=—025831225
B =4.3250821

The approximating function is thus

gx(x) = —0.25831225 + 4.3250821 sin %x

Finally, we consider an approximating function of the form
gi(x) = C sin Dx

where C and D are to be determined. We again apply the least-squares error criterion, de-
fining

E= Z [C sin Dx; — f(x)T’
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which is minimized with respect to C and D by setting

SE _
aC

dE

0 and E—O

Inserting the expression for E,

g—g =2 i [C sin Dx; — f(x;)](sin Dx;) =0

gg =2 ﬁ [C sin Dx; — f(x)}(C cos Dx:)(x:) =0

Collecting terms, the two equations in C and D are

n

Ci sin Dx; = Z f(x:) sin Dx;
i=1

i=l
CZ x; sin Dx; cos Dx; = Z f(x)x; cos Dx;
i=1 =

These two equations form a nonlinear set in the two unknowns C and D. There is no
unique method for solving such problems. We will demonstrate one approach. Solving
the first equation for C gives

i f(x:) sin Dx;
C = i=1 -
Z sin Dx;

Similarly, the second equation can be solved for C to yield

En: f(x:)x: cos Dx;
C= i=1

> x sin Dx; cos Dx;
i=t
These two expressions for C can now be equated to give

Z f(x:) sin Dx; i f(x:)x; cos Dx;

n — n
> sin Dx; > x sin Dx; cos Dx;
i=1 i=1

If we denote the left side of this equation as L(D) and the right side as R(D), then
L(D)=R(D)

This problem can now be considered as a root-solving problem, since we are seeking the
value of D for which this equation is satisfied. We can thus write

h(D)=L(D)—-R(D)

and use a root-solving method, such as bisection, to find the zero of h(D). We would
expect D to be reasonably close to #/10=10.31416. Tabulation of A(D) in the region
0.2=< D =<0.37 shows changes in sign of h(D) between D = 0.26 and D = 0.27 and between
D =0.32and D =0.33. Close examination of the region near D = 0.26 reveals very strange
behavior of h(D), apparently corresponding to the denominator of R(D) approaching
zero. This is unlikely to correspond to the desired root, and we temporarily ignore this
region and turn to the other possible root. The function h(D) behaves well in the region
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7.3

0.32 =< D =(0.33 and bisection readily yields a root of D = 0.32236. We assume this to be the
desired root, and can now solve either of the two equations for C to yield C = 4.377. The
approximation is then

g:(x) =4.377 sin (0.32236x)

It should be noted that nonlinear curve fitting problems of this type can be ill-conditioned in a
somewhat different sense than the linear set of equations which arises from polynomial
fitting. The effects of this ill-conditioning may be that a rather wide range of values for the
parameters still produces a good fit to the data.

The three approximations gi(x), g:(x), and gi(x), which we have found by using the

least-squares criterion, are plotted in Fig. 7.4 along with the original data.

g:(x)

—_——— glx)

. — - — 23(X)
e Data

Fig. 7.4

Given the following experimental data:

X

0.4

099 | 1.27 | 2.03 220291 | 375 | 547 | 553|6.01 | 790 | 8.17

f(x)

0.81

2321 6.44 11079 | 0.83 | 4.20 | 8.51 | 2.43 | 10.60 | 5.82 | 1.74 | 7.11

Choose and fit by least squares a suitable polynomial which smooths this data and
provides a good approximation.
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We first plet the data. The graph is shown in Fig. 7.5. The data appear to be
scattered quite randomly over the region 0<x <82, 0<f(x)<10.8. A statistical
analysis is beyond the scope of this text, but it appears that the experimental data have little
meaning. In other words. based on the available data, f(x) seems virtually unrelated to
x. While it would be possible to fit almost any curve to the data in the least-squares sense,
there would seem to be little point in such an exercise and we will not proceed.

We shoulid note that the data may possibly be meaningful. For example, if the true
f(x) were a highly oscillatory function with an amplitude of about 5 oscillating about a base
of approximately 5, and with many periods contained in 0 < x < 8.2, then experimental sam-
ples of this function could well have the appearance of the data given here. Ewven in this
case, however, it would clearly be meaningless to attempt to fit a low order polynomial to the
data.

Using Chebyshev economization, find a linear approximation to the function
f)=y*-2y+3
on the interval 0 <y <10.
We first map the region 0=y <10 onto —1=<x <1 by the transformation (7.14):

_2y—b*a_2y—1()—0:2_1
YT —a T 10-0 5

or
y=5x+1)

The function f(y) can now be transformed to fi(x):
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fitx) =[5(x + D - 2[5(x + D] +3
=25(x*+2x+D—-10(x +1)+3 = 25x%+40x + 18

Since fi(x) is defined on —1<x <1, we can proceed to use Chebyshev economization.
Rewriting the powers of x in terms of the T,(x),

filx)= 25[%(T0+ Tz)] +40T,+ 18T, = 6—21T0+40T, + _2751,2

We can find the linear approximation by dropping the term in T,. This approximation has a
maximum possible error of the magnitude of the coefficient of T, or 25/2=12.5. Thus

filx) = %l T,+40T,
or, in terms of x,

fi0) =2+ d0x
Now, reconverting to y,

1 y_ )zﬂ _
f(y)~2+40(5 1 2+8y 40

or

19
f()’)~“—2“+ 8y

This is the required linear approximation, which should be in error by no more than 12.5. If
we denote the linear approximation as g(y), then

19
gly)= -5t 8y

fy)=y*=2y+3

These two functions are tabulated below on the range 0 <<y < 10 in Table 7.1. A sketch of
the two functions is shown in Fig. 7.6.

Table 7.1
y fy) g(y) f»—gWy)
0 3 -95 12.5
1 2 -1.5 3.5
2 3 6.5 -3.5
3 6 14.5 -85
4 11 22.5 -11.5
5 18 30.5 -12.5
6 27 38.5 -11.5
7 38 46.5 -85
8 51 54.5 -35
9 66 62.5 +3.5
10 83 70.5 12.5




138

7.5

fnt

NUMERICAL METHODS

<w

Fig. 7.6

The maximum error in this case is exactly equal to the error bound of 12.5. This max-
imum error occurs at x =0, x =5, and x =10. It should be clear that this maximum
error is the minimum value possible for any straight line, since shifting the line in any
direction or changing its slope would increase the maximum error beyond 12.5 at one point at
least. The function g(y) is thus the best linear approximation (in the Chebyshev or
minimax sense) to f(y) on the interval 0 <y < 10.

The following quadratic approximations to f(x) = ¢* were obtained by telescoping
the Taylor series for e*:

g1(x) =0.994571 + 1.130318x + 0.542990x°, —l=sx=1
g:(x) = 1.008129 + 0.860198x + 0.839882x2, 0=sx=1

In each case a sufficient number of terms was employed in the original Taylor series
to ensure that the coefficients of these approximations have essentially
“converged.” That is, if additional terms were taken in the Taylor series, the
coeflicients of g,(x) and g.(x) would not change significantly. Note that g,(x)is a
valid approximation over the interval —1=<x <1 while g.(x) applies only over
the interval 0<x <1. Compare the accuracy of these two approximations on
0 < x <1 where both are valid.
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The errors in each of the approximations are plotted in Fig. 7.7.

The errors in both approximations have nearly equal positive and negative
peaks. However, the error in gx(x) is distributed much more uniformly over the
interval. (The error in g,(x) is distributed quite uniformly over the interval —1 < x < 1 for
which it was constructed, but g,(x) tends to overestimate ¢* on much of 0s<x <1.) The
magnitude of the maximum error of g,(x) is approximately 0.054, while that of g,(x) is
approximately 0.0101, or only about 1/5 that of g,(x). It is almost inevitable that the
quadratic g,(x) which must provide a good approximation over the interval —1<sx <1
will have a larger maximum error than will an approximation of the same type (g.(x))
which is constructed to serve as a good approximation over an interval only half as large
O=<x=<1). It would be necessary to employ an economized approximation of higher de-
gree than 2 in order to obtain the same accuracy on —1<x <1 that g.(x) provides on
0=x <1. It should be apparent that the simplest, most effective approximations can be
obtained by restricting the interval of approximation to the absolute minimum size required.

The following rational function approximation to f(x)=e* is given by
Meinardus|8]:

r(x) = 0.995705 + 0.668203 x
- 1-0.388848x °

O0sx=1

Evaluate the error in this approximation and compare the maximum error with the
maximum error of the Chebyshev economized polynomial g.(x) from the preceding
problem. Why is it reasonable to compare these two approximations?

The error in the rational function r(x) is plotted in Fig. 7.8.
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Fig. 7.8

The error is distributed quite well over the interval 0 < x <1 with a maximum mag-
nitude of about 0.0043. This is less than one-half of the maximum error of g,(x) from the
preceding problem. The comparison of r(x) with g:(x) is legitimate in the sense that each
of these approximating functions has three parameters (constants) which characterize the
approximation. For the same number of parameters, the best rational function approxima-
tion is generally superior to the best polynomial approximation.

7.7 A typical rational function approximation is of the form

ot ax + ax’+ax’4 ax’
bo+ byx + bx>+ bsx’+ buox*

r(x)
Evaluate the number of each of the basic arithmetic operations (addition, multipli-
cation, and division) necessary to evaluate this function for a given value of x.

We are of course interested in the minimum possible number of operations. The most
efficient way of evaluating r(x) is to group the operations as follows:

Ao+ x(a + x(a,+ x(a; + x(aJ))))
bo+ x(b, + x(bs+ x(b; + x(by))))

r(x)=

The evaluation of the numerator thus requires 4 multiplications and 4 additions, with the
same number of operations required to evaluate the denominator. Finally, a single division
is necessary. The number of operations is thus

Additions Multiplications Divisions Total

8 8 1 17



CHAPTER 7 LEAST-SQUARES AND FUNCTIONAL APPROXIMATION 141

7.8

Acton[12] gives an algorithm for converting the rational function of the preceding
problem into the following algebraically equivalent continued fraction:

€1

C =
(x)=-e,+ e

x+e2+ e

X +e.+ Se
X+ e+ —2

* T X+ ey

Evaluate the number of each of the basic arithmetic operations necessary to
evaluate this continued fraction. Next, given the following execution times and
assuming all other factors are the same, decide which function, r(x) or ¢ (x), should
be used if the function is to be evaluated many times:

UNIVAC 1108 Execution Times
(floating point single precision arithmetic)

Add Multiply Divide
1.750 psec 2.625 usec 8.250 usec
The number of basic arithmetic operations needed to evaluate c¢(x) can be found by
simply counting the number of divide and add operations in the expression as given:

Additions Multiplications Divisions Total

8 0 4 12

The total time needed to perform the arithmetic operations can now be computed. For
r(x),
t. = 8(1.750 usec) + 8(2.625 usec) + 1(8.250 usec) = 43.25 usec
(add.) (mult.) (div.)

For c(x),

t. = 8(1.750 psec) + 0(2.625 usec) + 4(8.250 usec) = 47.00 usec
(add.) (muit) (div.)

The rational function r(x) is slightly faster, and we would probably choose it for this
application. For machines which have more nearly equal execution times for the different
arithmetic operations, the continued fraction approximation would probably be preferable.
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Problems
7.9 Given the following data, fit a straight line to the data using the least-squares criterion:
(a) X 1.1 2.9 4.3 6.2
f(x) 50 43 28 25
*(b) X 2.1 4.2 4.8 6.0 7.1 7.9 100 | 102 | 11.2
f(x) 63 68 57 66 53 62 67 59 48
X 13.8 | 150 168 | 17.0 | 199 | 20.1 | 21.3 | 23.0 { 24.3
f(x) 61 52 41 47 48 36 42 29 33
*7.10  Given the following data, choose and fit a suitable low order polynomial by least squares:
X 1.4 | 25 3.1 39 | 5.0 | 71 9.5 | 119 | 141 150 | 165 | 17.2
fx) 1 38 | 26 | 4.1 52 | 62 69 | 7.2 6.7 5.8 3.8 38 2.8
*7.11  Given the following data:
x 1.2 2.8 4.3 54 6.8 7.9
f(x) 2.1 11.5 28.1 419 723 91.4
Using the least-squares criterion, fit a function of the form g(x) = Ax® to this data (i.e.
determine A and B).
*7.12 Given the following data:
X 0 0.50 1.25 2.00 2.70 3.00 3.50 3.90 4.75 5.25
f(x) 1.37 1.48 2.09 2.77 3.60 4.10 4.88 6.01 7.95 9.90
Fit a function of the form Ae® to this data using the least-squares criterion.
7.13 Find a three-term approximate expression for sin x on — 1 < x <1 by Chebyshev economiza-

tion of the Taylor series. Truncate the original series after four terms. Evaluate the
maximum error in the three-term approximation and compare this with the maximum error
which could result if the first three terms of the Taylor series were used.
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7.14 Find a quadratic approximation to

7.15

7.16

f()=y'-2y’+y—6

on the interval — 1 < y <2 by using Chebyshev economization. Give a bound for the error
of this approximation. If a computer is available, plot the error as a function of y over the
interval of interest.

Consider the function arctan x. The Taylor series expansion of this function is

3 s 7 9
X x x| x
arctan x =X ~—+—_——5+—=——"", xl=1
35 79 lx|

A continued fraction representation is

otanx o X AX 9016372557
1+ 3+ 5+ 74+ 94+ 11+

Compute arctan x for x = 1 by using the continued fraction representation and terminating
the continued fraction after 25x%/11+. (This is called termination at the sixth convergent of
the continued fraction.) Compare this computed value with the exact value and compute
the error. Finally, determine the number of terms of the Taylor series expansion which
would be needed to guarantee an error no greater than the error in the terminated continued
fraction.

Using the table of arithmetic computation times for the UNIVAC 1108 given in Problem 7.8,
compare the total arithmetic computation time required to evaluate the rational function ap-
proximation (7.21) of (sin x)/x with that required to evaluate the truncated Taylor series
which would guarantee comparable accuracy on the same interval. Consider only arith-
metic operations and ignore all other factors.



Chapter 8

Numerical Inteqgration

8.0 INTRODUCTION

The primary purpose of numerical integration (also called quadrature) is the evaluation of
integrals which are either impossible or else very difficult to evaluate analytically.
Analytical closed form expressions for integrals have many advantages over numerical
evaluations, so numerical techniques should not be employed without first making a serious
effort at analytical evaluation (including a search of available integral tables). The
advantages of an analytical expression include its exactness (there is always concern about
error in numerical integration), its generality (numbers need not be inserted for any
parameters involved in the integral), and the possibility of evaluating the physical effects of
varying any parameters involved. Nevertheless, numerical integration is indispensable in
many cases, since it can mean the difference between getting an accurate answer and having
no answer at all.*

Numerical integration is also essential in the evaluation of integrals of functions
available only at discrete points. Such functions often result from the numerical solution
of differential equations or from experimental data taken at discrete intervals.

We will now formulate and evaluate a variety of techniques for numerical inte-
gration.

8.1 THE TRAPEZOIDAL RULE

Consider an integrable function f(x) on the interval a <x < b. We wish to evaluate the
integral

b
I=f f(x) dx (8.1)
We divide the interval a <x < b into n equal subintervals each of width Ax, where
b—a
Ax = - (8.2)

*The reader should be aware that a middle ground exists between the exact analytical evaluation of an integral
and a pure numerical approach. This middle ground includes various approximate techniques and series
expansions. Such methods can be very useful at times as an adjunct to numerical techniques, but no attempt
will be made to discuss them in general.

144
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Fig. 8.1

The function and the division into subintervals are shown in Fig. 8.1.
Each of these subintervals will be referred to as a panel. Consider now an ex-
panded view of a general region including two panels as shown in Fig. 8.2.

fx)4

=

X1 Xj Xi+1

Fig. 8.2

In this figure, the points f(x;_,), f(x;), and f(x;..) have been connected by straight
lines. These straight lines approximate the function f(x) and thus serve as simple inter-
polating polynomials for f(x) between x;_, and x;, x;, and x;.,, etc. Approximating the
area of each panel by the area under the straight lines yields

f f(x) dx sz*—';—ﬁmx) (8.3)
and

[ sy ax <L (ax) (8.4)
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We have employed the subscript notation that f(x;) = f. The integral over the two panels
is given by

f’”f(x)dx =J" f(x) dx +]Mf(x)dx
Xj-1 Xj—1 xj
From (8.3) and (8.4), this integral can be approximated by

[T s as =S Gav2m+ 500 (8.5)

Since the true area of each panel has been approximated by the area of a trapezoid, this
approximate numerical evaluation of an integral is called the trapezoidal rule. By extend-
ing (8.5), the trapezoidal rule approximation to the integral over the entire interval can
easily be seen to be

f FOO) di =X (4 2+ 2+ 422+ 2o+ 1) (8.6)
or

fabf(x)dx x—Ai)—c(fo+fn+22ﬁ) &7

where f, = f(a) and f, = f(b).

The trapezoidal rule is very easily derived by this geometric interpretation.
However, equation (8.7) provides no information as to the accuracy of this inte-
gration scheme or as to possible ways for improving its accuracy. Qualitatively, it is
apparent that reducing Ax will in general provide a more accurate representation of the
integral, since a large number of short connected straight line segments can better approxi-
mate most functions than can a small number of long segments. In order to obtain quan-
titative information about the error, and thus to provide for possible error correction as
well as to give a basis for comparison of this method with other numerical integration
methods, it is necessary to rederive (8.7) on a more mathematical basis. As the reader
should have come to expect from earlier chapters, we turn to the Taylor series.

We begin by defining the indefinite integral

Ix)= fxf(x) dx (8.8)

If x; is located at the dividing line between two panels as shown in Fig. 8.2, then I(x;) is the
area under f(x) from x = a to this dividing line. The quantity I(x;.,) is then composed of
this area plus the area of one more panel. Assuming that I(x) is an analytic function in
the region of interest, then I(x;.,) can be obtained from the Taylor series expansion about
X; as
I(x;.) = I(x; + Ax)
2 3

=I(x;)+(Ax)I'(x;) + @—2)-(—)— I'"(x;) + (A?’_x‘) I'"(x;)+ O(Ax)* (8.9)

but since

I(x)= fxf(x) dx

then
I'x)=f(x)
I"(x;)=f'(x;)  etc.
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Equation (8.9) may be rewritten in terms of f(x) and its derivatives as

(Ax) (AX)

I(x;0) = 1(x) + (Ax)f(x;) + F106) + =7 () + 0(Ax)* (8.10)
The first derivative f'(x;) will now be replaced by a simple forward difference

representation. This was found in Chapter 3 to be

_fGi +Ax) — f(x)
f'(x Ax

2 () + O(Axy (8.11)

Substituting this expression for f'(x;) into (8.10) yields

(AX) [f(xm f(x) _Ax

100 = 1(5) +(Ax)f () + o

S e+ ocaxy |

(A") BX) fr(x) + O(Ax ) (8.12)

or, collecting terms,

jS)—f”( )+ O(Ax)* (8.13)

I(x1+l)—1(x1)+ [f(x1+l)+f(xy)]—
Recalling the meaning of I(x;.,) and I(x;), it may be readily seen that I(x;.,) — I(x;) consti-
tutes the area of the single panel between x; and x;.,. From (8.13) the area of this panel can
be found as

Sier = T~ T0x) = X1 + £~ B 1) + 0 an)* (8.14)

The term (Ax/2)[f(x)+ f(x;)] is the trapezoidal rule approximation for a single
panel. The remaining terms then represent the error. In order to evaluate the integral
over the entire interval, the contributions of each panel must be added. Thus

I= 2 Sj
or l
(Ax)

=2 i@+ m+2 3 5]~ G e
+higher order terms (8.15)

We will not show the higher order terms in detail since there are some subtle
interactions. We will deal with these terms later. The dominant error term can be
recast into a more understandable form. We first apply the mean value theorem to the
summation:

n—1
S f'(x;) = nf'(x), where a<x<b (8.16)
i=0

Now

) = 22 ) (8.17)

so the dominant error term becomes

_(Ax) (b - (AX)Z(

) (028 o) b — a)f"(x) (8.18)
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Using (8.18), the trapezoidal rule (8.15) becomes

=3[ r@+ 101 +25 1000 |- b - o)
+higher order terms (8.19)
or, using the subscript notation,
= %E (fo +fu+2 n}j f,~) + 0(Ax) (8.20)

The trapezoidal rule is thus termed a second order method of numerical integration.

For most reasonably well-behaved functions, it is possible to obtain a much im-
proved integration technique by estimating the error term in (8.19). Using simple differ-
ences, f'(X) can be estimated as

& )Ni_(b)_l;(a) (8.21)

If this estimate is employed, then (8.19) can be expressed as

(Ax) @) ey - £ (a)] (8.22)

n—1

o
Equation (8.22) is called the trapezoidal rule with end correction. The name comes from
the fact that f' is needed only at the ends of the interval. With this correction, (8.22)
turns out to be essentially a fourth order method. (The details of the error analysis will
not be shown here.)

The trapezoidal rule (8.20) can also be used to numerically integrate a function
known only at discrete evenly spaced points. End corrections may be added by using
differences for the derivatives which appear in (8.22), but the error is dependent on the
difference representations employed.

8.2 SIMPSON’S RULE

Simpson’s rule is a numerical integration technique which is based on the use of parabolic
arcs to approximate f(x) instead of the straight lines employed as the interpolating polyno-
mials with the trapezoidal rule. Rather than first presenting the geometric derivation, we
will go directly to the Taylor series approach so that error estimates can be
obtained. Consider the following Taylor series expansions about x;:

0 +Ax) = I060) = I(x) + (Ax)f(x) +(A~"ff'(x,-) + & i)

(Ax) (Ax) f (Ax )°

TG e BN C B

f* ) +0Ax)Y  (8.23)

and

1% = Ax) = T03-) = 1)~ (Ax)fCx) + 85 ) - X0

7 ()

+ O ey BX g o )+(A") £ )+ OB (8.24)
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Subtracting (8.24) from (8.23) yields

I(x;0) = I(x;-0) = 2(Ax) f(x;) + (x;) + O(AxY (8.29)

(Ax)’ ., (Ax)’ e

We now replace f’(x;) by a central difference representation, including the error
term. This representation is

_f”( ) f(x1+1) zf(x.l) + f(xl l) (AX)
(Axy

f*(x)+ 0(Ax)* (8.26)

Inserting (8.26) into (8.25) and collecting terms, we obtain

(A") @x) oy +00axy  (8.27)

A
I(x0) = I(x-0) = Tx[f(xj-l) +4f(x) + f(xi0)] —
But I(x;.,) — I(x;_,) constitutes the area of the two panels between x;_; and x;.,. Equation
(8.27) is called Simpson’s rule for two panels.
In order to obtain the integral over the interval a < x < b, it is necessary to add the
results of (8.27) for all pairs of panels. Thus if

D; = I(x.) — I(x;-1)
then

I=2 Dy=Di+Ds+ +Dus+Du (8.28)

j odd
Note that this requires that the number of panels n must be even. Summing (8.27) for all
pairs of panels yields
I= %[f(a) +4f(a +Ax)+2f(a +2Ax) +4f(a +3Ax) + - - - +2f(b — 2Ax)

(Ax)S"EI o) +3 "oaxy (8.29)

] odd

+4f(b — Ax) + f(b)] -

The dominant error term in (8.29) can be treated by the same method as was used for the
dominant error term in the trapezoidal rule. Thus

-GS rw=-Sae-or®

i odd

We also note that

—@’(A ) =

2(A ) = 0(Ax)*

Making these substitutions, (8.29) becomes

(fo +f, +4 2 fi+2 2 f) ~C5 b — ) (%) + 0(8x)° (8.30)

i odd i even

Equation (8.30) is Simpson’s rule* for the entire interval. It is a fourth order
method. Recalling that the geometric interpretation of this method involves the use of

*The term “Simpson’s one-third rule’ is sometimes used for this method to distinguish it from a similar formula
involving a factor of 3Ax/8 instead of Ax/3.
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parabolic arcs to approximate f(x), it is interesting to note that since all terms involving
f"(x) have cancelled out of (8.30), the technique is exact for cubics.

Since the dominant error term in (8.30) involves such a high order derivative, it is
impractical for various reasons to attempt to provide error correction by approximating
this term. Instead, a very accurate formula involving end correction can be found by
assuming that the derivatives of f(x) are known at the end points of each double
panel. Since f(x) is known at three points in the double panel, this is equivalent to
approximating f(x) with a fourth degree interpolating polynomial over the two
panels. When the integral is evaluated by summing all pairs of panels, the derivatives at
all interior points vanish, and the approximation to the integral becomes

Iz%[14[%f(a)+f(a +2A%)+ f(a +4Bx)+ - - -+ f(b ——2Ax)+%f(b)]
+16[f(a + Ax) + f(a +3Ax) + - - - + f(b — 3Ax)
+(b —AX)] + Ax[f (@)~ (b1 | 8.31)
or, in subscript notation,
=55 13010+ 5 a] 416 5 g+ axtr@-ron] 8.32)

Equation (8.32) is called Simpson’s rule with end correction. The formula is sixth
order. As with the regular Simpson’s rule, n must be even.

The standard Simpson’s rule (8.30) can also be used to integrate a function known
only at discrete evenly spaced intervals if the number of panels is even. The use of
Simpson’s rule with end correction (8.32) for such a function requires the approximation
of the derivatives by difference representations. The resulting answer may well be more
accurate than that obtained by using the standard Simpson’s rule, but the error is
dependent on the type of difference representations employed.

Still more accurate numerical integration formulas than the trapezoidal rule and
Simpson’s rule can be obtained by replacing more derivatives in the Taylor series with
difference expressions. A general family of numerical integration formulas called the
Newton-Cotes formulas can be obtained in this way for equally spaced points. The
higher order formulas are seldom employed in digital computation. They are unwieldy,
and the high order formulas have poor roundoff error characteristics. More important,
when very accurate integration techniques are needed, such methods as Romberg integra-
tion and Gauss quadrature (to be discussed in succeeding sections) are more efficient and
better suited to digital computation.

8.3 ROMBERG INTEGRATION

This powerful and efficient numerical integration technique is based on the use of the
trapezoidal rule combined with Richardson extrapolation. 1n order to apply this extrapo-
lation, it is necessary to know the general form of the error terms for the trapezoidal
rule. In the course of the derivation of the trapezoidal rule in Sec. 8.1, we did not
consider the error terms beyond the dominant O(Ax)* term. The derivation of these
terms is lengthy and will not be given here. The details are given by Ralston[3]. The re-
sult is that the trapezoidal rule may be written as
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I= 42—" [f(a)+f(b)+2 2 f(a +ij)] + C(Ax) + D(Ax)* + E(Ax)*+ - - -
(8.33)

where C, D, E, etc. are functions of f(x) and its derivatives, but are not functions of
Ax. The terms involving the odd powers of Ax have vanished from the error.
Let

n-—1
T=2%[f@)+1®)+2 3, f(a+ian)| (8.34)
Equation (8.33) may then be rearranged in the form

I=1-C(AxyY—D(Ax)'—E(Ax)—--- (8.35)

Consider now the use of two different rrlesh siz_es, Ax, and Ax,. If we denote the values
of I corresponding to Ax, and Ax, as I, and I, respectively, then from (8.35),

I,

i

I-C(Ax)’— D(Ax) — E(Ax)°—- -+ (8.36)
I — C(Ax.)’ — D(Ax2)' — E(Ax2)°— - - - (8.37)

il

Now suppose Ax, = 2Ax,. Then (8.36) becomes, in terms of Ax.,
I, =1-4C(Ax.)’ — 16D(Ax,) —64E(Ax.)°— - - - (8.38)
Now multiply equation (8.37) by 4, subtract (8.38), and divide by 3:

%15 = I +4D(Axs)* + 20E(Ax2)* + - - - (8.39)

The error term involving (Ax )’ has vanished and (8.39) thus furnishes an approximation to
the integral which is of @(Ax.)’. Extrapolation of this type is termed Richardson
extrapolation. (By inserting the expressions for I, and I, into (8.39), we also find that we
have rediscovered Simpson’s rule!) If we now evaluate I, where Ax; = Ax,/2, and ex-
trapolate I, and I, we obtain

@3‘—13 = [ +4D(Axs)* +20E(Axs)* + - - - (8.40)

Between (8.39) and (8.40), the term in (Ax)* may be eliminated to furnish an estimate tof
which is accurate to O(Ax). Thus for each new evaluation of an I, one more term in the
error can be eliminated by extrapolation. This systematic procedure is called Romberg
integration.

In order to describe the algorithm in detail, we adopt a new notation. The trapezoi-
dal rule estimates of the integral will be denoted as

T =5 f@+ f)+2 3 fla+jan)| (8.41)

where Ax =(b—a)/2*"" and | =2*"'—1. The number of panels involved in T, is
2*7'. Thus
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b

T =5 [f(a) + (b))

b8 @+ sy +21(a+252)|

Ti,=

T, = QT;E [f(a)+f(b)+2f<a 10 - “) +2f<a +2§_—") + Zf(a +3—(-”—;—“~))]

etc.

s UChes]
TI.Z— 2 + 2 f a-+ 2
T,

e O A |

This means that each succeeding trapezoidal rule approximation can be obtained from the
preceding approximation without having to recompute f(x) at any of the points where it
has already been computed.

The extrapolation is carried out according to

Note that

T..=

etc.

1 -
Tix =Zﬁ‘__‘1‘(4[ "Tiovsers— Tioi) (8.42)

For example, for [ =2,
1
T:. = 5 4T.— T.)
To2= % (4T1,3 - T\,z)
(These extrapolations each eliminate the O(Ax)* error term.) Now for | =3,
1
Ts, = E (16Tz,z - Tz.l)

(This extrapolation eliminates the @(Ax)* error term.) These results can conveniently be
arranged in tabular form:

[ @

E E T,

88| T2 T,

gL

o D T, T, Ts.

'o"n.—-

£ :‘-_5 T T,; Ts (8.43)
g S

52

£g

Tl,l TZJ—l T3.l—2 M 1"1—1,2 ’«-rl.l

The extrapolated values along the diagonal will converge to the correct answer much more
rapidly than the trapezoidal rule values in the first column.
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As an example, consider the integral

8 4
I=f <5x —4x3+2x+l)dx
0 8

This polynomial can be easily integrated analytically to yield I = 72, and Romberg integra-
tion should yield this exact answer in only a few extrapoiations (actually, the exact result
will be obtained when the error term containing ”(x) is eliminated). Now

F(x) =5§ C4xP+2x + 1
SO

foy=1

F(8) = 2560 — 2048 + 16+ 1 = 529
and

b—a=8-0=8

The trapezoidal rule approximations with one and two panels are
T.= g— [1+529] =2120

T.= 2—122(—)+§f(4) = 1060 + 4(160 — 256 + 8+ 1) =712

Extrapolating these two values to eliminate the O(Ax)” error term yields

Tan = -;— [4(712) — 21201 = 242%

The trapezoidal rule with four panels gives

T ;= z—;—2+§ [f(2)+ f(6)] =356 +2[(— 17) + (—41)] = 240

Extrapolating T, and T, yields

Tz,:=%[4(240)—712] = 8232—
By extrapolating T,, and T.. according to (8.42), the O(Ax)* error term should be
eliminated:

which is the exact answer. The Romberg table obtained so far is

2120
712 242
240 82 72

The best available trapezoidal rule value of 240 using four panels is still very far from
correct, and the greatly accelerated convergence along the diagonal should be
apparent. In general, of course, we would not know that the exact answer had been
obtained, so another line of the table would have to be computed. After this computa-
tion, the table would be
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2120
712 2422

240 8% 72
128} 7% 72 N

The criterion used to stop the Romberg integration procedure should clearly be
based on a comparison between successive values along the diagonal of the table. Since
two successive values agree exactly in the above table, there is no question that the
method has converged and that I = 72 is the correct answer. In general, the criterion for
convergence might be of the form

lTl.l“ Tl—l.|l<€ (844)

If (8.44) is satisfied for some predetermined e, then the procedure is stopped and T,
considered to be the answer. As discussed in Chapter 6, a convergence criterion of the
form (8.44) is termed an absolute convergence criterion, and is useful in the sense that the
convergence decision is based on a change in a predetermined digit (for example, the third
decimal place). For general use, a safer criterion is the relative convergence criterion

Tl.l - Ti—l.l
T

l e (8.45)

since the algorithm may be used for many functions with widely different values for the
integral. It is important to terminate the procedure by using a convergence criterion,
since continuing the process far beyond the point where the correct answer is obtained
can result in a significant drift away from the correct result due to roundoff error.

We are now in a positton to present a detailed flow chart for Romberg integration
(Fig. 8.3). This algorithm uses the relative convergence criterion (8.45). If desired, the
absolute criterion (8.44) can be substituted.

8.4 GAUSS QUADRATURE

Gauss quadrature is a very powerful method of numerical integration which employs un-
equally spaced intervals. We have seen in previous chapters the effectiveness of or-
thogonal polynomials, such as Chebyshev polynomials, in the approximation of
functions. If such polynomials can approximate functions so effectively, then numerical
integration schemes based on orthogonal polynomials would seem to be a logical next
step. (Remember that the trapezoidal rule and Simpson’s rule are based respectively on
approximating the original function by simple straight lines and parabolas.) The deriva-
tion of the quadrature formula is too long to present in detail here. The derivation begins
along the lines used in developing Chebyshev interpolation in Chapter 4, including the
normalization of the interval, the sampling of the function to be approximated at the
(unequally spaced) zeros of the orthogonal polynomial, and the generation of the inter-
polating polynomial from the Lagrange formula. The quadrature formula is then de-
veloped by integrating the interpolating polynomial. See Lanczos[13] for the details.

Although we have referred to Chebyshev polynomials in this discussion because we
have encountered them previously, in fact many different orthogonal polynomials can be
employed to obtain Gauss-type quadrature formulas. The choice of the polynomial will
depend on the type of function to be integrated and the limits of the integral. The most
commonly employed polynomials in this context are actually the Legendre polynomials,
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and the formulas obtained by using these polynomials are termed the Gauss-Legendre
quadrature formulas or simply the Gauss quadrature formulas. Gauss-Chebyshev and
Gauss-Laguerre are other commonly employed quadrature formulas.

Despite the complications of the derivation, the formulas are very simple and easy to
use. The numerical approximation to the integral is given by

I'=Clwif(x)+ waf(x2) + -+ -+ Waf (x)] (8.46)

where the x; are the m unequally spaced points determined by the type and degree of
orthogonal polynomial used, and the w; are the weight factors found in the course of the
derivation. The quantity C is a constant determined by the limits of the integral.

We will show the details of the method and an example for Gauss-Legendre
quadrature. All of the information needed to evaluate the integral is given on the interval
~ 1< ¢ =<1, soif we wish to evaluate I = [} f(x) dx, the first task is to transform — 1 < £ < 1
onto a =x <b. This is accomplished by the transformation

_b+a b—-a
=Tt ¢

(8.47)

We must now choose the number of points m at which the function f(x) will be
sampled. Tabulations of values of & with corresponding weights w, are available for
values of m ranging from m =2 to m =256 [14]. (The & are the m zeros of the mth
degree Legendre polynomials.) A table is given in the Appendix of this book for values
of m up to m = 24; this should be adequate for most purposes. After selecting a value of
m, the values of x, corresponding to the & can be found from (8.47). The approximation
to the integral is then given by

[=2293 wfx) (8.48)

In order to illustrate the method, we will evaluate the integral
w2
I= f x’cos x dx
(4
using Gauss-Legendre quadrature with m = 4. From the Appendix, we find for m = 4 the
following zeros and weights:

& Wy
+0.3399810436 0.6521451549

+0.8611363116 0.3478548451
The x,’s are now found* from (8.47):

_m2+0 @/2-0, _1.570796 , 1.570796

x =T T2, 20+ 12220~ 0.861136) = 0.109064
Similarly
X2= 1'573796 + 1'57;’796 (~0.339981) = 0.518378

*These calculations were carried out in single precision on the IBM 360/67 and the results are rounded to six
digits here for simplicity.
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and
x; = 1.05242

xs= 146173

The corresponding values of f(x)=x"cos x are
f(x,) = (0.109064)° cos (0.109064) = 0.011824
f(x2) =0.233413
f(x;) = 0.548777
f(x,) =0.232572

From (8.48), T is given by

77/22— 0[W1f(X1) + wof(x2) + wif(x:) + waf(x.)]

_1.570796
T2

T:

[(0.347855)(0.011824) + (0.652145)(0.233413)

+(0.652145)(0.548777) + (0.347855)(0.232572)]
= (.467402

The exact value of the integral is I = 0.467401. The value I obtained from Gauss quadra-
ture with only 4 points is remarkably accurate, even considering the fact that the function
is smooth and well behaved. For comparison with other methods, consider the following
table:

Gauss Trapezoidal Simpson’s
Exact Quadrature, Rule, Rule,
Value m=4 3 Panels 4 Panels
0.467401 0.467402 0.411411 0.466890

The Gauss quadrature and trapezoidal rule approximations to the integral each involve 4
evaluations of f(x), while the Simpson’s rule approximations involve 5 evaluations of f(x)
(since the number of panels must be even).

The dominant error term in Gauss quadrature involves very high order derivatives of
f(x) and since it is not generally useful in a practical sense, it will not be presented
here. The best method for evaluating the accuracy of an integral evaluated by Gauss
quadrature is to compare the results for several significantly different values of m: a
reasonably accurate assessment can then usually be made as to the number of decimal
places which are correct in the answer. In certain cases this comparison may result in a
set of substantially different answers. This is usually due to the presence of one or more
singularities in f(x) or to f(x) being highly oscillatory in character. These situations will
be discussed further in Secs. 8.7 and 8.8. Caution should be exercised if very large values
of m are employed, since roundoff error can cause significant deterioration in the accu-
racy of the answer. Actually all of the above comments regarding accuracy apply to any
numerical integration scheme, and they are mentioned here only because the accuracy of
Gauss quadrature for many functions can inspire such confidence that one may be
tempted to do one evaluation with a single (perhaps large) value of m and to accept the



158 NUMERICAL METHODS

answer blindly. Example problems in Sec. 8.7 and towards the end of the chapter will
demonstrate the imprudence of this approach, particularly if singularities are present in
the integrand and an accurate answer is required.

Some idea of the power of Gauss quadrature can be gained from the knowledge that
the method essentially operates with an interpolating polynomial of degree 2m — 1. Thus
if m = 10, the interpolating polynomial is of degree 19. Because of this property, even
poorly behaved functions can often be integrated reasonably accurately using relatively
few points, while smooth functions can be integrated extremely accurately. Since the
interpolating polynomial is of degree 2m — 1, the method is exact for the integration of
polynomials of degree 2m — 1 or lower; but, of course, numerical methods are seldom
used to integrate polynomials.

By proper choice of orthogonal polynomials and weighting functions, Gauss-type
formulas can be derived which are very accurate for a wide variety of functions and
integration limits. Some typical examples are

J;I x*f(x) dx (Jacobi polynomials)

J:,b fOVb —xdx (Legendre polynomials)
Lb _L;\/_x—_l—} dx (Legendre polynomials)
fll % dx (Chebyshev polynomials)
:% (Chebyshev polynomials)
Lx e f(x) dx (Laguerre polynomials)
J: e f(x) dx (Hermite polynomials)

L | f(x)log.(x) dx (Special polynomials)

The weights and zeros for these and other Gauss-type formulas are tabulated in Refs. 14
and 15. An example of the use of one of these special formulas is given in Problem 8.6.

Gauss-type quadrature formulas cannot in general be used with functions available
only at discrete points since the functional evaluations must be made at the specified zeros
of the proper polynomial. However, in some experimental situations, there is complete
freedom in choosing the values of the independent variable at which data (f(x)) will be
taken. If one of the main goals of the experiment is to evaluate ff(x) dx, then it may be
advantageous to consider the possibility of taking data on the zeros of the appropriate or-
thogonal polynomial (converted to the interval of interest) and then using the correspond-
ing Gauss-type formula to perform the integration. Error bounds are virtually impossible
to obtain for such cases, but if the data are relatively error free, then the effective use of a
very high order interpolating polynomial may give a significantly more accurate integral
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than would a numerical integration with an equal number of points using equally spaced
data. If the data are noisy and smoothing would be required before carrying out the
integration, then there would probably be no advantage to be gained by this procedure.

8.5 MULTIPLE INTEGRALS

We will illustrate the numerical approach to multiple integration by considering first a
double integral. The most general double integral is of the form

b d(x)

I =f f f(x,y) dy dx (8.49)
a c{x)

For simplicity, we begin by assuming n equally spaced subintervals in x, each of width

Ax. We now evaluate the inner integrals:

d(a)

g(a)= ) fla,y) dy

el

d{a+Ax)

gla+Ax)= fa + Ax,y) dy

c{a+Ax)
(8.50)

d(b—Ax)

g(b — Ax) =f S - Axy) dy

c(b~Ax

d(b)

g(b) = ” f(b,y) dy
Since for each of these inner integrals the value of x is fixed, they become simple one
dimensional integrals on y. Each inner integral can be evaluated by any standard numeri-
cal technique, such as Simpson’s rule or Gauss quadrature. The outer integral can finally
be evaluated using any method suitable for evenly spaced points. For example, if n is
even, Simpson’s rule can be used to obtain

I ~.A3_x [g(a)+g(b)+4 g gla+jAx)+2 2: g(a +1'Ax)] (8.51)

j odd j even

An example of a double integration by Simpson’s rule is given in Problem 8.7.

There is, of course, no need to use evenly spaced subintervals in x. If desired, both
the inner and outer integrals can be evaluated by using Gauss quadrature.

We will not attempt to give an error analysis for double integration, since even if
uniform spacing is used, the actual mesh sizes will in general vary for each of the inner
integrals. It should be apparent, however, that the errors for each of the inner integrals
will accumulate when the outer integration is performed. In addition, there will be
inherent error due to the outer integration itself. A further complicating factor is that
considerable roundoff error can occur in multiple integration due to the large number of
functional evaluations and additions which are inevitably involved. For example, if 50
panels are used for both the inner and outer integrals of a double integral, then over 2500
evaluations of f(x,y) will be required. Gauss quadrature is a very desirable method to
use for multiple integration because of the relatively small number of function evaluations
and arithmetic operations required.
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The extension of the general method to multidimensional integrals should be
apparent. Accurate numerical evaluations of multidimensional integrals are sometimes
difficult to obtain, however, since the effects of error can be overwhelming, even with
Gauss quadrature. There is some evidence that Monte Carlo methods may be useful and
practical for multidimensional integration, and the reader who is interested in learning
about these fascinating techniques will find integration a suitable and relatively simple
introduction[16].

8.6 INTEGRALS WITH INFINITE LIMITS

Suppose that it is necessary to numerically evaluate an integral of the form
f f(x) dx (8.52)

(sometimes called an improper integral of the first kind), and we have convinced ourselves
that the integral exists and is finite. (The methods for proving these points can be found
in almost any advanced calculus book.) We can deal with the infinite limit in several
ways.

If the integral is finite and f(x) is smooth, then f(x) may approach zero in some kind
of an asymptotic manner as x — . Often certain terms will dominate f(x) as x -, so
that the function can be integrated analytically for large x with negligible error. In this
event, the integral (8.52) is broken up into two parts:

L T f(x) dx = f fx) dx + f F(x) dx (8.53)

The first integral is then evaluated by any suitable numerical technique, and the second
integral by analytical means. The limit ¢ must of course be chosen sufficiently large so
that the asymptotic approximation to f(x) is within the desired accuracy in the range
¢ <x <o An example of this approach is given in Problem 8.8.

If the integrand f(x) is of a form for which Gauss-type integration tables of weights
and zeros are available (see Sec. 8.4 and Refs. 14 and 15), then extremely accurate numerical
evaluations of the integral can be made with relatively little effort.

If a suitable transformation can be found, one of the most effective methods of
numerically evaluating an integral with an infinite limit is to change variables so that the
infinite region is transformed into a finite region. Standard numerical techniques can
then be used for the resulting integral or integrals. This approach can best be illustrated
with an example. Consider the integral

I:f x2e = dx
0

We first divide the integral into two parts:

i X
I=f x2e ™ dx +j xe ™ dx
0

The second integral can be cast into a different form by the use of the transformation

y:

£3i

1
b3
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so that
xzzyfl
2x dx =~y dy

1

dx=~m

dy

and since as x >, y—»0and at x =1, y =1, the second integral becomes

2 N A!/y { e*l/y
j; x? dx = 2f ~s y = 2 y5/2 dy
and so

2 —l/’
I:J; 2, xdx‘f'zf —zdy=1+1,

These two finite integrals can now be integrated numerically using standard quadrature
techniques. We arbitrarily choose Gauss quadrature. Considering first I,, the following
results are obtained for several different values of m:

m I,

4 0.1894703
6 0.1894722
8 0.1894722

Based on these results, we can be reasonably confident of six decimal places in choosing
I,=0.189472. Now consider the second integral,
1 (e
b3, 5= @
This integral is slightly more troublesome than I,. The integrand is indeterminate (0/0) at
x =0, but this is easily resolved:

erlly 1 1
y7 ey y P+ 1y +12y7+ 16y + 124y + - )

1
y5/7+y3/2+y112/2+1/6y1/2+ 1/24)’3/24" .

As y — 0, the first three terms in the denominator vanish, and the remaining terms clearly
become infinite, so that the entire integrand approaches zero. There remains a computa-
tional difficulty with e™"” for small y. However for small €*

e  ~1fy —1/e —~1/e
e e e
3z <€l—p )= 77
J; y5/2 dy 5(65/2> PE
If we choose € =0.025, then this integral is less than

~1/0.025
€

=1.075x 107"

. 025)3/2
*The reader can verify by taking the second derivative of the integrand that the integrand is concave upward for
y less than about 0.1 and that this bound is thus correct for € <0.1.
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and can be ignored. Thus for our purposes
le-—l/y 1 e—]/y
L= f g dy = —= dy
o Y 0.025

but there is no problem in evaluating e ~"*** = ¢ * on most computers, so Gauss quadra-

ture can now be applied directly. As might be expected, this integrand does not lend
itself well to polynomial approximation, and more points are needed than were required to
obtain I, accurately. The results for several values of m are

m Iz

10 0.2536942
16 0.2536414
24 0.2536407

We choose I, = 0.253641 with reasonable confidence in the sixth decimal place. Then
I=1+1,=0.189472 +0.253641 = 0.443113

The exact answer is I = V@r/4 = 0.4431134, so the numerical integration is exact to six
decimal places.

Some transformations which may be useful in transforming integrals with infinite
limits into integrals over finite regions include y = e™ and y = 1/x". Such transforma-
tions may in some cases result in the exchange of one problem for another, in that they
may result in singularities at one of the limits. Whether or not the exchange is profit-
able will depend on the nature of the singularity and the means available to handle it. See
Sec. 8.7.

If all else fails, then integrals with an infinite limit can be evaluated by standard
numerical integration techniques simply carried out to very large values of x. See Prob-
lems 8.9 and 8.11 for examples of such an approach.

Some additional discussion of the numerical evaluation of integrals with infinite
limits can be found in Davis and Rabinowitz[16] and Acton[12].

8.7 DEALING WITH SINGULARITIES

In this section we will discuss methods for the numerical evaluation of so-called improper
integrals of the second kind. These are integrals with finite limits which have an inte-
grand that is singular at one or both limits, but for which the integral exists and is
finite. Typical simple examples of improper integrals of this type are

"1
L Tx dx (854)
and
fl ! dx (8.55)
o 1—x

The best method for dealing with such singularities is to eliminate them if
possible. Strategies to accomplish this are too varied and numerous to permit a general
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discussion, but they include integration by parts, “‘subtracting out” of the singularity, and
a change of variables to eliminate the singularity. An example is presented in Problem
8.12. For some other interesting examples, see Davis and Rabinowitz[16] and Acton[12].

If f(x) is of such a form that a Gauss-type formula is available, then the singularity
will have been accounted for in the weighting function, and very accurate results can be
obtained by using the tabulated weights and zeros. See Problem 8.6 for an example of
this type of integration.

If none of the above methods can be applied, then the singularity must be confronted
directly with standard numerical integration techniques. We will consider (8.54) as an
example, since the exact solution is easily obtained for comparison:

J’l __1_ d — 2 1/2 ' _ 2

VAR
The integrand f(x) = 1/Vx approaches infinity as x - 0. A sketch of the integrand is
shown in Fig. 8.4.

A numerical integration technique based on equally spaced intervals, such as Simp-
son’s rule, would involve f(0) and thus cannot be used directly. Alternatively, we might
use such a technique to evaluate

i=| - ax (8.56)

where € is a small number. Hopefully, the result will be close to the correct
answer. But how should € and the number of panels be chosen? Some experimental
calculations with Simpson’s rule are shown in the following table:

€ n I
0.01 4 2.17042
0.01 8 1.93027
0.01 16 1.83906
0.001 4 4.00065
0.001 8 2.86745
0.001 16 2.33792
0.001 100 1.96569
0.0001 100 2.20597
0.0001 500 2.00719
0.0001 1000 1.98882

Clearly, there are problems with this type of approach since even with the very small € of
0.0001, and with 1000 panels, the result is still not very accurate. This is because
foo0l gx [V/x=0.02 has been ignored. Note that the value of I obtained for e =
0.0001, n =500 appears to be reasonably accurate, but this is only an accident of the way
in which I varies with n, and would be of little significance if we did not know the exact
answer. While for most functions a convergent strategy can be developed in which € is
systematically decreased as n is increased, a very large number of panels is necessary to
obtain even a reasonably accurate answer[16]. The fundamental problem is that the
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fx) 4

Fig. 8.4

closer the approach to the singularity, the finer the mesh size that is required in order that
the interpolating polynomial (a parabola for Simpson’s rule) be a reasonable approxima-
tion to the function. (Polynomials are of course very poor at functional approximation
near a singularity.)

Gauss quadrature has some basic advantages in this situation. (We are referring
here to basic Gauss-Legendre quadrature, not to any particular Gauss-type formula which
is specially constructed to deal with the singularity.) The zeros of the Legendre polyno-
mials are packed much more closely near the ends of the interval of interest than toward
the center, and yet the values of f(x) exactly at the ends of the interval are not
required. This is exactly the type of behavior which should be most helpful with the
present problem, and, in addition, the very high order interpolating polynomial which is
implicit in Gauss quadrature can better approximate the function near the
singularity. The following table shows the results of Gauss quadrature for f(x) = 1/Vx
and various values of m:

m I
4 1.80634
8 1.89754
16 1.94722
24 1.96445

We are certainly getting more for our money in terms of the number of evaluations of f(x)
as compared with Simpson’s rule (we have nearly matched with m = 24 the accuracy pre-
viously obtained with 100 panels and € = 0.001) but the result is still not very accurate. It
should be noted, however, that one-half of the 24 points are concentrated in the interval
0.5 <x < 1.0, where the function behaves very well and many of these points are essen-
tially “wasted.” The properties of Gauss quadrature can be much better exploited by
doing the integration in two parts, with one of the integrals being carried out over a small
region close to the singularity. Thus

" dx 0 dx J" dx
I J’o Vx o Vx Jo ? ( )

.01 X
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Gauss quadrature with m = 24 for each integral produces the following result:

I.=0.19644

I, = 1.79999
and so

T = 1.99643

which is a quite satisfactory result for 48 functional evaluations. Procedures such as we
have used for this example are sometimes said to “‘neglect the singularity” and are often
considered somewhat dangerous. However, the Gauss quadrature approach employing
several integrals, if used with care, can yield quite accurate results in most cases. This
type of approach will not work if the function is oscillatory in the immediate region of the
singularity.

Another possible approach to singularities is to interchange dependent and indepen-
dent variables. A discussion of this approach is relegated to an example, Problem 8.10.

8.8 NUMERICAL INTEGRATION METHODS IN PERSPECTIVE

Now that we have examined a variety of numerical integration methods, we are in a
position to review briefly these methods in terms of their suitability in any given situation.

For hand computation, it is very difficult indeed to find anything better than Gauss
quadrature, since a minimum of functional evaluations and calculations are required for
maximum accuracy. These same properties also make Gauss quadrature extremely de-
sirable for machine computation, although the necessity for storing or computing large
tables of weights and zeros can at times cause difficulties. Gauss quadrature can also
deal effectively with singularities in many cases.

Romberg integration essentially allows any desired degree of accuracy in the evalua-
tion of the integral to be selected as in input parameter. This feature, along with its high
efficiency (relatively few functional evaluations), makes Romberg integration currently
one of the most popular choices for machine computations with well behaved
functions. Romberg integration does have certain disadvantages in the integration of
periodic functions over an integer number of periods. (See Probiem 8.5 for an example.)

If a program segment must be inserted in a larger program to perform the numerical
integration of a well-behaved function, then Simpson’s rule (if possible with end correc-
tion) furnishes a method which is both very simple to program and quite accurate.
Simpson’s rule remains probably the most widely used of all numerical integration
methods. It is used for several of the illustrative problems in this chapter.

One particularly difficult class of functions to integrate numerically is those which
are highly oscillatory. No attempt will be made here to discuss special approaches for
such functions, but it should be noted that the trapezoidal rule has certain highly desirable
properties for periodic functions, and other methods are available which are especially
tailored to the integration of oscillatory functions. For details see Ref. 16.

For functions available at evenly spaced discrete points, Simpson’s rule is probably
the most effective technique (although the number of panels must be even). For an odd
number of panels the trapezoidal rule can be used, or if desired, special formulas are
available (such as Simpson’s 3/8 rule) which allow the use of an odd number of panels with
the error order of the standard Simpson’s 1/3 rule (see Problem 8.14). Usually Simpson’s
1/3 rule is used for most of the region, with the special formula used to evaluate the
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integral over the last few panels in the region. If a function is available only at discrete
unevenly spaced points where the spacing is arbitrary, then the best procedure is usually
to fit the data with a function (with or without smoothing as necessary) and integrate the
resulting function (see Problem 8.15).

illustrative Problems
8.1 Demonstrate in detail the use of the trapezoidal rule to evaluate
I =f sin x dx

and then include the end correction. Use 3 panels.
The trapezoidal rule using 3 panels yields

I="Bi10 + 2f(n/3) + 262 13) + fm)

= %’ [sin (0) + 2 sin (7r/3) + 2 sin (27 /3) + sin ()]

=0.523599{0 + 2(0.866025) + 2(0.866025) + 0]
= 1.813799

The correct answer is of course 2.
The end correction is

(Ax)* ., ,
'—12-[1‘ (m)— ()]

Now Ax = 7r/3 and (d/dx)(sin x) = cos x, so the end correction becomes

_(m]3)
12

_ (=3

[cos (7)—cos (0)] = 0

(—=2)=+0.182770

Adding the end correction to the previously obtained trapezoidal rule value yields
T =1.813799 +0.182770 = 1.996569

which is a very significant improvement and in error by only 0.003431.

8.2 Evaluate numerically using Simpson’s rule the following function:

I=J' log. (5—4cos x)dx
0

The following table gives the numerical value obtained by using Simpson’s rule with
different numbers of panels:



CHAPTER 8 NUMERICAL INTEGRATION 167

n I
4 4.384863
6 4.360494
8 4.356182
10 4.355369
12 4.355208
14 4.355170
16 4.355166
20 4.355163
30 4.355162
50 4.355161
100 4.355099
200 4.355081
500 4.355067
1,000 4.355023
5,000 4.353619
10,000 4.353477

But since all of the values of T are different, how do we know which one to choose as the
best numerical approximation to I? For small values of n, the mesh size is too coarse for
the parabola which is employed as the approximating function in Simpson’s rule to give a
good approximation to the integrand. This is apparent from the relatively large changes in I
for different values of n ranging from 4 to about 10. For very large values of n, there is
virtually no error due to mesh size; however, the calculation of I for large n involves a very
large number of additions which can result in a significant amount of roundoff error. Also,
each functional evaluation involves a certain amount of error, and this error accumulates as
the many functional values are added. The net effect is most apparent for n = 5000 and
10,000. The value of T changes relatively little in the range from about n = 14ton = 50. It
is reasonable to assume that in this range the mesh size is sufficiently small to produce an
excellent approximation, and that roundoff error has not yet become a serious problem.
The variations in this range are in the seventh digit (sixth decimal place). Since the IBM
360/67 single precision word consists of essentially seven digits, this final digit is prone to
several kinds of error including roundoff and thus there is no real reason to choose any of the
values over any other. The conclusion then is that the best estimate of I is 4.35516 or
4.35517. The exact answer obtained by analytical methods is I = 4.3551723, which confirms
our conclusion. A more accurate estimate of this answer could have been obtained by using
double precision.

It is obviously not necessary in general to carry out and examine the results of a
numerical integration for as many different values of n as we have done here. However, a
smaller scale survey of the results for several “‘reasonable” values of n is usually advisable
to obtain the best accuracy. One significant advantage of Romberg integration is that it
essentially accomplishes this task automatically.

It is very important that no general conclusion be drawn from this problem concerning
the number of panels necessary to obtain an accurate answer using Simpson’s rule (or any
other quadrature formula). The number of panels necessary for any given problem varies
strongly with the functional form of the integrand and with the quadrature scheme
chosen. The point at which roundoff error becomes significant depends primarily on the
word size of the computer being used.
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Evaluate numerically
2
I =f sin (2 cos x) sin’x dx
1]

using the trapezoidal rule and Simpson’s rule with and without end correction.
Compare the results for several different values of n.

The results are tabulated below, rounded to six places:

Method n T I-1

Trapezoidal rule 4 0.481485 0.026482
6 0.496396 0.011571
10 0.503836 0.004131
Trapezoidal rule 4 0.507187 0.000780
with end correction 6 0.507819 0.000148
10 0.507948 0.000019
Simpson’s rule 4 0.512682 —0.004715
6 0.508646 —0.000679
10 0.508045 | ~ 0.000078
Simpson’s rule 4 0.508286 —0.000319
with end correction 6 0.507984 - 0.000017
10 0.507967 0.000000

Exact —_— 0.507967 —

The results verify the theoretical predictions regarding the relative accuracy of the
various methods. The trapezoidal rule, which is a second order method, is significantly less
accurate than any of the other methods. The trapezoidal rule with end correction and
Simpson’s rule are both fourth order methods, and yield approximately the same degree of
accuracy, where the trapezoidal rule with end correction is somewhat more accurate and on
the low side while Simpson’s rule is on the high side. Simpson’s rule with end correction is
a sixth order method and yields the most accurate results in the table for any given value of n
and the exact answer to six decimal places for n = 10. As a matter of interest, Gauss
quadrature with m =6 yields T = 0.507968.

Using Romberg integration with an absolute convergence criterion of € =
1.0 X 107°%, evaluate

0.8 ,
I= f e ™ dx
0
The Romberg algorithm yields the following table:
0.61092
0.64632 0.65812
0.65485 0.65770 0.65767
0.65697 0.65767 0.65767 0.65767
0.65749  0.65767  0.65767  0.65767
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This table has been rounded to 5 decimal places. The encircled value is actually 0.6576691
as compared to the exact value, which can be found from tables of the error function to be
0.6576698. Using 16 panels (17 functional evaluations), we have reproduced 6 digits (5
decimal places if rounded) of the exact answer. Note that the best trapezoidal rule value
(the bottom entry in the first column) is accurate to only three digits (2 decimal places if
rounded). This function is well behaved and well suited to Romberg integration.

Evaluate the following integral numerically using Romberg integration:
41
I= j sin’x dx
0

Using an absolute convergence criterion of € = 1.0 X 107%, the Romberg algorithm (Fig.
8.3) yields the following table (rounded to five decimal places):

0.00000
0.00000 0.00000
0.00000 0.00000 0.00000

and gives T = 1.812x 10™°.  Clearly something very strange has happened, since this integral
can be easily evaluated analytically to yield I = 27 = 6.283185.

To find out why Romberg integration has yielded a totally incorrect answer, we sketch
f(x) = sin*x on the interval 0 < x <47 (Fig. 8.5).

f(x)4
1 -

=V

T 27 37 41

Fig. 8.5

The first single panel trapezoidal rule evaluation uses f(0) and f(47), both of which are
zero. The estimate of the integral is thus zero. Using two panels introduces f(27), but this
is also zero so the estimate of the integral remains zero. With four panels, f(7) and f(37)
are used, but these are also zero and the estimate of the integral does not change. Since two
successive evaluations (not counting the single panel evaluation which is not used for
comparison) have yielded the same result (zero) without changing by more than 107, the
algorithm presumes convergence and yields an incorrect answer of zero (or more precisely
1.812 x 107, due to roundoff error). One more trapezoidal rule evaluation would have intro-
duced nonzero values of f(x) and the algorithm would have continued and produced the
correct answer.

While in this case a clearly incorrect answer of zero was obtained, it is also possible to
obtain a nonzero incorrect answer which might be more difficult to recognize as
incorrect. For example, suppose we were to use the Romberg algorithm (Fig. 8.3) to
evaluate
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4m+8
f sin’x dx
8

where 8 < w/2. The algorithm would produce I =48, which is clearly incorrect. (Why
would this result be obtained?)

This rather alarming state of affairs can occur only for periodic functions, and the cure
is simply to not use Romberg integration to integrate a periodic function over an integer
number of periods greater than 1. Thus to evaluate

4

I= f sin’x dx
o

we could simply split the integral into two parts so that neither integral is over an integer

number of periods:

! dar
I= J' sin’x dx +J sin’x dx
0 1

The standard Romberg algorithm will now yield the correct result for each of these integrals.

The question might arise as to what the effect would be of using a relative convergence
criterion to begin with instead of an absolute one. In the case of Ji"sin’x dx, since the
trapezoidal rule would produce zero for the first three evaluations, the convergence criterion
would involve a division by zero and a possible computer halt. If roundoff error produces a
nonzero result (which is likely), then the convergence criterion might not be satisfied and the
algorithm might continue, eventually producing the correct result. This fortunate accident
would probably not occur in the evalunation of [$""’sin’xdx if 8 is of a reasonable
magnitude. (Why not?) In any event, splitting up the integral into two parts as discussed
before will avoid any chance of difficulty.

In closing this discussion, it should be noted that Romberg integration may also give a
false convergence indication if it is used to integrate a periodic function over a very large
number of periods even if the limits do not correspond exactly to an integer number of
periods. With the very limited sampling of the function which occurs for the first few
trapezoidal rule evaluations, the points sampled are simply not representative of the oscilla-
tory functional behavior, and false indications of convergence can easily occur. This
makes Romberg integration in the form presented here not suitable for integrals of the type
encountered in Problem 8.11. The algorithm can be modified to work for such functions by
simply requiring a large number of functional evaluations before convergence testing begins.

Evaluate

_['log.x
I= o X+ 1

using the special Gauss quadrature formula for integrals of the form
1
f log. x f(x) dx
0

The integral has a logarithmic singularity at x =0, but the Gauss-type quadrature
scheme for which weights and zeros are given in the Appendix for m =2, 3, and 4
automatically accounts for this singularity. In fact, the term log, x is accounted for and
must not be included in the “integrand.” Thus

7= 3 w(f )
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where f(x) = 1/(1+ x). We will carry out the calculations for m =2. From the Appendix,
we have

Xk Wy
0.112009 —0.718539
0.602277 —0.281461
SO
1 -
£(0.112009) = 170112009~ 0.899273
1 -
£(0.602277) = 17 0.600277 0.624112
Now
I= wif(x)+ waf(x:) = (— 0.718539)(0.899273) + (— 0.281461)(0.624112)
=—0.646163 — 0.175663
or
I=-0.821826
The exact answer is I = — 7/12 = — 0.822467, so this answer is remarkably good with only
two functional evaluations. For comparison, we find that for m =3,
T=-0.822449

and for m =4,
I=-0822466

The latter value is incorrect by only 1 in the sixth decimal place, which is remarkable consid-
ering that the weights and zeros were only given to six places.

The most important point about Gauss-type formulas which have been derived for the
integration of functions of a certain form is that those parts of the function which have been
included in the derivation of the weights must not be included in f(x) when the quadrature
formula of the type (8.46) is used.

Evaluate numerically
3 pax?
I=f I x>+ y)dydx
2 X

This integral can be easily evaluated analytically to yield I =790.55. We will carry
out the double integration numerically to illustrate the approach. Simpson’s rule will be
used for simplicity, with 4 panels in each direction. The integrand is

fey)=x"+y
We denote the inner integral as

g00= [ ey dy

Since 4 panels will be employed, we must find 3(2), g(2.25), g(2.5), g(2.75), and g(3).
(g denotes the numerical approximation to g.)
First we compute g(2). The integral to be approximated is

s = [ 1y dy
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For 4 panels, Ay = (16 —2)/4=13.5. Thus from (8.30),

g(2)= 33—5 [f(2,2) + 4f(2,5.5) + 2f(2,9) + 4f(2,12.5) + f(2,16)]

Now

f2,2)=2+2=6

f2,55)=2+55=95

f2.9=22+9=13

f2,12.5)=2+12.5=16.5

f2,16)=2"+16=20
SO

g2)= %é [6+4(9.5) +2(13) + 4(16.5) + 20] = 182
Similarly,

g(2.25) = 360.9009

£(2.5) = 664.8438 (Ay is of course different for each
2(2.75) = 1154.995 of these inner integrals.)

g(3)=1912.5

The outer integral is given by
3
I= f g(x) dx

so, using Simpson’s rule,

I= 9'32—5[g‘(2) +4g(2.25)+2g(2.5)+42Q.75) + g(3)]

= (—)¢3,2—5[182 + 4(360.9009) + 2(664.8438) +4(1154.995) + 1912.5]

=790.6478

which is very close to the exact value of 790.55.

This accuracy is due largely to the favorable functional form of f(x,y). The inner
integrals are integrals of linear functions of y, for which Simpson’s rule should yield exact
results, while the outer integral has an integrand which is a sixth degree polynomial in x if the
inner integral is evaluated exactly. While Simpson’s rule will not evaluate a sixth degree
polynomial exactly, it will be quite accurate if reasonable mesh sizes are used, as is apparent
from the result.

Evaluate
*  dx
I - [) ex + e~x

We will take a numerical approach, but try to avoid the usual problems with the infinite
limit. For large x, the negative exponent in the denominator can be ignored in comparison
with the positive exponent. The resulting integral is [ dx/e*, which is very easy to evaluate
analytically. If we choose x =35, then

e’ = 148.413159, e =0.006738
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and we should be able to ignore e for this and all larger values of x. We rewrite the
integral as

] = 5 B

’ X T odx dx
I= xd -x+J- xdx‘xxJ‘ x »x+J r

0o € +e < e t+e 0o € +e 5 €

Tdx .,
;x—__e
5

Using 20 panels with Simpson’s rule for the first integral yields an apparently convergent re-
sult of 0.778659. Thus

Now

%

=7 =0.006738

S

I = 0.778659 + 0.006738 = 0.785397

The exact result is /4 = 0.785398.

Evaluate the following integral numerically without employing a transformation:
1= J’ ch dx
o e +1

Since this integral can be evaluated analytically, yielding I = 7*/12=0.822467, we
have a basis for comparison. The integral is first split up into a sum of several
integrals. We choose

fo(x)dx=L4f(x)dx+L20f(x)dx+ﬁzof(x)dx+L:f(x)dx

Although there are undoubtedly various sophisticated ways of choosing the intervals
of integration for each integral, we have used the following simple reasoning: as x becomes
large, the function becomes small as does its slope. Far out on the “tail,” integrals over
large intervals of x with fairly coarse mesh sizes should still produce fairly accurate
answers. In addition, the relative contribution of these integrals to the total will be small, so
they need not be as accurate as those for smaller values of x. The limits of integration can
thus be farther apart for each succeeding integral. We have chosen x = 4 as the upper limit
for the first integral since 1/e*=~0.01, so the integrand is only about 0.04 at this point, as
compared with a maximum value of about 1/e or 0.37 at x = 1. The first integral should thus
constitute by far the largest contribution to the total, but f(x) does not become so small at the
upper limit that we are ‘“‘wasting” closely spaced points (needed for small x) by using them
on the tail of the function. We have chosen x = 50 as the upper limit of the third integral
since ¢ is pushing the limits of the exponential subroutine on most computers. Hopefully,
we will find f;'f(x)dx to be so small that [ f(x)dx can be neglected without
question. (This can strictly be justified only if f(x) monotonically decreases for large x as it
does in the present case.) If our guesses on interval size have been appropriate, then
approximately the same number of panels should be sufficient for each integral.

We (arbitrarily) choose Simpson’s rule and obtain the following results:

¢ xdx

fo o 1 =(.731634 (n =20)
® xdx _

J; pra = (.090864 (n =20)

0 5 dx _ . B
LJ Praniad 0.5096 x 10 (n =20)
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The latter integral is small enough that we can feel safe in neglecting [, f(x) dx. Summing
these, we obtain

* xdx
J; e‘+1~0'822492

as compared to the exact value of 0.822467. This is accurate enough for most purposes. A
few additional calculations confirm that 20 panels was a good choice for each of the integrals
except the first, where n = 10 would suffice. It should be noted that the integral we have
chosen was a favorable one since the exponential causes a rapid decay of f(x). For a more
difficult integral with an infinite limit, which requires a modified approach, see Problem 8.11.

Integrate numerically

1
1
—=dx
J:) Vx
Treat the singularity by interchanging the roles of the independent and dependent
variables.

The integral corresponds to the shaded area in the sketch shown in Fig. 8.6.

f(x) 4 X4

% o 1 2 3 )

Fig. 8.6 Fig. 8.7

We can write the integral as I = [§ f(x) dx, where f(x) =1 {Vx. However, precisely
the same area will be obtained if we evaluate the integral as

I=1+fmxdf(x)

This can be seen more clearly if we turn Fig. 8.6 on its side (see Fig. 8.7).

The area of the square region A is 1 and [T x df(x) accounts for the area of region
B. We have exchanged the problem of a singularity for the problem of an infinite limit
which is hopefully easier (or at least different) to deal with. Now
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1
f(x)—\/-)E
2y = L
fix) P

o1
fﬂ

so the area of B is given by [ df/f>. Although this integral could be easily evaluated analyt-
ically, we will use numerical techniques since we are attempting to describe a general numer-
ical approach to dealing with singularities.

We split this integral up into several regions:

fdf J’”’df 5°df ’5°df j”"’“df

l()(){)
Applying Simpson’s rule and neglecting the last integral, we obtain

f %—f‘c 0.900292 + 0.080019 + 0.016046 + 0.003003
' (40) 0) (10) (10)

The number in parenthesis under the numerical approximation to each integral is the
number of panels used for that integral. This yields

f %c =~ (.999360
1

Thus T = 1.999360 as compared with the exact value of 2.000000. This is a better estimate
of the integral than we were able to obtain by any of the direct numerical techniques for
dealing with the singularity which were tried in Sec. 8.7. If numerical approximations
to [, df/f’ were included, this would improve the accuracy.

Evaluate numerically

w _+ 2
sin’x
I=f 5— dx
0o X

We arbitrarily subdivide the integral as follows:

1=ff(x)dx+f°f(x)dx+f°f(x)d‘%c+Jmf(x)dx
+J::’f(x) dx + Imf(x)dxﬁ—j fix) dx

These subdivisions are based to some extent on what we learned about [ dx/x* (actually it
was [ df/f’) in Problem 8.10, but more and smaller regions have been taken in this case
because of the presence of sin’x in the numerator of the integrand. This oscillatory func-
tion makes it necessary that a much finer mesh spacing be used on the “tail”’ of the function
than would be needed for a monotonic function. Each integral is now evaluated using
Simpson’s rule with various n, and a “sufficiently accurate” value chosen. The procedure
used is essentially that employed in Problem 8.2 to find an accurate value of the integral, but
for economy we select the first value which reproduces the first 4 decimal places reasonably
well.
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For example, consider [2° f(x) dx. The following results are obtained for various n:

n I

50 0.007718
100 0.007419
200 0.007451

The results for n = 100 and n = 200 are reasonably close, and we can expect the n = 200
value to be more accurate, so we select this value. (The n = 100 value might have been
acceptable, but we could not know this without finding the n = 200 value.) Following this
procedure for all the integrals, we find

f f(x) dx = 1.430994 (20)
fzo f(x) dx =0.114335 (40)

L f(x) dx =0.015540 (60)

200

f(x) dx =0.007451 (200)

5

500
f f(x) dx =0.001454 (200)
200

1200
J f(x) dx =0.000586 (500)
500

The number in parenthesis after each estimate is the number of panels employed for that
integral. Note that in contrast to previous problems with infinite limit which we have en-
countered, the number of panels must increase as the interval of integration becomes larger
for large x. This is simply due to the fact that sin’x has a period of =, and it is necessary to
leave at least a few points in each period in order to adequately approximate this oscillatory
function. The approximate number of points per period used for each interval is

x Points/Period

04 1
4-20
20-50
50-200
200~-500
500-1200

NN B ONCO N

The number of points per period can decrease for large x because the relative accuracy of
these integrals need not be as great as is necessary for small x. (Recall that we are
attempting to maintain an approximately constant absolute accuracy of about 4 decimal
places for each integral.) The sum of these integrals yields

I'=1.430994 + 0.114335 + 0.015540 + 0.007451 + 0.001454 + 0.000586
=1.570360
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This estimate of I could be improved by approximating [, f(x) dx. We can bound the
error made in neglecting this integral since

® sin’x Tdx_ 1
J::oo - dx < e X 1200° 0.000833

We have attempted to maintain 4-place accuracy in each integral and since the residual error
in the neglected integral is less than 0.000833, we might reasonably expect the first three
decimal places of I to be correct. This is confirmed by comparison of I = 1.570360 with the
exact value of I = «/2=1.570796.

We have taken a rather “brute force” approach requiring a large number of functional
evaluations. For a more sophisticated approach to the treatment of oscillatory integrals
over infinite limits see Ref. 16.

It should be noted that there is a small problem with this integral at x = 0 since the
integrand is indeterminate and Simpson’s rule uses f(0). This can be easily dealt with by
applying L’Hospital’s rule twice to yield

d ..
. —=sin’x .
lirnsmx_l.mdx — 5 2sin x cos x
w0 x? = —xi](} 2x
—_—x_
dx
—d—(sinx cos Xx) . 2 2
-1 dx _]im—smx+cosx__1
-‘}_['l(')l d _x—>0 1 -
——X
dx

Eliminate the singularity at x = 1 in integrals of the form

_ [ fx)
I fo ,___1__x2dx

by a transformation, so that the integration may be handled using standard numeri-
cal techniques.

We assume f(x) has no singularities on 0=<x <1. If we let

x=siny
then

V1-x'=V1-siny=cosy
and

dx =cos ydy

To determine the limits, we confine y to the first quadrant, so that at x =0, siny =0 or
y =0. Similarly, at x =1, siny =1so y = /2. The integral now becomes

1 wi2 : wf2
f(x) fsiny ]
I = N — S dminnti A —_
—-L\/l___;dx \ cosycosydy \ fsin ydy

which can be readily integrated numerically using any standard technique.
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LX)

evaluate

I f—IOe

The integrand is singular at x = 1 since log, (2/0) is infinite. The value of the integ-
rand at x =0 is indeterminate since

log. (1) _0
0 0

It is important to determine whether there is a singularity at x =0. We can apply L Hospi-
tal’s rule to the integrand to determine its limit as x —0:

1+x d 1+x 1-x )
log. —log, —— DA-x)Y"+ 1 +x)1—x)"
) 81T . dx OB x . 1+x[()( Y +( X 1
lim =lim =lim =2
=0 x—=0 d x—={ 1
- X
dx

Thus there is no singularity in the integrand at x = 0. This does not necessarily mean that
the integrand is free of computational difficulties at or near x =0. Obviously there is
trouble at x = 0, but Gauss quadrature never requires the evaluation of the integrand exactly
at the end points of the interval of integration.

To determine whether there will be trouble near x =0, consider the integrand at
x=10""

I (1.00001)
©\0.99999/ log. (1.00002)_1.99998><10‘5_1 99998
0.00001 ~  0.00001 ~  0.00001

There appears to be no problem for values of x this small, so as long as the values of x
needed for Gauss quadrature are greater than 107, there should be no need for special
precautions. Gauss quadrature yields the following results for various m:

m I
4 2.436538
6 2.452525
8 2.458681

10 2.461679
16 2.465076
24 2.466338

The value of I appears to be converging, but the singularity is obviously causing
trouble. As discussed in Sec. 8.7, the situation can be improved by concentrating on the
region near the singularity. We split the integral into two parts:

*¥ 1 1 1+x
I= f 1 f Lippltx
lgl gxlogl—xdx

Evaluating each of these integrals by using Gauss quadrature with m = 24, we obtain

I =2.404139+ 0.063239 = 2.467378
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8.14

This is a reasonably accurate approximation to the exact answer, I = 7’4 = 2.467402.
More accurate results can be obtained in some similar situations by subdividing the original
integral into still more subintegrals, although roundoff error can eventually become a problem.

The smallest value of x encountered in the above calculations is x = 0.002382 in
evaluating fi” (1/x) log [(1 + x)/(1 - x)1 dx with m =24. This presents no problem.

It should be noted that we have arbitrarily restricted m to an upper limit of 24 in these
problems simply because this is as far as the tables in the Appendix are carried. Larger val-
ues of m can definitely produce more accurate integrals in some cases, but roundoff error
becomes a distinct threat with large m.

Given the following function tabulated at evenly spaced intervals:

x) 10 1 2 3 4 5 6 7 8 9

f(x) | 0 |0.5687( 0.7909 | 0.5743 | 0.1350 | —0.1852 | —0.1802 | 0.0811 } 0.2917 | 0.3031

Evaluate [; f(x) dx using various suitable methods.

This oscillatory function tends to emphasize somewhat the differences in the resuits
obtained from the various methods.
The trapezoidal rule gives

L =3[f@+ 19 +2 3 1) | = 222785

Simpson’s rule cannot be applied directly, since the number of panels (9) is odd. However,
one might wonder what would happen if Simpson’s rule were used for the first 8 panels and
the trapezoidal rule for the last. This gives

L=} [f(0)+f(8) +4 3 2 Y, f(j)} +30®) + FO)

jodd jeven

= 1.97957 + 0.29740 = 2.27697

Presumably the most accurate results can be obtained by using a fourth order method
throughout the region.

A formula which is of the same error order as the standard Simpson’s rule, but which
uses three panels, is often called Simpson’s 3/8 rule and is given by

fin 3A
[ 10 dx =225 07009+ 330+ 3 0) + 501
The integral over the entire interval can be evaluated by using Simpson’s 1/3 rule for the first

6 panels and Simpson’s 3/8 rule for the last 3 panels. This gives

I = %{f(o) +1(6) +4[f(1) + fB) + F(5)] +2[f (D) + f(H]}

+ %[f(@ +3f(N+ 3@+ f9]
= 1.83427 + 0.46548 = 2.29975

Accepting I. as the most accurate value, we note that the trapezoidal rule value L is
considerably different (and presumably less accurate). The value I, which was obtained by
using Simpson’s rule over all but one panel, and the trapezoidal rule over that panel, appears



180

to be reasonably accurate. While this combination of methods with different error orders is
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not aesthetically pleasing, it will usually produce fairly good results, particularly for small
mesh sizes and gently varying functions where the trapezoidal rule portion contributes rela-
tively little to the total and/or is reasonably accurate.
Simpson’s 1/3 rule and 3/8 rule is as simple to compute as any other method, there would
seldom be any reason to choose another technique.

8.15 Estimate
10
f f(x) dx
(4

from the following experimental data:

However, since the combination of

(x) 099 | 210 | 3.22 | 440 5.70

7.12

8.01

8.37

9.32

9.98

f(x) | 490 | 570 { 420 | 7.04 | 831

7.82

5.97

7.01

6.68

4.79

The data are plotted in Fig. 8.8.

f(x) 4

Fig. 8.8

R 4

Since the data are obviously noisy, we choose to smooth the data by a least-squares
polynomial fit. There appears to be some curvature to the data so we select a quadratic
fit. Applying the method discussed in Sec. 7.1 gives

g(x)=2.92278 + 1.43472x — 0.117903x>
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This function is shown as the solid line in Fig. 8.8. This polynomial can be easily integrated
analytically to yield

10

= 61.6628

0

1.43472x*  0.117903x 3)

10
f gx)dx = (2.92278x +
o 2 3

and we assume

[Miwac=[" g0 ax

Problems

All of the integrals given here are to be evaluated numerically (except as noted), even though
many of these integrals could be evaluated analytically. The purpose, of course, is not to
discourage analytical evaluation, but rather to provide experience in numerical integration. Many
of the integrals are to be evaluated “‘as accurately as possible.” No absolute standards are specified
since the accuracy which can be practically obtained is dependent on whether or not a computer is
available, and if a computer is used, is dependent on the word size of that computer and any time
and/or money restrictions which might be imposed. Accuracy standards which are compatible with
the facilities available can be imposed if desired.

Any numerical integration will be considerably easier if a digital computer is available; how-
ever, a significant number of representative problems are included here that can be reasonably accu-
rately evaluated by hand if necessary. The problems for which the use of a computer is highly
desirable have been marked with an asterisk. For these problems, the complexity of the integrand
and the number of evaluations of the integrand necessary in order to obtain reasonable accuracy
make hand computation impractical.

*8.16 Write computer programs to evaluate an integral using the following methods:

(a) The trapezoidal rule.
(b) The trapezoidal rule with end correction.
(¢) Simpson’s rule.
(d) Simpson’s rule with end correction.

Input data to each program should include the limits of integration and the number of
panels to be used. The function to be integrated and its derivative (if needed) should be
assumed to be available as function subprograms.

*8,17 Write a computer program to carry out Romberg integration using the algorithm (Fig. 8.3)
with an absolute convergence criterion. The input data should include the limits of integra-
tion and the convergence criterion. The function to be integrated should be assumed to be
available as a function subprogram.

8,18 Write a computer program to evaluate an integral by Gauss quadrature. Input data should
include the limits of the integral and the number of points at which the function is to be
evaluated, as well as the set of weights and zeros corresponding to this number of
points. Allow for a maximum of 24 points.
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*8.19

8.20

8.21

8.22

*8.23
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Write a computer program to evaluate a double integral by using Simpson’s rule. Input data
should include the limits of the outer integral and the number of panels to be used for the
inner integral and for the outer integral. The function to be integrated and both limits of the
inner integral should be assumed to be available as function subprograms.

The following integrals have integrands which are well behaved and have no singularities or
indeterminacies. Evaluate the integrals numerically, using the indicated method or
methods and the indicated number of panels. If the number of panels is not indicated,
evaluate the integrals as accurately as possible.

w2 M
*(a J sin x dx
@ o V1-0.25sin’x

Method: Compare the trapezoidal rule with and without end correction to Simpson’s

rule. Use n =4.
IRE3

*(b) cos’x dx

~Lir

Method: Compare Simpson’s rule to Simpson’s rule with end correction. Use n = 10.
i
X
dx
() ,’; cos’x
Method: Compare Simpson’s rule to Simpson’s rule with end correction. Use n = 4.

wf2 dx
(d),’; (1+sinx)*

Method: Simpson’s rule.

1 ex

Method: Trapezoidal rule with end correction.
Evaluate the following integral analytically:
Jj x'+2x° -1 dx
What is the minimum number of points at which the integrand would have to be evaluated in
order to obtain the exact value of this integral by using Gauss quadrature? Carry out this

numerical integration.

Evaluate the integral given in Problem 8.21 by using Romberg integration by hand. The al-
gorithm should converge to the exact answer.

Evaluate the following integrals by using Romberg integration. If possible, use an absolute
convergence criterion of € =1x 10”°. Some indeterminacies may have to be disposed of.

(a) fm sin (log. x) dx
(b) L cos;c—ldx

L 12,127 + Iog. (e
(¢c) J
) P (e 74386 _ 1)

X

2.4386 1)
dx
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8.24

8.25

*8.26

8.27

Evaluate as accurately as possible using Gauss quadrature:

wfd
(a)f log, (1 +tan x) dx

08 -
*(b) f sinh x dx
0 X

Evaluate the following integrals numerically as accurately as possible:

* dx
@ [ 2=

Method: Find a transformation which changes this integral into an integral with finite
limits, and evaluate this integral by any suitable numerical method. (This in-
tegral was attacked by a different approach in Problem 8.8.)

* *cosx
b [ £ ax

Method: Evaluate the integral by using Simpson’s rule directly without any transfor-
mation.

*(¢) f eX' 79 cosh x dx
0

Method: Same as (b).

The integrands of the following integrals have singularities at one or both limits. Evaluate
these integrals numerically as accurately as possible.

(a) J: (loge;l)m dx
(b) melogc (sin x) dx

"log. x
(c) fo 2o

Note: The special Gauss-type formula for the integration of functions of the form
f(x)log. x is not very accurate for this integral. Why not?

Evaluate the following double integrals numerically as accurately as possible:
1 rx
(a) j f xye™ dy dx
0 Jo
1.2 fe—~x
*(b) J' j x4+ y)"? e dy dx
1] [t}

wf2 2sin@
*(c) L L r* sinh (r sin 8) dr d@
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8.28 Choose the most suitable technique and evaluate the following integrals numerically as
accurately as possible:

z dx
@ || i

* e +1
*(h) J; logee—x—_—ldx

w4
*(c) f X tan x dx
[}

' log. x
df————d
@ e

*(e) , e " log.x dx

x

*(f) x'e dx

1]

8.29 Given the following data at equally spaced intervals:

x 0 010203 /[04 05| 06|07 08109 1.0 1.1

fx)1 93 87 68 55 42 37 35 39 48 53 51 39

The data is felt to be relatively error-free. Evaluate as accurately as possible the integral

LH f(x) dx



Chapter 9

The Numerical Solution of
Ordinary Difterential Equations

9.0 INTRODUCTION

The numerical approach to the solution of ordinary differential equations is remarkable in
the sense that any one of the enormous variety of techniques available can be applied
(with varying degrees of success and effectiveness) to virtually any differential
equation. Nonlinearities in the differential equations and the boundary conditions or
initial conditions seidom require any modifications in the numerical techniques. That the
numerical technique can often be chosen virtually without regard for the differential equa-
tion to be solved is, of course, in marked contrast to the problem of trying to find an exact
analytical solution to a differential equation. Even linear problems can sometimes pres-
ent monumental obstacles to finding a suitable analytical technique, and some linear and
most nonlinear differential equations are virtually impossible to solve using exact analyti-
cal methods. It is often possible to find approximate solutions for such problems, but the
accuracy of approximate solutions can seldom be properly evaluated.

While numerical techniques for ordinary differential equations are very powerful
and can be applied to a wide variety of problems, it should be kept in mind that such
numerical methods can have inherent difficulties of their own, as we shall see in this
chapter. In addition, since numerical techniques are such powerful and flexible tools, it
is natural that they will be applied to extremely complex and possibly poorly-behaved
differential equations. In such circumstances, it is entirely reasonable to expect the
inherent difficulties of the problem to be manifested in some undesirable way in the
application of the numerical method. Numerical techniques for ordinary differential
equations should thus never be considered as foolproof, and their results should not be
accepted as correct without the careful scrutiny which is deserved by any problem of
importance.

We will now identify two broad categories into which all problems involving ordi-
nary differential equations must fall. These are the categories of initial value problems
and boundary value problems. Despite our earlier statements of the broad range of
applicability of numerical techniques for ordinary differential equations, somewhat differ-
ent numerical approaches are required for problems in these two categories. However,
as we shall presently see, the differences are not as great as they might at first appear.

185
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Initial value problems are those for which conditions are specified at only one value
of the independent variable. These conditions are termed initial conditions whether or
not they are specified at the point where the independent variable is actually equal to zero
(we will usually use zero for simplicity). A typical initial value problem might be of the
form

2
e gPrcy=2t), YO =y, L=V,
This problem could describe the forced response of a simple harmonic oscillator with
time. Both conditions have been specified at t =0. It is important to note that such
_problems are termed initial value problems whether or not the independent variable rep-
resents time. In many cases, for example, the independent variable may represent a
spatial coordinate, but as long as the conditions are specified at a single value of the
independent variable, the problem is an initial value problem.
Boundary value problems are those for which conditions are specified at two values
of the independent variable.* A typical boundary value problem might be of the form
3+ DL By =h(), YO =y, yL)=y
This problem could describe the steady-state temperature distribution in a one-
dimensional heat transfer problem with temperatures y, at x =0 and y, at x = L. These
are called the boundary conditions whether or not the points x =0 and x = L represent
actual physical boundaries. The problem is a boundary value problem if any conditions
are specified at two different values of the independent variable. Thus

d'y
dx*

A

+ Ay = f(x)

d d’
YO=ye FO=wo, FIO=v, ¥L)=y

is a boundary value problem.

We will now turn to a detailed discussion of initial value problems. In fact, much of
the emphasis of this chapter will be on such problems. This is not to imply that initial
value problems are more important or more frequently encountered in practice than
boundary value problems. The reason is simply that virtually all of the capability which
will be developed for solving initial value problems can be directly and efficiently applied
to the solution of boundary value problems, as we shall see in Sec. 9.9.

9.1 THE GENERAL INITIAL VALUE PROBLEM

Any initial value problem can be represented as a set of one or more coupled first-order
ordinary differential equations, each with an initial condition. For example, the simple
harmonic oscillator described by

d’y, ndy

AEF+Ba—t+C=g(t) 9.1

*Although it is conceivable that boundary conditions might be specified at more than two points, this situation is
so specialized that we will not consider it here.
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y(0) =y, (9.2)
dy ~ _
T O=V, (9.3)
can be restated by making the substitution
_dy
The differential equation (9.1) can now be written as
dz
AZI—t+BZ+Cy=g(t) (9.5)

With some rearrangement, the problem represented by equations (9.1)-(9.3) can now be
written as

dy

a~* (9.6)

d B C

=Ty (9.7)
with initial conditions

y(0) = yo (9.8)

z(0) =V, 9.9)

Any nth order differential equation can similarly be reduced to a system of n first-order
differential equations, and coupled sets of any order can be reduced to a coupled set of
first order equations. (See, for example, Problems 9.2 and 9.3.)

The general form of any initial value problem can thus be stated as

d
‘a}?:'fl()’u)’z,---,ym t)

dy,
dt

:fz()’u Y25 0005 Vs t) (9.10)

dn
“T);'an()’u)’h---,ym t)

subject to the initial conditions

yi(0) = Yo
¥2(0) = ¥a0 (9.11)
yn(O) = yno

Since any initial value problem can be expressed as a set of first-order ordinary dif-
ferential equations, our primary concern in this chapter will be to develop and assess
aumerical methods for the solution of first-order differential equations. In fact, we will
deal primarily with an initial value problem consisting of a single first-order differential
equation and its associated initial condition. The extension to coupled sets of first order
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equations is straightforward, as we shall show in Sec. 9.8. A number of numerical tech-
niques have been developed to deal with higher order differential equations directly,
without reduction to a first order set. However, these methods must be developed
specifically for a given order equation (usually second order) or for an equation of a
particular form. Although such methods may be advantageous in some cases, they are not
of sufficient generality for us to consider here. The interested reader can find examples of
such methods in Refs. 3 and 17.

We thus can consider the general initial value problem by examining an initial value
problem of the form

&~ fon) (9.12)

y(0) = yo (9.13)

The next logical question is whether a solution to this problem exists, and if so, whether
the solution is unique. Fortunately, existence and uniqueness can be proven under rather
weak (unrestrictive) conditions on the behavior of f(y,t). For example, if f(y,t) is
defined and continuous over the region of interest (in both y and t) and has a continuous
partial derivative with respect to y which is bounded in this region, this is sufficient to
prove existence and uniqueness. These conditions are actually stronger than necessary;
see Henrici{17] for a statement of weaker sufficient conditions and a detailed proof.

We will now briefly outline the overall concepts involved in obtaining numerical sol-
utions to initial value problems. These concepts can best be illustrated by assuming that
the solution to the differential equation (9.12) subject to the initial condition (9.13) is
known on the interval 0=t =<t. Our objective will be to advance the solution to
t., = t; + At (see Fig. 9.1). No matter what specific method is chosen, the underlying
principle will clearly be extrapolation.

We will be concerned with two classes of methods. The first of these consists of
formulas of the Runge-Kutta type. In these formulas, the desired solution y., is
obtained in terms of y, f(y.t;), and f(y,t) evaluated for various estimated values of y
between ¢; and t,.,. Since the solution is carried directly from ; to t;., without requiring
values of y or f(y,t) for t <t, these methods are self-starting. That is, if ¢, = 0, and hence
y; = y(0), which is the initial condition, these methods can be used to find y;., =
y(0+ At) = y(At) and as many succeeding values of y as desired.

Solution known to here

~ N Solution desired
“ / at this point
Yie1

Fig. 9.1



CHAPTER 9 NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 189

-

Fig. 9.2

A second class of methods which we will consider consists of formulas of the
multistep type. These formulas, in general, require information for t <t. Consider
Fig. 9.2.

In a typical accurate multistep formula, the solution for y;., might require the value
of y; and values of f(y,t) at each of the points t;, t,_,, t,,, and t,_,. Except in the simplest
cases (those which do not involve values of y and f(y,t) for t <t;) these multistep for-
mulas are obviously not self-starting, and other methods must be used to obtain the
solution for the first few steps beyond the initial condition.

We will begin our detailed discussion of numerical methods for ordinary differential
equations by considering the simplest of all such methods.

9.2 THE EULER METHOD

Consider again the first-order initial value problem
Eil =
dt f(yt) (9.14)

y(©0) =y, (9.15)

One straightforward approach to obtaining a numerical solution to this problem is to
replace dy/dt by a simple forward difference representation. Thus (9.14) can be approx-
imated by

PP = () (9.16)

(We leave the error analysis to the next section.) Solving (9.16) for y;., vields
Vi =Y +ADf(y,1) (9.17)

Given the initial condition (9.15), it is now possible to “march” forward in ¢t from t =0,
using (9.17) to obtain a value of y at each new value of t. We shall see in later sections
that the Euler formula is a member of the set of multistep formulas of the Adams
type. Since the solution can be carried out from t = 0, the method is self-starting.
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As an example, we will examine the problem

[
i yiog (9.18)
y(O) =i (9.19)

which has as an exact solution y = 1/(1+1t). The differential equation (9.18) can be
written as

dy
a7 (9.20)

This problem can be solved numerically by applying the Euler recurrence formula (9.17):
Yier = ¥ HALH(=Y]) (9.21)

Starting at t =0 (j =0) and using At =0.1, we can find y at t =0.1:
yi=1+0.D-1)=09

The exact solution at this point is

1
1+0.1

Yexaer(0.1) = = 0.9090909

Next, at t =0.2,
y» = 0.9+ (0.1)(—(0.9)>) = 0.819

The exact solution is

1
1+0.2

After 10 steps of At =0.1, we find
le = 0.4627810

yexact(o-z) = = 0-8333333

1

Yorse10) = 57 = 0.3
Although this numerical technique is very simple, it is obviously not extremely accurate for
the value of At used here. In fact, the Euler method is so inaccurate that it is virtually
never used in practice. However, because the method is so simple, it is convenient to use
as an introduction to numerical techniques for ordinary differential equations. The error
analysis for this method is also much simpler than for more complex methods, and we will
consider this topic next.

9.3 TRUNCATION ERROR

In order to illustrate the concepts of truncation error, we will examine the Euler
method. Starting from t; with a known y;, the solution can be advanced an amount At to
t;+, using the Euler formula:

Vier =¥ + AL f(y,1;) (9.22)

Now, for the moment, assume that there is no roundoff error involved in any of the
calculations. (Roundoff error will, of course, always be present, but we must neglect it
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here to gain a clear picture of truncation error.) In order to distinguish between the finite
difference solution and the exact solution to the differential equation, we will denote the
exact solution as Y. Now suppose that (9.22) is used to take a step from ¢; to t;.,, and
that the exact solution to the differential equation is known at ¢ and is used in the
formula. Thus

Vier = Y, + AL f(Y,1) 9.23)

Assuming that the exact solution to the differential is analytic near ¢, we can also find
this exact solution at t,,, by a Taylor series expansion:

_ dY| Ay dY| QA dlY] |
Yi+1 - Y] +At dt y + 2 dtZYI 'j+ 3! dt3 iy + (9-24)
2
But %:—7 = f(Y,t), % = f'(Y,t;), etc. Thus (9.24) can be written as
Vi = Y+ At v + B v + G v+ - (9.25)
Subtracting (9.25) from (9.23) yields
o= Y= B == B prv ) + oary (9.26)

But y;,, — Y;., is exactly the error made by using a finite difference method to take the step
from ¢; to t;., starting with the exact solution at ¢, We will term E,., the truncation error
of the formula (9.17) per step. Thus we see that the truncation error per step of the Euler
formula is ©(At)’. This is by far the easiest form of truncation error to evaluate.
However, this error is obviously not the total solution error at t;.., due to the use of the finite
difference method, except for the first step where y; = y(0) is the initial condition and is
presumably exact. For any other step, the value of y; will involve error accumulated in
previous steps.

We will now estimate the total solution error due to truncation for the Euler
method. Subtracting (9.25) from (9.22), we obtain

1= Vi =y = Y1+ A7) — F(Vt01 = B (¥, 1) + 0(aty

=y — Y; + At[f(y;,t;) — f(Y3,5)] + E; s (9.27)

Since we no longer require that the finite difference solution start from an exact value at ¢,
then y; will include error propagated from earlier values of t. If we assume that the finite
difference solution was started from the initial condition, then y;., — Y., represents the
total solution error due to truncation at t;,,. We denote this as ¢;,.,. Then (9.27) can be
written as

€. = & + At[f(y,t;) — f(Y,t;)]1 + E;., (9.28)
Following Crandali[18], we note that

ft) — f(Y,t;) _ of

PR 0meid = 28 6t (929)

if f has a continuous partial derivative with respect to y, and & is somewhere between y;
and Y,. (One of the mean value theorems of calculus states that under certain conditions
on f, such a difference expression will always be equal to the derivative evaluated some-
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where between the end points used in forming the difference expression.) Using (9.29)

and denoting %(g,tj) as p;, equation (9.28) becomes

€. =€ tAtlep )+ Ej. = g1+ (At)p;1+ E;.y (9.30)

Even for such a simple method as the Euler method, (9.30) is not practical to evaluate,
since p and E would have to be evaluated at each step. However, we can gain an
estimate of €., by assuming that p and E are constant over the interval of interest. Then
(9.30) becomes

6. =¢gll+(Atpl+ E (9.31)
Now, starting from the initial condition j =0, y,= y(0)= Y(0) so

€ =0

e=FE

e.=E[1+(At)p]+ E =2E + E(At)p

e;=ER+At)pll1+(At)pl+ E =3E + E(AtY’p>+3E(At)p

e.= ER+AOpI1+ ApT + E[1+(At)p}+ E =4E + O(At)’

€=+ 1E + O(AtY
Recall that E = @(At)?, and note that t,., = (j + 1)At. Then €., can be written as

6= B ~ I oAty = 0(an) (9.32)
Thus we find that the total error in the numerical solution due to truncation is O(At) for
Euler’s method or one order less than the truncation error of the formula per step. Since
it is the total error due to truncation which is of primary concern in practice, it is this error
order which is used to characterize the method. Thus the Euler method is termed a first
order method.

A similar relationship between truncation error per step and total solution error due
to truncation holds for the higher order methods to be discussed later in this
chapter. Thus a method which has a truncation error per step of O(At)” is termed a
fourth order method, since this is the order of the total solution error due to truncation.

9.4 CONVERGENCE AND STABILITY

In this section the basic concepts of convergence and stability and the practical implica-
tions of these properties will be discussed, but we will avoid a detailed mathematical ap-
proach for reasons which will be indicated later. The interested reader will find an
abundance of mathematical detail in Henrici[17] and Ralston[3].

A numerical method applied to a given differential equation* is termed convergent if,
assuming there is no roundoff error, the numerical solution approaches the exact solution

*For convenience, we refer to a single differential equation. Except as noted, the discussion applies also to sets
of differential equations.
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to the differential equation as the step size At approaches zero. This is generally not a
problem of practical concern, since all standard numerical techniques are convergent
when applied to virtually any differential equation. This does not mean that in practice
the numerical solution will always approach the exact solution to the differential equation
as At —» 0, since roundoff error will inevitably be present in any real computation.

The stability of the numerical method used to solve a given differential equation is a
matter of considerable practical importance. We should first emphasize that the property
of stability (or instability) is actually a joint property of the method and the differential
equations and not of either one alone. (The term “stability” is also widely used to
describe a certain behavior of the exact solution to a differential equation. The two
concepts of stability are not directly related, although as we shall presently see, it is
sometimes difficult to distinguish between their effects.)

The ideas behind the stability of numerical methods for ordinary differential equa-
tions can best be illustrated by considering multistep methods. These methods involve
values of f(y,t) at several points along the t axis. The multistep formulas are, of course,
nothing more than difference representations of the original differential equation. These
difference equations can, in theory, be solved analytically, although actual analytical solu-
tions can usually only be obtained for extremely simple cases. Nevertheless, the general
form of the analytical solutions is such that the presence of the multiple values of f(y,t)
along the t axis results in multiple solutions to the difference equation. If the method is
convergent for the problem being considered, one of these solutions to the difference
equation (called the fundamental solution) will approximate the exact solution to the
differential equation, and will approach this exact solution arbitrarily closely as At -0
(except for roundoff error). The remaining solutions to the difference equation are termed
parasitic solutions, and it is the behavior of these solutions which determines whether or not
the numerical solution is stable.

These parasitic solutions acquire their name from the fact that they feed on errors in
the numerical solution (such errors will always be present, due to truncation and
roundoff). Instability is the result of a feedback process in which the parasitic solutions
grow as each succeeding step is taken in obtaining the solution, and the resulting increased
error causes an increased growth rate in these solutions. The growth of the parasitic sol-
ution is usually exponential (of the form Ae') and is often oscillatory. The fundamental
solution is soon overpowered, and the resulting numerical solution no longer bears any
resemblance to the exact solution of the differential equation.

Having discussed instability, we can now see that a stable numerical solution is one
in which the parasitic solutions remain small relative to the fundamental solution of the
difference equation, and that the fundamental solution thus remains a reasonably good
approximation to the exact solution of the differential equation (as long as At is suffi-
ciently small). This does not mean that there cannot be cumulative growth of both trun-
cation and roundoff error. As was mentioned earlier, the marching-type solution to an
initial value problem corresponds in many ways to an extrapolation, and it is entirely
reasonable to expect cumulative error as an extrapolation is extended farther and
farther. However, any errors will at worst grow at a nearly constant rate in a stable
solution, but will be strongly amplified in an unstable one, due to the growth of the
parasitic solutions.

In almost all situations, it is easy to distinguish an unstable numerical solution from a
stable one, due to the exponential growth of the error in an unstable solution. However,
if the exact solution of the differential equation grows strongly with time (which in some
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contexts is also called an instability), it may be difficult to distinguish between the two
effects. However, the unstable numerical effects are dependent on step size (At). Thus,
if numerical solutions are obtained with two significantly different (and reasonably small)
step sizes and show significant differences, it is reasonable to assume that a numerical
instability is present. If the two solutions are essentially the same, then the numerical
solution is probably stable and is reproducing the solution to the differential equation
reasonably well.

We have foregone a formal mathematical presentation of stability, simply because it
is not practical to perform a formal stability analysis on any real problem. In practice,
the procedure is to choose a suitable method, and to assume that there will not be any
difficulty with stability. If instability is encountered, then it may be worthwhile to try the
same method with a reduced step size in hopes of curing the problem. If the problem
persists, the alternative is to change to a different method, and this strategy will usually
have the desired result.

9.5 RUNGE-KUTTA TYPE FORMULAS

Formulas of the Runge-Kutta type are among the most widely used formulas for the
numerical solution of ordinary differential equations. We will begin our discussion of
these somewhat controversial methods by listing the positive and negative aspects of their
use. Their advantages include:

. They are easy to program.

. They have good stability characteristics.

. The step size can be changed as desired without any complications.

. They are self-starting. (This is perhaps the most important advantage of these
methods, but it cannot be appreciated until we discuss the methods which are not
self-starting.)

B W N

Their primary disadvantages are:

1. They require significantly more computer time than other methods of comparable accu-
racy.
2. Local error estimates are somewhat difficult to obtain.

It is probably a fair summary of the current attitude toward these formulas to state
that numerical analysts feel that they are only worth using to start more efficient methods
(such as the predictor-corrector methods discussed in Sec. 9.7). However, Runge-Kutta
methods are widely used to solve complete problems by those users who are less theoreti-
cally inclined, and who need a simple, easy-to-program method which yields reasonably
accurate results.

The author is inclined to sympathize with these users, as long as the problem is one
which will be run a relatively small number of times with a small expenditure of computer
time (or money) per run. In fact, many of the small example problems at the end of this
chapter have been solved using Runge-Kutta methods. However, if a substantial com-
puting investment is involved (as in production codes), then the user would be wise to
consider one of the more efficient methods to be discussed later in this chapter. At the
end of the present section, we will explore ways of ensuring that the results obtained from
Runge-Kutta type methods are reasonably accurate.

We are now ready to discuss the methods themselves. It is beyond the scope of this
text to give the theoretical background and derivation of these formulas. The ignorance
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of their origins in no way impairs their usefulness. The curious can find the details of
their derivation in Ralston{3].
One of the simplest of the Runge-Kutta type formulas is

Vier =Y FALF(Y R . tn) (9.33)
where
At
ymn=w+7ﬂ%m
and
At
Lap=1t +“i‘

This is a second order formula. Note that the formula is not a multistep formula in the
usual sense (no values of y earlier than y, are required) and hence the formula is
self-starting. However, f(y,t) is evaluated more than once (twice in the present
case). One evaluation is at (y,t;). Then y%,, is obtained, which is a simaple Euler esti-
mate of y at t.p=1t +At/2. Next f(y%.»,ti.12) is evaluated, and used in finding
vi.1.  This multiple evaluation of f for different values of y and t provides additional in-
formation about the behavior of f and hence serves to increase the accuracy.

The most widely used formula of the Runge-Kutta type is the fourth order formula,
which is usually referred to as the Runge-Kutta formula:

1 1
Yier =Y; +At[g f(yiati)+§f(yj*+1/2,tj+1/2)

1 1
+§f(y=1l'<f1/2,ti+l/2)+€f(y?+1atj+l)‘l (9.34)

where

At
ﬁm=x+7ﬂnm

At
Yie =i +7f(y;i'/2’t“]/2)

yfil =y + At f(yE50.tan)

The intermediate values y3%,,, y*%,, and y*, must be computed in the order given
since they are interdependent. This formula requires four evaluations of f, which for
complicated functions can be quite time consuming.

Another fourth order formula of the Runge-Kutta type uses different coefficients in
order to minimize truncation error. See Ralston[3] for details. Runge-Kutta formulas
of sixth order[19] and eighth order[20] are also available but are much less commonly
employed.

It is essential (as with all methods) to verify that the step size is sufficiently small to
give accurate answers. This can be done on a qualitative basis by running the problem
with two different step sizes (the most common procedure is to halve the step size after
the first run and then rerun the problem). If the answers agree “well enough,” perhaps to
4 or 5 digits, then they can usually be considered reasonably accurate (see Problem 9.7).

A more quantitative estimate of the truncation error per step (not the total solution
error) can be found by using a variation of the same interval halving approach mentioned
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above. Starting from ¢, one step is taken using a given value of Az. Now, again starting
from t;, two steps of At/2 are used to arrive at the same point (¢t + At) as with the coarser
step. If the value obtained using one step of At is denoted as y;.,, and that using two
steps of At/2 is denoted as ¥,.,, then an estimate of the truncation error incurred between
and f;,, is obtained by the expression

A

E. ~ 3 (9.35)
where k is the order of the method (k = 4 for the usual Runge-Kutta formula (9.34)). The
step size can be adjusted as desired to keep this error estimate below some predetermined
tolerance.

We should note that Runge-Kutta formulas are sometimes also called “‘single-step”
formulas since the solution is carried directly from ¢ to t;.,, without requiring values of y
or f for t <t,.

9.6 THE ADAMS FORMULAS—A CLASS OF MULTISTEP FORMULAS

The Adams multistep formulas are particularly easy to derive, yvet these formulas or
variations of them are used in some of the most efficient modern packaged computer sub-
routines for the solution of ordinary differential equations. Multistep formulas in gen-
eral, and the Adams formulas in particular, fall into two general categories: open formulas
and closed formulas. Each of these categories has its own place in the numerical solution
of ordinary differential equations, and we will first examine them separately.

The Adams Open Formulas (Adams-Bashforth Formulas)

Consider once again the initial value problem
dy _
o =fou (9.36)

y(0) = yo (9.37)

We begin the derivation of the open formulas by performing a forward Taylor series
expansion about an arbitrary value of ¢:

y(t +Af) = y(t)+Aty’(t)+(A2t!)2y”(t)+(A3t!)3y’”(t)+- . (9.38)
Denoting t as t; and employing the usual subscript notation yields

Vi = y; + AL y;+£A_2'f_)f y’,—’+(—A§tT)—3 v+ (9.39)
But y,=f, y’=f}, etc. and (9.39) may be written as

yo=w + e[+ 8 G g (9.40)

If (9.40) is truncated after the first term in the bracket (f;), the Euler formula (9.17) is
reproduced, and this can be considered to be the first of the open Adams formulas as
well. More accurate formulas can be obtained by replacing the derivatives in (9.40) by
backward differences. For example,
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' f; _.ﬁ“‘l _A_t " 2

fi= At + > fi+ O(At) (9.41)
Substituting (9.41) into (9.40) yields

2

Yie1 = y,+At{f, +—[f’ Atfj ‘+ f +0’(At)2] (At) A 74 } (9.42)
or, collecting terms,

v =y + 813 1= 30 |+ S @erri+ 0@y (9.43)
Thus

3 1 3
yor =y +81[35 =35 |+ 00 (9.44)

is the second open Adams formula, and is of second order. These formulas are called
open formulas since y;., can be solved for explicitly in terms of values of y; fi» i1, etc.,
which are assumed known. However, at the initial condition (¢t = (), the only known
quantities are one value of y (the initial value yo) and the corresponding value of f.
Therefore, the formula (9.44), which requires two values of f (fi and f_,) in order to
solve for each new y, cannot be started from t =0. The formula (9.44) and all higher
order open Adams formulas are thus not self-starting. In order to start such a formula,
the most common practice is to employ a formula of the Runge-Kutta type which is of the
same error order as the formula to be started. Thus the second-order Runge-Kutta for-
mula (9.33) could be used to start (9.44).

The next higher order formula can be found from (9.40) by substituting the back-
ward difference expression for f}:

o_fi =2+ fie
V= ALY + O(At) (9.45)
Substituting this expression into (9.40) and collecting terms yields

B 16, LS 4
yor= v+ A B 120 ]+ oA (9.46)

which is of third order. To obtain more accurate formulas, the correct error terms would
have to be included for (9.45) as well as for the difference representations of higher order
derivatives. The derivations will not be carried out here. The open Adams formulas

Table 9.1 Coefficients 3., of the Open Adams Formulas

k Order
of
n 0 1 2 3 4 5 Method
0 1 1
1 32 -1/2 2
2 23/12 -16/12 5/12 3
3 55/24 —59/24 37/24 —9/24 4
4 1901/720 | —2774/720 | 2616/720 |—1274/720 251/720 5
5 4277/1440 | —7923/1440 | 9982/1440 | —7298/1440 | 2877/1440 | —475/1440 6
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may be written in general as
Vi =y + At Z) Bufi—x + OALD)"? (9.47)
k=

where the order of the method is one less than the order of the truncation error per step
indicated in (9.47). The coefficients B.. are given in Henrici[17] and are shown in Table
9.1 for values of n up to n =5.

The Adams Closed Formulas (Adams-Moulton Formulas)

The method of derivation for the closed formulas is very similar to that employed for the
open formulas. However, for the closed formulas, a backward Taylor series expansion is
used to yield

(At)y

() @Ay
2

Sy A+

(9.48)

y(t)y=y(t +A)—(At)y'(t + At) + y'(t +At)—

Employing the subscript notation and noting that y' =f, y"=f', etc., (9.48) becomes

2 3
y =y = @0f+ S g B g (9.49)

Solving for y;., yields

Yi+1 = Vi +At[fi+l _g%t_)fj,ﬂ + (A3t,) f;"+| + .- :, (9-50)

The first Adams closed formula is found by truncating the expression in the bracket after
fi+1 to yield

Yier = ¥ + (A fior + O(ALY 9.51)

This formula is termed closed since the expression for y;., involves f;.,, which in turn will,
in general, involve y;.,. An iterative method will thus be required in order to solve for
vi.i. This iteration will consist of estimating y;.;, evaluating f..,, then obtaining a new
estimate of y;., by using (9.51), and repeating the process until it converges to any desired

accuracy.
The higher order formulas are obtained by replacing the derivatives of f in (9.50)
with backward difference representations. For example,

.= f_AT—i + O(AL) (9.52)

Substituting this representation into (9.50) and collecting terms yields the second order
method

V= 3, +Ath,~H+%f,}+(9“(At)3 (9.53)

(The observant reader will note that we have rediscovered the trapezoidal rule!) This
formula happens to be self-starting since no points behind # are involved. However, all
of the closed Adams formulas of order higher than 2 are not self-starting.

We will not carry out the derivation of the higher order formulas. The closed
Adams formulas may be written as
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Y1 = ¥ + At Z B fiaron + O(AL)"™
k=0

(9.54)

The coefficients B% are given in Ref. 17 and are shown in Table 9.2 for values of n up to

n =>5.
Table 9.2 The Coefficients g% of the Closed Adams Formulas
k Order

of

n 0 1 2 3 4 5 Method

0 1 1

1 1/2 12 2

2 5/12 8/12 -1/12 3

3 9/24 19/24 —5/24 1/24 4

4 251/720 646/720 —264/720 106/720 —19/720 5

5 475/1440 1427/1440 | —798/1440 482/1440 —173/1440 27/1440 6

One could reasonably ask at this point why the closed Adams formulas should even
be considered, since the iterative solution required for the closed formulas is obviously
more time consuming than the explicit solution which can be obtained for the open Adams
formulas. The answer is simply that the actual error of a closed formula of a given order
is considerably less than that of an open formula of the same order. (This assumes that
the closed formula is iterated an infinite number of times. This relationship between the
accuracies of the two types of formulas usually still holds, even if the closed formula is
iterated a relatively small number of times, if the initial guess supplied to the closed for-
mula is reasonably accurate.)

There are many types of open and closed formulas other than the Adams type, but
we will not consider them here. See Refs. 17 and 18 for descriptions of some of these
other formulas.

We have discussed the open and closed Adams formulas at some length. We must
admit at this point that these formulas (or any other open or closed formulas) are seldom
used by themselves in practice. However, a combination of open and closed formulas
provides a very powerful tool which we will discuss in the next section.

9.7 PREDICTOR-CORRECTOR METHODS

The primary advantage of closed formulas is their accuracy, and the primary disadvantage
is the time consuming iterative procedure necessary for their solution. Thus it would
seem that the most effective procedures involving closed formulas would be those which
would also include an accurate method of providing a first estimate of the solution at each
step in order to minimize the number of iterations necessary to converge the closed
formula. The logical choice to provide this first estimate is an open formula of at least
the error order of the closed formula. Thus, for example, we might choose as a
“predictor” the fourth-order open Adams formula

9

© _ 3B, 39 37, _ 2 }
y,-+|—y,-+At[24fj 24fj—1+24fj4 24fj-—3 (9.55)
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and as a ‘“‘corrector’” the fourth-order closed Adams formula

9 19 5 1
(a+n _ O - . ]
Yoo —y,-+At[——24 ,+,+24f, 24]‘,_,—5-24]‘,4} (9.56)

The calculational procedure could then be to first use a fourth-order (or higher) Runge-
Kutta type formula to obtain the values of y and f for the first three steps of At beyond
the initial condition. With these starting values, the predictor (9.55) can be used to
estimate the next value of y, denoted as y{%,. With this value as a first estimate, the
corrector (92.56) can be iterated until the desired degree of convergence is obtained. As
many steps as needed can now be taken, beginning with the predictor, and finishing with
the corrector, until the desired maximum value of t is reached. The predicted value of
y;+: can be considerably improved by combining the error series for the predictor and
corrector to provide an estimate of the error in the predictor. The error correction is
carried out by the use of the following modifier after the predictor:

3 251
Fite=yi% 500 -y (9.57)

where y{® is the unmodified predicted value from the last step. The procedure is thus to
apply the predictor (9.55), the modifier (2.57), and then iterate the corrector (9.56) as
desired. The use of the modifier will in general reduce the number of iterations required
of the corrector. The modifier is not used for the first step (after the starting values have
been obtained) since no predicted value from the preceding step is available.

Another widely used and effective predictor-corrector scheme is termed Hamming’s
method[3]. This method consists of the following:

Predictor:

Y% = %o+ SADRS — 1+ 2 ) (9.58)
Modifier:

52 =y + 20— v (9.59)
Corrector:

YD = 2OV = ¥y D+ SAOGR+ 26— ) (9.60)

One of the most valuable aspects of the use of predictor-corrector methods is the
ability to estimate the truncation error of the formula (E;,,) at each step. The availability
of both a predicted value and a converged corrected value makes it possible to eliminate
terms between the error series for both the predictor and the corrector, and thus to
estimate E;.,. (Note that this is not the total solution error.) We will not show the
details here, but will give the truncation error estimates for the two predictor-corrector
schemes we have mentioned:

Adams fourth order:

S0 o
E.. ~270[y,‘+1 Yiq (9.61)
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Hamming :
9
E =370 = yi% (9.62)

The calculation of the truncation error estimate (9.62) for Hamming’s method is illustrated
in Problem 9.5.

With this truncation error estimate in hand, we can determine whether it might be
necessary to reduce the step size or possibly to allow it to be increased.

The changing of step size (At) in the course of a solution is somewhat awkward when
predictor-corrector methods are used. This is due to the evenly spaced values of f that
are required for the open and closed multistep formulas used in predictor-corrector
methods. However, certain strategies can be employed to allow step size changes. One
approach is to simply restart the entire procedure, using the last obtained value of y as an
initial condition, and continuing with the new step size. This approach requires the use
of a starting method (probably Runge-Kutta) and hence may also require that several steps
(perhaps 3 or 4) be taken with the new step size before consideration can be given to again
changing the step size. A more efficient strategy is to interpolate (and, if necessary, ex-
trapolate) for the required values of f with the new spacing. Thus if an error analysis or
other consideration indicates a reduction in step size, the procedure might be as shown in
Fig. 9.3.
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Fig. 9.3
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A polynomial can be passed through the stored values of f(y,t) with the old step size
spacing, and values which have the desired new step size spacing can be obtained by
interpolation on this polynomial. After one step with the new step size, the step size can
be changed again if desired, and the same procedure followed.

The efficiency of predictor-corrector methods is one of the primary reasons for their
current popularity. For many problems, the most time consuming (and hence expensive)
part of the numerical solution is the evaluation of the derivative f(y,t). Recall that the
fourth-order Runge-Kutta formula (9.34) required four evaluations of f at each step. A
typical predictor-corrector method (regardless of order) requires one evaluation of
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f (at t) for the predictor (all of the other values of f will have been previously
computed and stored) and one evaluation of f (at t.,) for each iteration of the
corrector. Thus three iterations could be performed on the corrector before the total
number of evaluations of f would equal that required by the Runge-Kutta formula. In
practice, one or two iterations of the corrector will usually be sufficient to meet most
reasonable convergence criteria, although three or more iterations may occasionally be
necessary. For most problems, predictor-corrector methods can thus be considered as
using less computer time than Runge-Kutta formulas of the same order. (Many factors
other than the number of evaluations of f must be included in order to assess accurately
the relative efficiencies of different techniques; detailed discussion is beyond the scope of
this text, but some very interesting comparisons can be found in Ref. 21.)

Some sources recommend that the corrector should be iterated only once, regardless
of whether or not any convergence criterion is satisfied. However, this can occasionally
be dangerous, particularly if the step sizes are fairly coarse. Henrici[17] does give a
proof that at least the error order is preserved if the predictor and the corrector are of the
same order and the corrector is iterated only once. In the author’s opinion, the best
approach is usually to iterate the corrector as many times as necessary to meet a
reasonable convergence criterion, although it is also usually desirable to set some upper
limit on the number of iterations. This number might be approximately 3 for efficiency,
more for ensured accuracy. If this limit is exceeded, the result can be flagged and/or the
program terminated if desired.

We have not yet considered the problem of stability for predictor-corrector
methods. The stability of the predictor is not of concern since it is only used to provide a
first estimate. Many commonly used predictors have rather poor stability charac-
teristics. The corrector, on the other hand, must have excellent stability characteristics.
This requirement is satisfied by the correctors used in the fourth order Adams method
(9.55)-(9.57) and Hamming’s method (9.58)-(9.60).

It should be noted that the most modern predictor-corrector methods employ vari-
able mesh size and variable order and are self-starting as well. One such method is
Gear’s method[22], which will be discussed briefly in Sec. 9.10.

9.8 THE SOLUTION OF SETS OF SIMULTANEOUS
FIRST-ORDER DIFFERENTIAL EQUATIONS

As we have seen in Sec. 9.1, any differential equation (or set of differential equations) of
any order can be written as a coupled set of first-order differential equations of the form

d
% = fl(}’x,}’z,)’3, .. -,ymt)

dy.
dt - fz()’u}’z,)’z, .. ',yn,t)
(9.63)

d
—dXt% = fs()’l,)’z,)’3, .. ->ymt)

dy, ’
dyt = f" ()’1,)’2,)’3, .. "ert)
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or

1S

=D (9.64)

Qu

t

where dy/dt, f, and § are n-dimensional vectors. This is a particularly convenient form
to use on a computer, since the vectors f and § can be stored and manipulated as arrays.

The Runge-Kutta formulas require the calculation of several intermediate values of f
between t; and t;.,. Before each of these values of f can be calculated, a corresponding
value of y must be found. For a coupled set of equations, f and y become the vectors f
and ¥ as indicated in (9.64). Thus the complete vectors y and then f must be calculated
at each intermediate point before moving to the next intermediate calculation. In the
notation used for the fourth-order Runge-Kutta formula (9.34), the computations must be
carried by first finding f(§,t;), then X, then f(§%.,,,t.12), then §*%, etc. Since there
is cross-coupling between the equations for these vectors, it is necessary to update all
components of each vector before moving on to the next vector. The method is
illustrated in detail in Problem 9.2.

For all multistep formulas, it is necessary to store sets of vectors f(Fi_.,t-0),
f(5;_2,t ), etc. at as many points as required by the formula, and any vectors § which may
be needed. For the open formulas, it is only necessary to calculate the vector f(¥,¢;) and
then the vector ¥;.;. For a predictor-corrector scheme, the predicted vector 7, is first
calculated (f(3,,1;) is available from the preceding step), then a modifier is applied if desired
to find ¥, and finally the corrector is iterated as many times as desired, calculating
f(Fi+1,t+1) and F., in order until the specified convergence level is attained on all

components of V...

9.9 BOUNDARY VALUE PROBLEMS

Two-point boundary value problems were defined at the beginning of this chapter as
consisting of a set of one or more ordinary differential equations, with associated bound-
ary conditions which are specified at two different values of the independent
variable. The numerical approach to the solution of boundary value problems can best
be illustrated by use of an example. We choose as an example the following boundary
value problem:
2
—gx—z’ +Ay=B

y@®=0, y@L)=0

We can now consider the two principal classes of methods used for solving this (or any
other) boundary value problem.

(9.65)

Matrix Methods

We will consider, by means of an example, one possible approach to second-order bound-
ary value problems which results in a matrix formulation. Other approaches are given by
Keller[23].

For the example problem (9.65), the region 0<x < L is first divided into n +1
equally spaced intervals of length Ax as shown in Fig. 9.4.
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T

Fig. 9.4 Finite difference grid for boundary value problem.

The differential equation can now be represented at the point j by

Yi+1 (i)};})j yJ*l_Jr_ij — B
The derivative d”y/dx® has been replaced by a central difference representation of
0(Ax)’. There are n equations of the form (9.66), one for each interior point of the
region shown in Fig. 9.4. There is also one unknown value of y for each interior point of
the region. Thus we have n simultaneous linear equations in the n unknowns
¥1i,¥2, . . ., ¥e. After multiplying through each equation by (Ax)? this set of equations can
be written as

y2—2y:+(0)+ A(Ax)’y, = B(&x)’
¥:=2y:+ yi + A(Ax)’y. = B(Ax)’

(9.66)

: (9.67)
Yo = 2¥n-t + Yoo+ A(AX)Yao = B(Ax)

0) =2y, + Yoot + A(Ax)y, = B(Ax)’

Collecting coefficients of the unknowns, and writing the set (9.67) in matrix form yields

where a = ~2+ A(Ax).

fa 1 My ] B(Ax)* ]
1 a 1 ¥z B(Ax)
1 o 1 ys B(Ax)

- - - — — (9.68)
1 a 1 Vo1 B(Ax)
! 1 aldly, 1 LB@axy]

The coefficient matrix of this set of equations is tridiagonal,

and, as we have seen in Chapter 6, such sets can be solved quite easily and rapidly even if
n is very large. The error analysis of the numerical solution of boundary value problems
is beyond the scope of this text, but the method being discussed is essentially second
order. This error can be made fourth order without increasing the bandwidth of the
matrix by using a method discussed by Henrici[17] and Keller[23]. The error order can
also be increased by using higher order difference representations for the derivative, but
only at the expense of increased bandwidth of the coefficient matrix and some awkward
computational problems near the ends of the interval. The easiest method for ensuring
accuracy is simply to obtain solutions for several values of Ax, with each value one-half of
the preceding value. This procedure can be stopped when the results indicate adequate
convergence. Richardson extrapolation can be employed if desired.
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Boundary conditions on derivatives (such as on dy/dx in this example) can result in
a coefficient matrix with elements off of the tridiagonal band; however, some simple row
manipulations of the Gauss elimination type will restore the banded form.

Equations of higher order than two and sets of coupled ordinary differential equa-
tions will still result in tridiagonal coefficient matrices if the problem is reformulated as a
set of differential equations, each of order no higher than two, and if central difference
representations of @(Ax)* are used for the derivatives.

The main advantage of the matrix approach is its simplicity. The most serious
drawback to this technique is the difficulty encountered in dealing with nonlinear differen-
tial equations. Consider, for example, a nonlinear differential equation of the form

d’y

dx’
Using the same central difference approach as we previously employed for equation
(9.65), we obtain

+Dy’=E (9.69)

Yi+1 (zi:)j’ Yi-1 +Dy,? =FE (9.70)
If this equation is written at each of the interior points of the region of interest, a set of
nonlinear algebraic equations results. Iterative techniques must be employed, and diffi-
culties can be encountered in obtaining a solution. This type of problem is discussed in
detail in Ref. 17.
In the author’s opinion, nonlinear problems can be handled in the most straightfor-
ward way by using the initial-value-based methods which we will discuss next.

Shooting Methods

We now take the approach of attempting to convert a boundary value problem into an
equivalent initial value problem. This would permit the use of the powerful and accurate
techniques developed in preceding sections for initial value problems.

To illustrate the approach, we turn again to the example used earlier:

2
%c%’ +Ay=B
(9.71)
y©0)=0, y(L)=0
This problem can be recast as the following initial value problem:
2
%;3-2} +Ay=B
9.72)

_o. D
y©=0, ZO=U

where U is unknown, and must be chosen such that y(L) = 0 and thus the boundary value
problem (9.71) is reproduced. If we arbitrarily choose a value for U, and solve the initial
value problem (9.72) by any standard numerical method, the solution might appear graphi-
cally as shown in Fig. 9.5. (We will assume that the step size is sufficiently small that
truncation error is negligible, and we will neglect roundoff error.) Since y(L) is not zero,
we have not reproduced the boundary value problem (9.71). (Since y(L) is clearly a
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v (U)

tang = U

Lol 4

»
I
™

Fig. 9.5

function of U, we have denoted y(L) as y.(U).) In order to bring y.(U) closer to zero,
the strategy should apparently be to reduce U. (The similarity to a ballistics problem is
of course the motivation for the term ‘‘shooting method.””) Seeking the appropriate value
of U in order to satisfy the boundary condition at x = L can be stated as searching for U
such that

yw(U)=y(L)=0 (9.73)

This is a root solving problem, and we can employ any of the standard methods which do
not utilize explicitly the derivative of the function. Thus bisection or the secant method
are likely candidates in this situation. Since the secant method is more rapidly con-
vergent for well-behaved functions with simple roots, it will usually be the first choice for
the present application.

We have only to provide two estimates of the root of (9.73); call them Uy and
U,. Now two solutions of the initial value problem (9.72) are carried out, yielding
y.(Uo) and y,. (Us). A new estimate of U can then be obtained, given by

ye(Uo)
Ui="Us [YL(U()) - )’L(Uoo)]/( Us— Ug) ©.74)
The process is continued to convergence, with each functional evaluation of y, (U) requir-
ing a numerical solution of the initial value problem (9.72). Examples are given in
Problems 9.11 and 9.14.

Since iteration to convergence may require from three to ten or more iterations, de-
pending on many factors, it makes good economic sense in many cases to use a reasonably
efficient method to solve the initial value problem. One of the predictor-corrector
schemes such as the fourth-order Adams method or Hamming’s method would seem
suitable. However, since the solution must be obtained precisely at x = L, the use of a
method which makes automated step size changes is probably not desirable. Instead, it
may be best to use a fixed step size or a series of predetermined step sizes which together
arrive exactly at x = L.  (If the end point is not hit exactly, the value of y at this point can
be found by interpolation, but this is just another complicating factor and adds to the
possibility of error.)

Strategies can be evolved to solve a wide variety of boundary value problems by the
shooting approach. An example of the solution of a boundary value problem involving a
third-order differential equation is given in Problem 9.14.
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Shooting and Superposition for Linear Equations

There are a wide variety of boundary value problems involving linear ordinary differential
equations for which analytical solutions cannot readily be obtained. Linear differential
equations with nonconstant coefficients are often particularly difficult to handle
analytically. The linearity of the differential equation(s) allows the application of a
simplified variation of the shooting method to be applied. Consider once more the
(linear) boundary value problem (9.71) which we have seen can be reformulated as the
initial value problem (9.72), where U is to be determined such that y(L)=0. Now con-
sider two different estimates of U; call them U. and U,. Corresponding to each of these
estimates, we can obtain, by the usual numerical techniques, a solution to the initial value
problem (9.72) which we will assume to have negligible error of any kind. Call these
solutions yc(x) and yp(x). Since the differential equation in (9.72) is linear, and both
ye(x) and yp(x) are solutions of the differential equation, then so is the sum of these
solutions, or in fact any linear combination of these solutions. Thus

y(x) = Ciyc(x)+ Coyp(x) 9.75)

is a solution, where C, and C. are constants. This solution automatically satisfies the
condition that y(0) =0. The condition that y(L) =20 yields

y(L)=0= Cye(L)+ Coyn(L) (9.76)

This is one equation in the two unknowns C, and C,. The additional relation between C,
and C, can in this case be obtained from the differential equation since the differential
equation is not homogeneous. (There must be an inhomogeneity in either the boundary
conditions or the differential equation(s) in order to produce a nontrivial solution.)
Substituting (9.75) into the differential equation, we find

2 2
C,(d xyf+ Ayc> + Cz(d xy;’+ AyD> =B (9.77)
but since ye(x) and y,(x) each separately satisfy the differential equation, we find
d’ d’yp
T+ Aye = 22+ Ayo =B (9.78)
Thus (9.77) becomes
CB+C,B=B
or
C+C=1 9.79)
and from (9.76)
yo(L)
= — C e
C=-C5M
SO
)’D(L)]
Cs [l ——=—t =1
ye(L)
or
C, L (9.80)

"= yo (L) ye(L)]
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and
C=1-C, (9.81)

The solution (9.75), with C. and C, given by (9.80) and (9.81) respectively, now satisfies
both the differential equation and the boundary conditions. The uniqueness of the solu-
tion to a boundary value problem is ensured if essentially the same weak conditions re-
quired for initial value problems are satisfied as specified at the beginning of the
chapter. This can be easily demonstrated for the present case and thus (9.75) is the
solution to the boundary value problem. Therefore, only two solutions to an initial value
problem are required to solve a linear boundary value problem. An example of the
method is given in Problem 9.12.

9.10 THE STATE OF THE ART

As of this writing, the most effective and efficient numerical techniques available for the
solution of ordinary differential equations appear to be either modifications of the well-
known predictor-corrector methods, or the relatively new methods based on Richardson
extrapolation.

An extremely efficient method based on the Adams predictor-corrector formulas has
been presented by Gear[22]. This algorithm adjusts both the order (up to seven) and the
mesh size to produce the desired local truncation error level, and is self-starting as
well. The algorithm also includes a special approach for dealing with ““stiff”” differential
equations. (See Problem 9.9 for an example of such a differential equation.)

The method of Bulirsch and Stoer{24] is based on the Richardson extrapolation
techniques, which we have already seen to be so powerful when employed in Romberg
integration. This method has been shown to be capable of producing accuracy compa-
rable to other methods while using step sizes which are much larger than those required by
the conventional methods.

Complete descriptions of the algorithms for Gear’s method and the method of
Bulirsch and Stoer are given in the cited references (as ALGOL procedures) and both
methods have been made available by at least one software vendor as packaged sub-
routines in FORTRAN.

The efficiency of these and other modern methods have been compared in a recent
paper[21] which gives an excellent picture of the current state of the art.
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llustrative Problems

A simple fourth-order Runge-Kutta method has been used for some of these prob-

lems where the purist might insist on a more efficient method. This has been done in the
interest of simplicity and is not meant to demean the value of the more efficient methods
where economics (and ease of evaluation of local truncation error) are of prime concern.

9.1

9.2

Using the fourth-order Runge-Kutta formula (9.34), page 195, take one step of
At = 0.1 for the following initial value problem:

dy 4t

==—t

dt y ya

Show the details of the computation.

y(0) =

For this problem,
4t
) =—~1t
fnt) y v
We start from t=1t,=0, y(0)=y,=3:

futd =22 @3 =0

vi = v+ S 000 =3+ % 0 =

f(y.p,tm)—‘“0 12)_ (°'>(3) —0.083333
0.1
y 5 = }’o“‘—f(y]/« tn)=3 +‘§_(—0083333) =2.995833
_ 40.172) —ﬂ (2.995833) = — 0.083033

sk =
FOYTE ) =5 995833
y¥= Yo+ (ADF(y 1) = 3 +0.1(=0.083033) = 2.991697

4(0.1)

* p) = — =
fOyE L) 2991697 0.1(2.991697) 0.165466

Now

1 ] 1
yi=yo+ At [6 f(Yo,t0) + gf()’f'fz Jin) +%f()’f7:*,tw:) + 6 f(}’T,tl)]
=3+0.1 [é )+ % (—0.083333) +% (—0.083033) +-é (- 0.]65466)]

=2.991697

Show one step of the fourth-order Runge-Kutta solution of the following initial
value problem:

d’y__y - 4y o
dtZ-et‘}*l’ }’(0)‘1, dt (0)"'0

Use At =
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We first transform the problem into a set of two first order equatioas. Let

_dy
<=t
Then
dz__y _
dt e +1 z0)=0
and
dy_ _
dt_zy y(O)_l

are the coupled equations which we will solve. For the first step, y, = 1 and z, =0, and we
wish to find y, and z,. As discussed in Sec. 9.8, the dependent variables and their deriva-
tives must be dealt with as vectors, and each component of each vector must be calculated
before proceeding. Thus
= —y— —1
filyzt) =" fy.zt)y=1z

are the components of the derivative vector f. Now

1
f1(¥4,20,t0) = 11 =0.5, Foyo,20,80) =0

and
zHh =zo+ g%) fi(yo,20,t0) =0 + %l (0.5) = 0.025
yif =Y +(Az_t)f2(}’o,lo,to) =1+ % =1

We next return to the derivatives

1
filyh,zlh,tin) = ET 0.487503

fz(yi‘fz ,Zf'fz 4 = 0.025

and then calculate again the dependent variables and continue this cyclic process:

i = zo+ ‘Ai“tf\(yf‘?z 2ty =0+ 9—2—1 (0.487503) = 0.024375

A .
v = vo+ 5L £tz ) = 1+ 5 0.025) = 1001250

fi(yi¥,zlELe) = 1‘;—2951_‘{_2‘51‘(2 =(0.488112

F(y¥, 25, 1) = 0.024375
ZF = 20+ At f(y 255, n) = 0+0.1(0.488112) = 0.048811

yi¥ = yo+ At fo(y ¥, 275, t) = 1+ 0.1(0.024375) = 1.002438

1.002438

eo.x +1 =0.476179

fily*,z%,t) =

f(y¥,z¥,t) = 0.048811
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The first step can now be completed:
1 1 1
zZ=2zo+ At [g Fi(¥o,20,t0) + 3 iyl .zt i) + 3 f(y#F,z 5, tip) + é fl(y|*,21*,tx)]

=0+0.1 [% 0.5) +% (0.487503) + % (0.488112) + é (0.476179)] = (.048790
and

»w=1+0.1 [% )+ % (0.025) +—31- (0.024375) + é (0.04881 1)} = 1.002459

Given the initial value problem

d’y .d _
dt2+2dt+4y =0

—y D=
y@=2, FO=0

Compare numerical solutions obtained by Euler and Runge-Kutta methods in the
range 0 <t =35.

The problem is first converted to the first order system

dz
a—t——2z—4y

0 D_ -
2(0)—()’ dt =z, )’(0)“2

Numerical solutions to this system by the Euler method for a variety of step sizes and by
Runge-Kutta with At =0.1 are given in Table 9.3 along with the exact solution y(t)=
2¢”'[cos V3 x + (1/V3) sin x].

One purpose of this exercise is to illustrate the difficulty of attempting to obtain accu-
rate solutions with a low order method. Using a relatively coarse mesh size of At = 0.1, the
fourth-order Runge-Kutta formula yields answers which are in error by no more than 2 x 10~°

at any point shown.

In addition, since a relatively small number of steps (50) is required to

Table 9.3
Euler Runge-
Kutta
t At =0.1 At =0.01 | At =0.001 | At =0.0001] At =0.1 Exact
0 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
0.5 1.35936 1.32204 1.31950 1.31784 1.31941 1.31940
1 0.185381 0.290310 0.300021 0.300537 0.301137 0.301149
1.5 —0.429152 | —0.264378 | —0.250157 | —0.247868 | —0.248730 | —0.248709
2 —0.400114 | —0.314608 | —0.306954 | —0.305134 | —0.306259 | —0.306245
2.5 —0.121281 | —0.147718 | —0.148984 { —0.148551 | —0.149182 | —0.149181
3 +0.076168 | +0.001436 | —0.003992 | —0.004495 | —0.004572 | —0.004579
3.5 0.107975 0.056026 0.051721 | +0.051052 | +0.051289 | +0.051282
4 0.049308 0.043271 0.042095 0.041759 0.041989 0.041987
4.5 —0.008092 0.013009 0.014018 0.014032 0.014131 0.014132
5 —0.026704 | —0.005912 | —0.004490 1 —0.004335 | —0.004342 | —0.004340
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cover the region of interest, it is reasonable to expect that the accuracy of these answers
could be considerably improved by reducing the step size. However, the first-order Euler
method cannot match this accuracy even with At = 0.0001 (50,000 steps to cover the range of
interest). At some points in the interval 0 < ¢ <35, an error of at least 1 X 107 is encountered
for even the best Euler solutions, those for At =0.001 and At =0.0001. No results are
given for smaller step sizes since the number of steps is already absurdly large compared to
the number required for the fourth-order Runge-Kutta solution. We should note that the
form of the differential equation is very simple, otherwise it is likely that roundoff error
would be a serious problem for the small step size Euler solutions due to the enormous
number of evaluations of f(y,t) involved.

It is reasonable to conclude from this example that the Euler method is simply too
inaccurate to employ in practice.

Solve the initial value problem posed in Problem 9.3 by using the second-order
Adams open and closed formulas with At =0.1 and compare the results.

The second-order Adams open and closed formulas are given in the second line of
Tables 9.1 and 9.2, respectively. The open formula is solved in a straightforward way and
needs no explanation. For the closed formula, an iterative solution is necessary. Since
efficiency is of no concern, the Euler method (first order) is used as a simple predictor. An
absolute convergence criterion of 107° is used to ensure convergence of the closed
formula. The number of iterations of the closed formuia necessary to attain convergence
varies from 6 near t =0 to 4 near t =6.0. The results for y(t) are shown in Table 9.4.

Table 9.4
Adams Adams
2nd Order 2nd Order Exact

t Open Closed Solution

0 2.00000 2.00000 2.00000

0.5 1.29784 1.32380 1.31940
1.0 0.288870 0.303185 0.301149
1.5 —0.237923 -0.251177 —0.248709
2.0 —0.285847 —0.310339 —-0.306245
2.5 -0.135850 -0.151691 —0.149181
3.0 —0.003256 —0.004684 —-0.004579
3.5 + 0.045696 +0.052483 +0.051282
4.0 0.036369 0.043119 0.041987
4.5 0.011811 0.014564 0.014132
5.0 —0.003803 - 0.004484 —0.004340
5.5 —0.007122 —0.008929 —0.008610
6.0 - 0.004139 —0.005380 -0.005170

The increased accuracy of the closed formula is obvious.

The error in the solution

obtained with the closed formula ranges from about 1% near the beginning of the interval to
about 4% near the end of the interval where y(t) becomes quite small. The error in the
solution obtained with the open formula ranges from about 4% near the beginning of the
interval to over 17% near the end. The motivation for the use of closed formulas to obtain
final answers should be apparent, while open formulas of the same order are usually rele-
gated to use as predictors for the closed formulas.



CHAPTER 9 NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 213

9.5 Ilustrate in detail the use of Hamming’s method for the following initial value
problem:

=(y+t)}, y0)=-

We arbitrarily choose At =0.1. Some idea of whether this step size is adequate can
be obtained by the local error estimates which are possible with a predictor-corrector
scheme. For Hamming’s method, it is necessary to obtain 3 starting values in addition to
the initial condition. We obtain these values with the fourth-order Runge-Kutta formula
(9.34), and find

- 4y 0y =
y@)=-1 a0=1
y(0.1) = —0.917628 %(0.1) = 0.668516
v(0.2) = —0.862910 %(0.2) =0.439450

v(0.3) = —0.827490 % (0.3) = 0.278246

The value of y(0.4) can now be found using Hamming’s method. The predictor (9.58), page
200, yields

yi& = 4(0 40.1) [2(0.278246) — 0.439450 + 2(0.668516)] = — 0.806124

Since we have no predicted value from the last step, we cannot use the modifier (9.59) and
we turn directly to the corrector (9.60), page 200:

Yo = % [9(— 0.827490) — (— 0.917628)]

+ 20D 1 0.806124 + 0.4 + 2(0.278246) ~ (0.439450)

= —0.805649

The expression (—0.806124+0.4)° is the derivative f(y{,0.4). The corrected value
—0.805649 differs from the predicted value by 0.000475. This is fairly large, so we will
iterate the corrector again:

‘“’——[9( 0.827490) — (—0.917628)]

3(0 D [(—0.805649 + 0.4)° + 2(0.278246) — (0.439450)]

= —10.805663

This varies from the last corrected value by 1.4 X 10”°. A reasonable convergence criterion
for the present problem might be an absolute criterion of 1 X 107°, If this were used for the
present problem, we would be forced to iterate the corrector once more. This yields

y? = —0.805663

which is unchanged from the previous value and obviously satisfies the convergence criter-
ion; thus we set

y(0.4) = yi¥ = — 0.805663
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That v is, in fact, quite close to y{" raises once again the question of whether it is ever really
advantageous to iterate the corrector more than once. We will deal with this question in the
next problem. It is of interest at this point to examine the estimate of the local truncation
error of the method for this step. This estimate is given by (9.62), page 201, as
[—0.806124 — (— 0.805663)] = 3.42 x 10°°

o _ 4)

E.=

121 (s 121

It takes some experience to develop a feeling as to what levels of error are acceptable to
provide a reasonably accurate solution. If we assume that 20 steps of At are required to
cover the desired range of t for the present problem, and that thé total solution error can be
estimated as the sum of local truncation errors per step, then 20 errors of the size of E,
would mean that the third decimal place of the value of y at the end of the interval could be
in error by 1 digit. If this is unacceptable, then the step size should be reduced.

To illustrate the use of the modifier, we will take one more step. The predicted
value is

y§ = —0.793658

The modifier yields

(())]

=—10.793658 + -}—%% [—0.805663 — (— 0.806124)] = — 0.793231

Two iterations with the corrector yield
y§'=—10.793374, vy =-0.793371

which can be considered as converged. The modifier obviously provides a much better esti-
mate of the final converged value than does the predictor alone.

Consider once again the initial value problem

diy, ,dy

T ig T =0

yo=2 Lo=0

and solve this problem by Hamming’s method, comparing the results obtained
when the corrector is iterated to convergence and when the corrector is iterated
only once.

The resuits are compared in Table 9.5 for two step sizes, At = 0.1 and At =0.25. The
converged values have been iterated until there is no change in any digit of the solution.

Both the fully converged and the single iteration values are reasonably accurate for
At =0.1. Although the fully converged values are very slightly more accurate than the
single iteration values (the variations between the two solutions are in the fifth decimal
place), the differences are probably not sufficient to warrant the extra time required for the
additional iterations. The answers for At = 0.25 are, of course, considerably less accurate
than those for At =0.1. The single iteration values are significantly less accurate than the
fully converged values, and it would appear that the accuracy gains obtained by iterating to
convergence are worth the extra time involved for this case. (In fairness, we should note
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Table 9.5
Converged 1 Iteration Converged 1 Iteration
t At =0.1 At =0.1 At =0.25 At =0.25 Exact
0 2.00000 2.00000 2.00000 2.00000 2.00000
0.5 1.31940 1.31938 1.31986 1.31986 1.31940
1 0.301178 0.301175 0.301129 0.298918 0.301149
1.5 ~0.248641 —0.248624 —0.247692 —0.247534 —0.248709
2 —0.306194 —0.306181 —0.304866 -0.302352 —0.306245
2.5 —0.149175 —0.149175 —0.148651 —0.146498 ~0.149181
3 —0.004604 —-0.004612 —0.005056 —0.005071 - 0.004579
3.5 +0.051256 +0.051249 +0.050467 +0.048917 +0.051282
4 0.041975 0.041973 0.041471 0.039962 0.041987
4.5 0.014134 0.014136 0.014075 0.013527 0.014132
5 —0.004333 —0.004330 —0.004138 ~0.003839 —0.004340

that the time involved to iterate the corrector to convergence for the At =0.25 case is
probably greater than that required to obtain the single iteration solution for At = 0.1 which
is more accurate.)

We might generalize these results by stating that if care is taken to ensure that the
step size is “‘sufficiently” small, then a single iteration of the corrector will usually be
sufficient. If, on the other hand, there is a chance that the step size will be excessively large,
even in a local region, then multiple iterations of the corrector will ensure better
accuracy. As previously mentioned, some idea of whether the step size is sufficiently small
can be obtained by using the estimate of the truncation error per step [equation (9.62)]. For
the single iteration case, this first corrected value replaces the fully converged value in
(9.62), with some additional uncertainty introduced into the local error estimate.

Consider the problem of choosing the proper uniform step size for a fourth-order
Runge-Kutta solution of the initial value problem

d’y
dt’

+ty=0
1. D=
yo=1, Fo=o0

We will consider the range 0 < t <4. Fourth-order Runge-Kutta solutions are shown
in Table 9.6 for step sizes ranging from At = 0.8 to At = 0.05.

Table 9.6

t At=08 | Atr=04 At =02 At =0.1 At = 0.05
0 1.00000 1.00000 1.00000 1.00000 1.00000
0.8 0.914667 0.916055 0.916110 0.916113 0916113
1.6 0.403740 0.405445 0.405407 0.405401 0.405400
2.4 0414102 | —0425276 | —0.426101 | —0.426148 | —0.426151
3.2 —0.606459 | —0.631307 | —0.631750 | —0.631739 | —0.631736
4.0 +0.173902 | +0.215231 | +0.219653 | +0.219934 | +0.219953
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The solutions become more accurate and change less with decreasing step
size. However, the point to be emphasized is that it is impossible to assess the accuracy of
a solution for any given step size without another solution for a different step size to
compare with. Thus if we had only the solution for At = 0.8, it would be impossible to
determine how accurate the solution was. The solution for At = 0.4 shows large variations
from that for At = 0.8, particularly for larger values of t. The only conclusion that we can
draw from this is that the solution for At = 0.8 is probably inaccurate. We cannot conclude
anything about the accuracy of the At = 0.4 solution. However, comparison with the At =
0.2 solution shows much smaller differences, and it is apparent that we are approaching a
reasonably accurate solution. The comparison between the At = 0.2 and At = 0.1 solutions
is sufficiently good to indicate that we can probably have confidence in the third decimal
place of the At = 0.1 solution, and the At = 0.05 solution verifies this.

We should note that the estimate of local truncation error [equation (9.35), page 196]
for the fourth-order Runge-Kutta method is not useful in the present context. The purpose
of this error estimate is to serve as a local error control on the step size and is only meant to
be used to provide a means of adjusting the step size in the middle of the solution. For the
estimate to be meaningful, the two solutions ;.. and y;., must be based on the same solution
at t. This information is not available in the present problem. In any event, this error
estimate is for local truncation error, not total solution error. A sophisticated Runge-Kutta
routine could be written which adjusts the step size to keep the local truncation error below
some predetermined level, but this is one step beyond the simple uniform step approach we
have examined here.

Solve the initial value problem

d’y
dt’

+9y =0

_1 D=
YO =1, F©=0

by using the Euler method with At =0.1.

The mechanics of obtaining the numerical solution are straightforward and will not be
discussed here. However, the results are interesting. The numerical solution is shown in
Fig. 9.6 along with the exact solution y = cos 3t. The growth of the error in the numerical
solution is characteristic of an unstable solution. Since the Euler method uses no values of
the derivative other than the one at f, it would seem at first glance that the Euler method
could not be unstable since no parasitic solutions could arise. However, in solving a second
order system as a set of two first order differential equations, there are two derivatives
evaluated at t; (one for each equation), and thus a spurious solution to the difference equa-
tion can be introduced. It might be noted that a smaller step size slows down the rate of
error growth but does not appear to prevent the eventual instability. On the other hand, a
fourth-order Runge-Kutta method with At =0.1 provides a stable, accurate solution.
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Solve the initial value problem

sy ¢ _
3 =301, y(0)=008

numerically over the range 0 <t <35,

This innocent-appearing differential equation has been discussed in Ref. 25 and be-
longs to a class of differential equations which have the property of “stiffness.” This prop-
erty can best be explained by considering the exact solution to the differential equation,
which is of the form

y = Ae™ + t*+ 0.4t +0.08

where the term Ae® is the homogeneous solution and the remainder is the particular
solution. If the initial condition is y(0) = 0.08, then A =0, and the exact solution is

y = t*+ 0.4t +0.08

The exponential term lurks in the background, however, ready to explode if our numerical
solution strays even slightly from the exact solution. One way to visualize this situation is
to think of each new step along the t axis as solving a new initial value problem. If the
solution at the last step is slightly different from the particular solution, then for the next
step, A is not quite zero. The positive exponent amplifies the error, and for the next step A
is larger in magnitude. The practical consequences can be seen from Fig. 9.7. If we carry
out a fourth-order Runge-Kutta solution using At = 0.1, the numerical solution follows the
exact solution nicely up to about t = 1.7 (the numerical solution is slightly below the exact
solution up to this point, but not enough to show on the graph). The numerical solution then
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turns abruptly downward and disappears from the graph in an exponential manner.
behavior could be considered as corresponding to A acquiring negative values.

NUMERICAL METHODS

This
Reducing

the step size to At = 0.01 reduces the error in the numerical solution, and the numerical solu-

tion follows the exact solution up to about ¢t = 2.7 and then behaves as before.

Once again,

the numerical solution lies very slightly below the exact solution over the range 0 <t <

2.7.

In order to overcome this problem, we might be tempted to modify the initial condition
slightly so that the numerical solution would lie slightly above the exact solution.

If we

choose y(0) = 0.080001, which is a very small modification indeed, we find that the numerical
solution is now slightly above the analytical solution for 0 <t <2.4, but then abruptly turns
exponentially upward. This situation could be considered as corresponding to A attaining

positive values.

SOL

ar =001 |
y(0) = 0.080001 |

Exact solution
y =t>+0.4t +0.08

20} /
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I /
/
/
10+ / - —
i - \
~N
\ \
L i \ L ‘ 1 1 »
0 1 2 1\ 3 i 4 5 t
| \ |
\ |
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Fig. 9.7

It is important to distinguish this behavior from that which we usually term
instability. Here we have what amounts to a parasitic solution to the differential equation
(as opposed to a parasitic solution to the difference equation which is usually considered as
There is no easy approach to the problem of ‘‘stiff”” equations
which can be discussed within the scope of this book. However, there are effective numeri-
cal techniques for handling this problem, and we once again refer the reader to the method of
Gear[22], which includes provisions for solving stiff equations.

the cause of instability).



CHAPTER 9 NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 219

9.10 Solve the boundary value problem

d’y 1
dx2+4y—8

y©@) =0, y(10)=0
by the matrix method discussed in Sec. 9.9, page 203.

We arbitrarily chese Ax =1 (10 intervais from x = 0 to x = 10). Then, following the
notation of Sec. 9.9, a = —2+41) = —~1.75 and the elements of the right-hand side vector
are 8(1)*=8. The matrix formulation is

—1.75 1 vl 8
1 -1.75 1 V2 8
1 —-1.75 ¥y 8
1 -1.75 1 Vs 8
L 1 —1.754Lys] L 8]

The solution to this set, along with the exact solution given by

y =-32[(c—0:i—r(—15()5;—1) sin (x/2) —cos (x/2) + 1]

is shown in Table 9.7. The solution is symmetric about x = 5 and we have only shown half
of the region.

Table 9.7
Matrix
Method Exact
0 0

14.9384 15.3779
34.1422 34.8254
52.8105 53.5812
66.2761 67.0532
71.1173 71.9429

N b W - O =

The accuracy of the solution can, of course, be improved by reducing Ax.
We could have taken advantage of the symmetry to reduce the number of
unknowns. Since the solution is symmetric about x = 5, we could write

4 5
ax® =0

Using a backward difference representation of error order (Ax)’ (to be consistent with the
central difference representations which are also of errvor order (Ax)?), this derivative can be
represented as

3ys—4yi+ys -0
2(D)
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The difference representation of the differential equation written at x =1, 2, 3, and 4 now
provides 4 equations in the 5 unknowns y,, v;, ¥s, ys, and ys. The additional equation is the
difference representation of the derivative at x =35 which can be rewritten as

My;+ =y, +B)ys=0

The matrix formulation now becomes

-1.75 1 v 8
1 -1.75 1 y2 8

1 -1.75 1 v |=]| 8

1 —~1.75 1H oy 8

1 -4 3L ys 0

Since this set is so small, there is no real necessity to make the set tri-
diagonal. However, if we were striving for accuracy, the set would be much larger, and the
advantages of having a tridiagonal coefficient matrix could be very significant. The matrix
can be made tridiagonal by simply subtracting the fourth equation from the fifth equation.
Thus the new matrix formulation becomes

—-1.75 1 yi 8
1 -1.75 1 y2 8

1 -1.75 1 y: [=] 8

1 -1.75 1] v 8

-2.25 24Lys -8

A similar method can be applied to any problem involving a gradient boundary condition,
with the end result being a tridiagonal set.

By using the shooting method described in Sec. 9.9, page 205, solve the boundary
value problem posed in Problem 9.10.

We first transform the boundary value problem to an equivalent initial value problem:

dy _ -

- Z y©0)=0

dz _, 1 _
I =8 4y, z(0)=U

where U is unknown and must be determined such that y(10)=0. We choose U = 10 for
our first attempt. (From the preceding problem a reasonable estimate can be obtained for
this slope; in many cases the initial guess will be farther off, but the method will usually still
work unless the initial estimate is very far from the correct value.) Using a fourth-order
Runge-Kutta method with Ax = 0.1, we find y(10) =3.74517. A second solution must be
obtained before the root solving approach discussed in Sec. 9.9 can be employed. If U =11
is used, then the numerical solution of the initial value problem yields y(10) = 1.82730. This
is (perhaps surprisingly) closer to the desired value of zero than the solution for U =
10. (One would be tempted to reduce the slope if y(10) is too high for the first estimate of
U. However, this is by no means always the proper approach. The secant method will
eventually converge to the correct value in any case.) Enough information is now available
to determine the next estimate of U based on the secant method given by (9.74), page
206. We let Uyw=10 and Up,=11. Then y, (Uw)=3.74517 and y. (U, = 1.82730.
Equation (9.74) then yields
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~ 1.82730
(1.82730 - 3.74517)I(11 - 10)

The solution to the initial value problem with this as z(0) gives y(10) = 5.72205 < 10™°. This
is remarkably small, and we will accept this solution, which is

U1=11

=11.95277

y©@ =0 y(6) = 67.0530
y(1)=15.3783 y(7) = 53.5809
y(2) = 34.8260 y(8) = 34.8250
y(3) =53.5817 y(9) =15.3776
y(4) = 67.0535 y(10) = 0.000057

y(5) =71.9429

Comparison with Table 9.7 shows that these values differ from the exact solution by less
than 1 digit in the third decimal place. Only three solutions of the initial value problem were
necessary to obtain this solution. More iterations would be required if poorer initial esti-
mates of U were made.

The boundary value problem considered in Problems 9.10 and 9.11 involves a linear
differential equation. Solve this boundary value problem by forming a linear com-
bination of two initial value problems.

Consider two initial value problems of the form posed in Problem 9.11. We postulate
two initial conditions on z(0): U: =10 and Up =20. We denote the solution correspond-
ing to Uc as yc(x), and that corresponding to Up as yo(x). Then from equations (9.75),
(9.80), and (9.81),

y(x) = Ciyc(x) + Coyn(x)

where
1

Cy=r—
© 11— yp(10)/yc(10)
and

C1 =]1- Cz
Carrying out the initial value problems using a fourth-order Runge-Kutta method with
Ax = 0.1, we find

ve(10) = 3.74517, yp(10) = —15.4331

Thus

1

ST is4a331B7a51) - 0199282

C;

and
C =1~C,=0.804718

The solutions to the two initial value problems and the linear combination of the two which
satisfies both boundary conditions and hence is the solution to the boundary value problem,
are all shown in Table 9.8.

Comparison of the tabulated values of y(x) with the exact solution given in Table 9.7,
page 219, shows that the present solution is quite accurate, off by no more than one digit in
the third decimal place.
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Table 9.8
b ye(x) yo(x) y(x)
0 0 0 0
1 13.5058 23.0943 15.3783
2 31.5396 48.3689 34.8261
3 49.6860 69.6358 53.5818
4 63.5022 81.6881 67.0536
5 69.6056 81.5750 71.9430
6 66.5018 69.3243 67.0530
7 54.9508 47.9354 53.5808
8 37.7807 22.6450 34.8250
9 19.1954 —0.354892 15.3776
10 3.74517 —15.4331 0

Solve numerically the boundary value problem

d’y, ., dy_
PRy P

y@®=1, y(@)=0

The unusual aspect of this problem is the presence of the boundary condition at
infinity. The procedure employed for such problems is to choose some finite value of x and
to assume that this value can effectively be considered as infinity. Then the boundary value
problem is solved by any suitable method. One or more additional solutions are then
carried out with other values of x representing infinity, and comparison of the various solu-
tions will determine which solution best corresponds to a boundary condition at infinity.

We first assume that x = 1.5 will effectively represent infinity. Then the second
boundary condition becomes y(1.5)=0. We solve this boundary value problem by the
shooting method illustrated in Problem 9.11 using a fourth-order Runge-Kutta method with
Ax =0.05. Five iterations yield y(1.5) =0.271 X 10" and we consider the method to have
converged. Some sample points are shown in Table 9.9.

Table 9.9

x y

0 1.00000
0.4 0.556578
0.8 0.231863
1.0 0.127734
1.2 0.057749
1.4 0.014305
1.5 0.0000002

Although it is not clear whether we have made a good choice for an “effective infinity,”
it would seem that we at least have the proper order of magnitude, since y(x) seems to

approach x = 1.5 with a reasonably small slope.

(It should be apparent that the correct y(x)

should approach zero asymptotically for-large x.) If we had chosen the value of x which
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represents infinity much too small, then y(x) would approach this effective infinity with a
rather large slope. On the other hand, if this value of x were chosen much too large, then
the solution y(x) would be virtually zero over the bulk of the range of x considered.
Solutions with effective values of infinity of x.. = 2, 2.5, and 3 and with Ax = 0.05 are shown in
Table 9.10 along with the solution for x. = 1.5 at selected points.

Table 9.10
x.= 1.5 Xe=2 X.=2.5 X.=3
X y y y y

0 1.00000 1.00000 1.00000 1.00000
0.4 0.556578 0.569595 0.571443 0.571599
0.8 0.231863 0.254412 0.257597 0.257884
1.0 0.127734 0.153340 0.156956 0.157282
1.2 0.057749 0.085409 0.089316 0.089667
1.4 0.014305 0.043240 0.047328 0.047695
2.0 — 4.42x10°° 0.004273 0.004657
2.5 — —_ —1.44x 10" 0.000386

The solution for x.. = 2 yields results which differ significantly from those for x. = 1.5,
so it would seem that the latter was not sufficiently large. (We assume in all of this
discussion that Ax is kept sufficiently small to ensure minimal truncation error.) For x.=
2.5, the variations from the x. =2 solution are much smaller and it is apparent that we
approach a sufficiently large x to result in a reasonably accurate solution to the original
problem. The x. =3 solution shows still smaller variations and would appear to be an
acceptable solution for our purposes.

Develop a shooting method for solving the boundary value problem

d3 d2 d 2
v (g) r1=o

0, Dy=0 Yug-
y0=0, ZO©=0, FUy=1

Welet w = dy/dx and z = dw/dx.
lated as the initial value problem

Then the boundary value problem can be reformu-

dy

=W YO=0

dw_ —0=B

FPRaE w(O)—O—dx(O)

dz 2
—&;=—-2yz+(w)—1, zO=U

where U must be determined such that w(4.4) = 1. Note that the original differential equa-
tion is nonlinear, so the method of superposition of two solutions to the initial value problem
is not applicable. The standard shooting method can be employed by considering the
search for U to be a root solving problem such that w(4.4), which we will denote as w; (U),
becomes equal to 1. Thus we are searching for the value of U such that
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fO)=w(U)~-1=0

Starting with two initial estimates of U, the secant method can now be applied after
each solution of the initial value problem to provide a better estimate of the correct value of
U. The method is virtually the same as that discussed in Sec. 9.9, except that f(U) replaces
y.(U). The actual solution is left as a problem for the reader (Problem 9.31).

Problems

In contrast to our practice in preceding chapters, we will not attempt to indicate which of the
following problems are suitable for hand computation and which require a computer. In ail
honesty, hand calculation of the numerical solutions to ordinary differential equations is a laborious,
time consuming, and often boring task. By far the most benefit can be gained from these problems
if a computer is available. However, if hand calculations are necessary, they will usually have to be
restricted to Euler solutions of the simpler problems, or to only a few steps using the more accurate
methods.

For many problems no step size is indicated, and the choice of a proper step size (or sizes) to
produce accurate results is considered to be part of the problem. The incorporation of an
automatically adjusted step size feature in the computer programs is probably not worthwhile in
terms of understanding the basic methods, so no such sophistication is asked of the reader. For
most problems, the method is not specified, and any suitable method can be employed.

9.15 Write a computer program to solve an arbitrary initial value problem consisting of a set of
coupled first-order differential equations with their associated initial conditions. Use a
fourth-order Runge-Kutta method with a constant step size. The program should accom-
modate up to four coupled differential equations. Input variables should include the
number of equations, the step size, the vector of initial conditions and the initial value of the
independent variable, and the value of the independent variable at which the solution is to be
terminated. An external subroutine should supply the details of the specific set of differ-
ential equations to be solved by evaluating the derivative vector f(7,t) when called with

the vector of dependent variables § and the value of the independent variable ¢ as input
parameters.

9.16 Write a program to accomplish the task described in Problem 9.15 but use Hamming’s
method to solve the differential equations. Use a fourth-order Runge-Kutta formula to
provide the necessary starting values. Additional input variables should include a con-
vergence criterion for the corrector and the maximum number of iterations permissible on
the corrector. In addition to the solution, the program should provide an estimate of
truncation error for each step.

9.17 Write a similar program to that described in the previous problem but use the fourth-order
Adams predictor-corrector method described in Sec. 9.7, page 199.
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dy
dt

Range: O0st=<25
Step size: At =0.1
Method: fourth-order Runge-Kutta

9.18 +y*=1 y0)=

‘ d’
9.19 (e +1)71?¥=y, y =1, %(0)=0

Range: 0=t=<4
Step size: At =0.1
Method: fourth-order Runge-Kutta

(This problem was also considered in Problem 9.2.)

dy_4t_ -
9.20 at=y yt,  y(0)
Range: 0=<t=<18
Step size: At =0.1
Method: Hamming’s method
(This problem was also considered in Problem 9.1.)
d2 dy 2 _ — dy —
9.21 pTd + —-y'=0, y0)=1, dt(O)—O
Range: 0=<t=<3S$§
Method: Hamming’s method
(Watch for trouble near the upper limit.)
(@)
9.22 dt 2dt a +3y = 10 sin 6¢

y0=0, L =o,

Range: 0<t <4

9.23 —Z—g-«- ly?=cost, y@)=1
Range: 0=t =<4

2

LY iny = -1, Y-
9.24 —=+siny =0, yO=1, Z@=0
Range: 0<t =<4
dy

9.25 il 10°%(y* - 10,  y(0) =530

Range: 0t =<1.5

225
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9.26

9.27

9.28

9.29

9.30

9.31
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d’y_ -1 Deoy-_

Range: 0t <4

If possible, use At =0.05. Compare your results with the exact solution and attempt to
explain any discrepancies.

Solve by using a matrix method:

d’y _dy
2-———-— —
et Yy

y)=1, y@=0

+x’y=0

Solve the preceding problem by using a shooting method. Take advantage of the linearity
of the differential equation. Use any fourth order method with Ax = 0.1.

Solve by using a shooting method:

d’y,  dy_

a Vax

0

=0 DPoy=0, D=

Solve the second-order linear boundary value problem discussed in Problem 9.13 by using a
matrix method.

Carry out the solution to the third-order nonlinear boundary value problem posed in Problem
9.14.



Chapter 10
Matrix Eigenvalue Problems

10.0 INTRODUCTION

Matrix eigenvalue problems arise from a wide variety of physical and mathematical situa-
tions, ranging from the determination of the natural frequencies of vibration of a structure
to problems in quantum physics. We will examine a number of solution techniques, since
no single technique can be said to be optimal in all situations. We begin with some
definitions and a discussion of the properties of matrix eigenvalue problems.

10.1 THE GENERAL PROBLEM

The matrix eigenvalue problem can be stated in the form
HX = AX (10.1)

where H is a known square matrix, X is an unknown column vector with the same row
dimension as H, and A is an unknown constant. The solution of the eigenvalue problem
involves finding those vectors X and constants A which satisfy (10.1). Clearly the
vectors X can only be determined to within a multiplicative constant, since if any vector
X, satisfies (10.1), then so will ¢X,, where ¢ is a constant.

If H is of dimension n, then there will in general be n different vectors X
(j =1,2,...,n) which satisfy (10.1). These vectors are called the eigenvectors of H.
Associated with each eigenvector is a constant A; which is termed an eigenvalue.
These eigenvalues will in general each be different, but it is entirely possible to have
repeated (multiple) eigenvalues in a given problem.

We can obtain a formal solution for the eigenvalues by writing (10.1) in the form

(H-ADX =0 (10.2)

Since this represents a set of homogeneous linear algebraic equations, it should be

apparent from Cramer’s rule that the only way in which a nontrivial vector X can satisfy
(10.2) is if

det(H—AI)=0 (10.3)

227
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or
hn A hIZ hn - hln
h2| hzz_ A hzz - h2n
det h31 h32 h33 —A ot - = 0 (10,4)
hnl hnz hn3 - hnn - )\

Expansion of the determinant in (10.4) produces a polynomial of degree n in A. This
polynomial is called the characteristic polynomial of H, and its roots are the desired
eigenvalues. Using a root solving procedure is not a computationally practical approach
to obtaining the eigenvalues except in special circumstances or for sparse or very small
matrices. However, it should be apparent that some of the same difficulties which arise
in root solving can also affect the various methods which we will use for finding
eigenvalues. In particular, special attention must often be given to closely spaced and
multiple eigenvalues. It also becomes clear that since a polynomial with all real coeffi-
cients can have complex roots, a matrix composed of all real elements can have complex
eigenvalues.

A great many physical problems result in a real symmetric form for the matrix
H. We will restrict the remainder of this section and, in fact, much of this chapter, to
eigenvalue problems involving real symmetric matrices. The complications of unsym-
metric matrices are very severe, and we will defer discussion of eigenvalue problems in-
volving such matrices until Sec. 10.10.

If H is symmetric and V is an arbitrary column vector, then

HV =W (10.5)
and
ViH=W" (10.6)

where W is a column vector. This can be easily verified by noting that the jth element of
the column vector HV is given by

(HV), = ki:l hjkvk (10.7)

and the jth element of the row vector V'H is given by

(VTH); = 2, vy (10.8)

but since h; = hy;, the column vector (VTH)” is the same as HV. Now consider another
arbitrary column vector Y and note that

Y'W=W'Y (10.9)

since both sides of (10.9) represent simply the scalar result of the dot product of the
vectors Y and W. Substituting (10.5) and (10.6) into (10.9) yields

Y'HV = VTHY (10.10)
Now let Y = X, and V = X,, two different eigenvectors of H. Then
XTHX, = X;HX, (10.11)
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but

HX. = A X, (10.12)
and
" HX, = AMX, (10.13)
thus

WXaXo = AX0 X, (10.14)

But since XX, = X3 X,, it would seem that (10.14) implies A, = A,. Since this cannot be
true in general, then it must be true that

XX, =0 (10.15)

The eigenvectors are thus said to be orthogonal. A set of n orthogonal vectors, each of
dimension n, are said to span the n-dimensional vector space. Thus any arbitrary vector
V of dimension n can be expressed as a linear combination of the eigenvectors:

V=cX +c:X,+ -+ X, (10.16)

Not only are the eigenvectors of a symmetric matrix orthogonal, it can also be shown
that all of the eigenvalues are real, which considerably simplifies the computational de-
tails.

Before continuing with the details of the various approaches to eigenvalue problems,
we should mention some of the available references on the subject. It is widely accepted
that the most authoritative work on the subject is that of Wilkinson[26], who has also been
deeply involved in the effort to make many of the best methods available as efficiently
coded ALGOL procedures (see Sec. 10.11). Of the available general numerical analysis
texts, Ralston[3] and Acton[12] have extensive treatments. Crandall[18] presents a
physical as well as a mathematical picture, although the mathematical methods discussed
are those which were available in the middle 1950’s.

10.2 REDUCTION OF THE PROBLEM AX = ABX TO HX = AX:
THE CHOLESKI DECOMPOSITION

For many real situations, the eigenvalue problem does not arise in the standard form
HX = AX which we considered in Sec. 10.1, but rather in the form

AX = ABX (10.17)

where A and B are symmetric square matrices of the same size. Often B occurs as a
diagonal matrix (Crandall[18] terms this a special eigenvalue problem). While it might be
possible to deal with problems of the form (10.17) directly, it is much more convenient if
(10.17) can be converted to the standard form HX = AX which we will consider through-
out this chapter. It is apparent that (10.17) can be converted to the desired form simply
by premultiplying by B™'. Thus

BT'AX =X (10.18)
or
HX = AX (10.19)

However, even if A and B are both symmetric, B"'A will not in general be
symmetric. (B'A is not symmetric even if B is diagonal, except for the trivial case
B =1) Since, as we have seen, it is highly desirable that H be symmetric, we will have
to consider another approach.
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If B is positive definite, then B can be written as the product of a lower triangular
matrix with its transpose, or

B=LL" (10.20)

While the term positive definite can be defined in several ways, it will be adequate for our
purposes to state that if all eigenvalues of B are positive, this is sufficient to ensure that
the matrix is positive definite. We might also note that it is necessary that all diagonal
elements be positive.

Now, assuming that the decomposition (10.20) can be accomplished, we premultiply

(10.17)y by L™":

L7'AX =AL"'BX =AL'(LLMX =AL"X (10.21)
We note without proof that

(LY =@ (10.22)

And we define (L))" as L™" for convenience. Now since L™ "L" = I,then A(L™"L") =
Al = A. Thus we can write the left side of (10.21) as

L7'AX =L7"A(L""L™)YX (10.23)
Combining (10.23) and (10.21), we obtain
(LTTAL "™ L™X)=A(L"X) (10.24)

The matrix (L 'AL"") obviously has the same eigenvalues as the original problem
(10.17), and if A is symmetric, then it can be shown that (L 'AL™) is also
symmetric. Since we can write (10.24) as

HZ = \Z (10.25)

where H is symmetric and Z = L "X, we have accomplished the desired objective. The
eigenvalues are the same as the original problem, and the eigenvectors Z are related to the
eigenvectors of the original problem by

X=L"Z (10.26)

We should also note that if B is not positive definite but A is, then the problem (10.17) can
be rewritten as

BX=%AX=)\’AX (10.27)

where the A’ are the reciprocals of the original eigenvalues. We can now proceed as
before, simply interchanging the roles of A and B.

In order to obtain the form of (10.24), starting from the form AX = ABX, we must be
able to decompose the matrix B into the product LL™ and then to obtain L.

The decomposition of B can be obtained by the Choleski decomposition. We de-
note the elements of B as b; and those of L as ;. The algorithm is
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L, 3(011)”2

lij:<bij_zlikljk>/ljj, j=12,...,i—1
E=1

ST i=2,3,..., _
L= \/bi— >, i ! n (10.28)

k=1

b, =0, j=ii+1,...,n

We have employed the usual summation convention in which the sum is taken to be zero if
the upper limit is less than the lower limit. Thus =}_, L/, =0. (This point requires
special computer programming if a FORTRAN DO loop is employed since such a loop is
always executed once before the index is checked to determine if the upper limit has been
reached. Many ALGOL based languages check the index against the upper limit before
executing the loop the first time, and the indicated summation would never be performed
and would thus automatically be taken as zero.) If the matrix B is not positive definite,
then the argument of the square root in (10.28) will be negative at some point in the
algorithm, and computation must, of course, be discontinued.

We must now consider the inversion of the lower triangular matrix L. By taking
advantage of the special form, considerable savings in computational effort can be
made. It can readily be shown that the inverse of a lower triangular matrix is also lower
triangular. In order to evaluate L™', we then simply write

L7L=1 (10.29)
or, denoting the elements of L™ as [},

l;'ln‘zl, i=1,2,...,n (10'30)

SITET i=2,3,...,n

g,»l"“l”'o’ {j=k—1,k—2,...,1 (10.31)

from which we can directly deduce the inversion algorithm:
ITI‘ =1/l
=1/l

R i=2,3,...,n (10.32)
_liklkj

lg.z__klr__’ i=i—1,i-2,...,1
:

All of the necessary tools are now available to transform the problem AX = ABX
into the form HX = AX. See Problems 10.1-10.3 for examples of the method.

10.3 THE POWER METHOD

We have seen that for a symmetric n X n matrix H, the eigenvectors span the space, i.e.
any n-dimensional vector V can be written as

V=X +X+e: X5+ -+ c.X, (10.33)

Note that if V is a good estimate of one of the eigenvectors X, then the constant c;
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associated with that eigenvector will be considerably larger in magnitude than the other
¢’s. Now suppose we form the product HV. From (10.33) we obtain

HV =c¢,HX,+ ¢.HX, + ¢:HX;+ - - - + ¢.HX, (10.34)
but HX, = A, X,, HX;=A,X,, etc. Thus (10.34) can be written as

HV = ¢ A X + CAXe+ A3 X5+ -+ -+ A X, (10.35)
If we again premultiply by H, (10.35) becomes

HHV)=cAiXi+ A X+ GAI X+ -+ i X, (10.36)

Each succeeding multiplication by H increases by one the power to which the eigenvalues
are raised, and it should be apparent that the term involving the eigenvalue which is largest
in magnitude will eventually dominate the right side of the equation. This is the principle
behind the power method. If the largest eigenvalue in magnitude (called the dominant
eigenvalue) is denoted as A, and the next largest as A, then the ratio

_ Al

¥ =
Al

(10.37)

defined as the dominance ratio, is clearly of fundamental importance in how rapidly the
term involving A, overwhelms all other terms. If V is a good estimate of the eigenvector
associated with A,, then this will also accelerate the process, since the corresponding value
of ¢ will be large in magnitude compared with the other c¢’s.

In practice, the power method is usually applied as follows. Denote the first esti-
mate of the eigenvector as V,. (All elements of V, are usually taken as 1 unless there is a
better estimate available.) Then calculate

HV,=V, (10.38)

Now normalize the vector V, by making one of its elements equal to 1. This is done by
dividing each of its elements by any one element (usually chosen as the largest in
magnitude to ensure best accuracy). Thus

where p, is a constant equal to the element which has been normalized to 1, and V| is the
normalized vector found by dividing each element of V, by p,. We now form the product

HV=V,= sz; (1040)

and continue this process as many times as desired. As the number of iterations in-
creases, p approaches the largest eigenvalue (in magnitude of H, and V'’ approaches its
associated eigenvector.

The method can best be illustrated with an example. Consider the eigenvalue
problem

3 79 X X
7 4 3| x2 [([=A] x2
9 3 8 X3 X3
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As a first guess, we choose

1
X =11
1

Now compute

3 7 9911 19 0.95
7 4 3|1l= 14:} =20} 0.70
9 3 8]LI 20 1

(We have normalized the vector by dividing through by its largest element.) The next
iteration yields

3 7 91]0.95 0.898123
7 4 3|10.70 [=18.65] 0.667560
9 3 8]LI 1

After 13 iterations, the estimate of the eigenvector differs by less than 107 from that
obtained on the 12th iteration, and we accept the following answer which is correct (for the
eigenvalue) to five decimal places:

0.902178
A = 18.10138, X =| 0.660591
1

Note that even the 2nd iteration yielded a reasonably accurate estimate of the eigenvalue
and eigenvector for this case.

Acceleration of the Power Method

The convergence rate of the power method can be accelerated by various strategies. The
simplest of these is a shift of all of the eigenvalues by a constant value. Under certain
conditions, this shift can result in a beneficial decrease in the dominance ratio. For ex-
ample, if the two largest eigenvalues in magnitude are + 25 and ~ 20, the dominance ratio
is close to 1 and convergence will be relatively slow. However, adding 10 to each eigen-
value changes them to +35 and —10 respectively, yielding a dominance ratio of 1/3.5 with
a resultant increase in the convergence rate. Such shifts of all eigenvalues by a constant
can be simply accomplished by adding this constant to each main diagonal element of the
matrix. Since, of course, the benefit of such a shift cannot be determined beforehand be-
cause the eigenvalues are not known, this is largely a ““‘cut and try” approach. Care is
required or the shift may cause the power method to produce a different eigenvalue than
the one which was originally dominant. Thus a shift of —10 in the case discussed above
would cause the eigenvalue which was originally —20 to become dominant.

Another approach to acceleration of the power method is to apply over- or under-
relaxation in a manner analogous to that used for the solution of sets of linear algebraic
equations. Thus if after [ + 1 iterations the power method yields a normalized vector
V.., then the vector which is stored is not V'.,, but a modified value given by

(VIH-I)slored — (V,l)slored +w [ V,H-l - (V;)slored] (10-41)

where o is a relaxation parameter between 0 and 2. An optimum value of w cannot be
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chosen beforehand. However, some idea of the approximate value of w to employ can
be obtained by examining the results of a few iterations with the straight power method
(w = 1). If the estimates of the dominant eigenvalue tend to decrease or increase in a
monotonic fashion with succeeding iterations, then overrelaxation (1 < w < 2) will usually
accelerate the convergence. If there is a tendency of the estimates of the eigenvalues to
oscillate, then underrelaxation (0 < w < 1) will usually result in an accelerated con-
vergence rate.

Examples of acceleration of the power method by shifting and relaxation are given in
Problems 10.4 and 10.5.

A ““once only” acceleration technique known as the Rayleigh quotient can be used to
find an accurate estimate of an eigenvalue based on a relatively inaccurate estimate of its
associated eigenvector. Let V be an arbitrary vector. Then

V'HV
Vv

Ar = (10.42)
is defined as the Rayleigh quotient. If V = X, then A = A,. If V is an estimate of X,
then Ar is a much better estimate of A, than V is of X,. Although this method was once
widely used in hand computation, its primary value in machine computation would seem
to be in conjunction with the use of the power method for very large matrices. In this
situation, each iteration of the power method is very expensive and one must sometimes
settle for an eigenvector estimate which is not fully converged. Egquation (10.42) can
then yield an estimate of the eigenvalue which is more accurate than that which would be
obtained by a rather large number of additional iterations of the power method. See Ref.
18 for a description of the theory behind the Rayleigh quotient. The method is illustrated

in Problem 10.6.
Ralston[3] gives several other acceleration techniques for the power method.

Subdominant Eigenvalues

The power method can also be employed directly to find the smallest eigenvalue in
absolute magnitude. The standard eigenvalue problem is stated in the form

HX = AX (10.43)
If we premultiply by H™', (10.43) becomes

H'HX=MH'X (10.44)
but H'H = I, so (10.44) can be written as

X=AH"'X (10.45)
and if we denote H™' as G and divide through (10.45) by A, we obtain

GX = ;1\- X (10.46)

The power method applied to G will then yield the largest value in magnitude of 1/A and
its associated eigenvector. But this largest value of 1/A corresponds to the smallest value
in magnitude of A. This approach will not be practical for large matrices due to the large
amount of computation necessary to find H™".
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There are a number of strategies for employing the power method to find inter-
mediate eigenvalues between the smallest and largest. These methods are too computa-
tionally inefficient and generally too numerically inaccurate to be used for finding more
than a few of the largest (or smallest) eigenvalues if the matrix is large. However, these
few eigenvalues are often the most important in a real physical problem, and it is thus
worthwhile for us to consider at least one of these methods.

Suppose that the dominant eigenvalue A, and its corresponding eigenvector X, of a
matrix H have been found by the power method. Then form

MX XD
D, —H——)—(—TY- (10.47)
Note that X7TX is a scalar, while X, X is a square matrix of the same dimension as H and
can be easily seen to be symmetric. Now D, can be shown to have the same eigenvalues
and eigenvectors as H, except that A, is replaced by zero. Thus the power method
applied to D, will converge to the second largest eigenvalue A, and its associated
eigenvector. Next we can calculate

T
D. = p, - 24X Xz) (10.48)
XZ 2

which has A, and A, replaced by zero and will converge to As. This method can be carried
as far as desired (or until roundoff error overwhelms it). The method is called Hotelling’s
deflation. It should be noted that at each stage of the process, the effective dominance
ratio is the ratio of the eigenvalue currently being sought to the next smallest in
magnitude. Thus the power method could converge extremely rapidly for a few eigen-
values, then suddenly slow down drastically if two succeeding eigenvalues are
encountered which are nearly equal in magnitude. Acceleration procedures of the type
discussed earlier in this section can of course be applied at any stage of the process. An
example of Hotelling’s deflation is given in Problem 10.7.

Deflation techniques are also available which result in a reduction in size of the
matrix by one row and one column each time a new eigenvalue is found[3]. These
techniques are more economical if many eigenvalues are to be found. However, as we
have already noted, the power method approach in general is not the best approach to take
if many eigenvalues of a large matrix are required.

10.4 SIMILARITY AND ORTHOGONAL TRANSFORMATIONS

The efficient methods for finding all of the eigenvalues of matrices are based on similarity
transformations and orthogonal transformations.

Consider a square matrix H (which for our purposes we can consider to be the
matrix of an eigenvalue problem) and a general nonsingular matrix S of the same
size. Then a similarity transformation of H into C is defined by

C=S"HS (10.49)

(SHS ™' is also a similarity transformation, but in general is a different one.) Now con-
sider the eigenvalue problem

HX = AX (10.50)
and premultiply by S
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STHX =AS7'X (10.51)

The quantity S7' X is a vector which we will call Z. Then since X = S§Z, (10.51) can be
written as

(ST'HS)YZ =)\Z (10.52)

or
CZ=MN (10.53)

This is a new eigenvalue problem, but note that A has come through the manipulations un-
touched and hence the eigenvalues of the problem (10.53) are the same as those of the
problem (10.50). Thus a similarity transformation preserves eigenvalues (but does not

preserve eigenvectors).
Now suppose that S7'= S7, i.e. that S is orthogonal. Then

S~'HS = STHS (10.54)

In order to distinguish this special case, we will use the symbol Q instead of S and term
the transformation

D= QTHQ (10.55)

an orthogonal* transformation. (QHQT is also an orthogonal transformation.) This
special form of similarity transformation preserves symmetry as well as the eigenvalues,
i.e. if H is symmetric, then D is symmetric also. We will find orthogonal transformations

particularly useful.

10.5 THE JACOBI METHOD

The Jacobi method for finding all of the eigenvalues and eigenvectors of a symmetric ma-
trix is based on relatively simple orthogonal transformations. The method is not competi-
tive in terms of computer time with the more efficient methods for finding all of the
eigenvalues which will be discussed in succeeding sections. (All commonly used
methods for finding all of the eigenvalues of a symmetric matrix require on the order of n?
basic arithmetic operations, but the Jacobi method may require about 10 times as many
operations as the most efficient method.) However, the Jacobi method is safe and sure in
all situations and has the considerable advantage of being capable of producing the
eigenvectors along with the eigenvalues. (The more efficient methods for finding the
eigenvalues generally require a separate procedure for calculating the eigenvectors.) In
addition, if only one subprogram for finding eigenvalues and eigenvectors is available in a
computer library, it will almost invariably be based on the Jacobi method. Since the
method is widely used in practice, and does have some advantages, we will discuss it in
detail.

The objective of the Jacobi method is, through a series of orthogonal transforma-
tions, to convert the matrix H to diagonal form. Since the eigenvalues must be preserved
through these orthogonal transformations, the elements of the final diagonal matrix must
be the eigenvalues of H. The form of the matrices involved in the orthogonal transfor-
mation is particularly simple, since we seek only the limited objective of reducing one

*In the numerical analysis literature, the reader may encounter the term unitary transformation. For real
matrices, unitary and orthogonal mean the same thing.
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off-diagonal element in the upper half of H to zero at each step. (In the full symmetric
matrix this means that two symmetrically placed off-diagonal elements will be reduced to
zero.)

If we denote the orthogonal matrices at each step as U, then we wish to find U such
that the transformation U HU reduces the element in the pth row and the gth column of
H to zero. (The element in the gth row and pth column will also automatically be
reduced to zero.) This can be accomplished if U is of the form

p q
_1 -
p C N
U= 1 (10.56)
q -8 c
X 1]

where ¢ and s are constants which depend on the elements of H, and all off-diagonal ele-
ments of U are zero except for u,, and u,, which are s and —s respectively. All
diagonal elements of U are 1 except for u,, and u,, which are c.

The reader can readily verify that premultiplication of H by U™ and postmultiplica-
tion by U affect only the pth and gth rows and pth and gth columns of the resulting
matrix. In order to determine how to choose ¢ and s, we need only examine the
modifications which h,,, ., h,,, and h,, undergo in this transformation. The following
multiplication of submatrices results in the proper modifications to these elements of H:

¢ - S hpp hp“ ¢ s _ hllm ht,m
[5 C:”:hqp hqq:H:—s C:l—[h;,, h;q] (10.57)

(The other elements of the matrices involved do not affect the elements of H which are of
interest here.) Equation (10.57) yields

hy, = ¢*hypp + 5*haq — 2cshy, (10.58)
hiy = C*haq + sy, +2csh,, (10.59)
hyo = by = (c* = $Dhpy + c5(hyp — hyg) (10.60)

We now can determine ¢ and s. First note that for the transformation to be orthogonal,
UT=U"". In order for UU to be equal to I, it is necessary that

c’+s’=1 (10.61)

One additional relationship is necessary to determine ¢ and s, and it can be found from
(10.60) by requiring that h., = h,, =0, which eliminates the desired element. It is
convenient (and consistent with (10.61)) to set
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c=cos 6 (10.62)

s=sin 0 (10.63)
and to determine € such that h,, =0. From (10.60),

(cos® @ — sin® @)h,, +sin 8 cos 8(h,, — h,y) =0 (10.64)
but

cos’ @ — sin® 6 = cos 26
and

sin 6 cos 6 =%sin 20

Using these trigonometric identities, (10.64) becomes

(cos 20)h,, +%(sin 20)(h,, — hyy) =0

or

sin26 _ _ hoq
cos 20 = tan 26 %(hpp - hqq)

Rather than to find 0 from (10.65) and then compute sin 6 and cos 6, it is more accurate {o
compute sin 6 and cos # directly using trigonometric relationships. After some manipu-
lation, we find

(10.65)

_ . _1_ |O£!>l/2
c=cos = (2+——2B (10.66)
and
ainp =2 he)
s_sme—2[3|a|cose (10.67)

where a = 3(h,, — hae) and B = (h2,+ a?)'?. It is now necessary to know the effect of the
orthogonal transformation on all other elements in the pth and gth rows and pth and gth
columns of H. We will not show the details, but these elements become:

pth row and gth row (j# p or q)

hi = ch, — shy (10.68)

hi; = shy + chy (10.69)
pth column and gth column (i# p or q)

h., = chy, — Shy (10.70)

h., = shy, + chy (10.71)

All other elements of H remain unchanged.

The computational procedure now consists of choosing the element h,, which it is
desired to make zero (we will discuss the strategy for this choice shortly), then calculate ¢
and s from (10.66) and (10.67). The new values h;, and h,, can then be found from
(10.58) and (10.59) and h,, and h,, are set to zero. Finally (10.68)—(10.71) provide the
remaining modifications to H.

The procedure is now repeated with a new choice of p and q. Unfortunately, in
zeroing the new off-diagonal element, the previously zeroed element will, in general, be-
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come nonzero. However, for any logical strategy of zeroing off-diagonal elements, the
matrix eventually tends toward diagonal form. Since the process is an infinite one, some
decision must be made as to when the off-diagonal elements have become sufficiently
small.

An effective and efficient strategy for choosing the elements to annihilate, as well as
for determining when the procedure can be considered to have converged, is termed the
threshold method and will now be briefly described[3].

The sum of the squares of the off-diagonal elements is given by

v =

n n
i=

1 Zl (hy) (10.72)

Compute v for the original untransformed matrix H (call this value v,) and then compute

= Vuln (10.73)

The value w, is now considered to be a threshold value, and all off-diagonal elements
greater than or equal to u, are annihilated on a single sweep through the matrix. Then a
new threshold is calculated by

H2= ua/n (10.74)

and the sweep through the matrix is repeated, annihilating any off-diagonal element grea-
ter than or equal to w.. The procedure is repeated as many times as necessary, stopping
when

< €M (10.75)
where € can be chosen as desired. This will ensure that the final sum of the squares of
the off-diagonal elements is less than €’v,. (Typically € might be chosen as 10™° or

smaller.)
If it is desired to compute the eigenvectors along with the eigenvalues, this can be

accomplished by initializing the matrix R as I, and then modifying R along with the
modifications to H in the following way:

pth column

tip, = Clyp — Shiq (10.76)
qth column
riq = srip + Criq (10.77)

All other columns remain unchanged. When the eigenvalue problem has converged, the
columns of R become the eigenvectors of the original matrix. Each eigenvector corre-
sponds to the eigenvalue in the same column of the final diagonal form of H.

A flow chart for the Jacobi method, incorporating the threshold strategy and eigen-
vector computation, is shown in Fig. 10.1. This flow chart has been condensed somewhat
by putting the obvious computation of v, in a single block and by using the block with the
heavy left border (note A) to denote the matrix operation of setting the matrix R (which
has components r;) to the identity matrix L

The method can be made more computationally efficient and will require less storage
if only the upper half of the matrix is considered. The algorithm is, however, made
somewhat more complicated by this approach.

A detailed example of the Jacobi method is presented in Problem 10.8.
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10.6 HOUSEHOLDER’S METHOD

We have just seen that each of the orthogonal transformations in the Jacobi method
produces one off-diagonal zero element in the upper half of the matrix (two symmetric zeros
in the full matrix) but that this zero is destroyed in subsequent operations. We will now
consider a method for which each orthogonal transformation produces a large number of
zeros in a given row (and column). Furthermore, any zeros produced will remain zero
under all subsequent transformations. This highly efficient technique is known as

Householder’s method.
Consider once again the n X n symmetric matrix H which we illustrate as a 4 x4
matrix:
hll hll h13 h|4
hZI h22 h23 h24
H= (10.78)
h3l h32 h33 h34

h4l h42 h43 hdd
We will now construct a symmetric orthogonal matrix T, such that

o ohi 0 0
hy hn hi  hi
0 hi hi  hi
0 hiz hiz hl
where the product T,H will produce the zeros in the first column, and the postmultiplica-

tion by T7 (which is also T, due to the symmetry of T,) will produce the zeros in the first
row. The general form of T, for this first application of the orthogonal transformation is

T.HT = (10.79)

(10.80)

where P is a symmetric orthogonal submatrix chosen to produce the desired zeros in the
first column of H. Consider the product T, H:

1 0 0 0[hy hi hs hua

0 h'ZI h'22 h23 h24
TIH h O P h31 h32 h33 h34
0 h4| h42 h43 h44

The first row of H is clearly not affected by this premultiplication by T,. The matrix P
thus acts on the lower n — 1 rows of H (the lower 3 rows in our example). The effect of P
on the first column of H is that of a matrix times a vector, or

ha
P | hs
hr4|

As indicated in (10.79), we wish this product to produce zeros in the last two elements of
the vector. Thus
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ha, hz 1
P{|lhuw|=] O |=h%]0 (10.81)
ha 0 0

Since P is orthogonal, the length of the original vector is preserved in this product, so

hy=Vhi+hi+hi=S (10.82)

A suitable matrix P to accomplish the desired result is given by
_ uu”

P=I- T=h.S (10.83)

where U is a vector defined as
h.y =S
U= hx (10.84)
ha

and where the sign to be used in both (10.83) and (10.84) is the sign which maximizes
|h.i = S|. As we have noted earlier in this chapter, a matrix formed as the product of a
vector times its transpose is symmetric. Thus UU”/(S? = h»,S) is symmetric, and since
is symmetric, P must be symmetric. We now have the tools to construct T; as given by
(10.80). Forming the product T.H produces the desired zeros in the first column of
H. We noted earlier that the product T,H left the first row of H unchanged. In an
entirely similar way, postmultiplying T.H by T leaves the first column of T.H
unchanged. Since the transformation is orthogonal, T,HT, must be symmetric, and the
zeros from the first column of T, H also appear in the first row of T,HT,. We thushavea
matrix of the form shown in (10.79).

The next step is to create zeros in the second row and second column of the
matrix. This can be accomplished by use of the orthogonal matrix

0 0 0

Tz = m———— (10.85)

1
0 1
0 0
0 0

The submatrix P is constructed exactly as before, except that the vector U is constructed
from the second column of (10.79) with the top 2 elements omitted. If we denote the
original matrix H as H,, and the matrix (10.79) as H,, then

hiv h, 0 O
hs  h% hiz O
0 2 hi%  hi

0 0 G hi

T.H,T.= (10.86)

For the 4 X 4 example, this is as far as the method can be carried. The matrix (10.86) is
tridiagonal and symmetric. It is apparent that if the same method is applied to a
symmetric matrix of arbitrary size, a symmetric tridiagonal matrix will result.

We have not yet obtained the eigenvalues of the original matrix, but we have reduced
the original full matrix to a specialized form which is much easier to deal with. We are
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now in a position to present a flow chart of Householder’s method. The flow chart is
shown in Fig. 10.2. As in the previous section, the boxes with the heavy left borders in
Fig. 10.2 represent operations on complete matrices, i.e. the multiplication of T times H
and storage in the temporary matrix A, and then the postmultiplication of (TH) by T. If
desired, only those parts of the matrices which affect the final result need be multiplied
(the lower n — m + 1 rows and columns of each matrix) and the remaining elements can be
ignored or filled in with the expected zeros, etc. The details are obvious and are not
shown, so as to simplify the flow chart.

This algorithm can be made more efficient and will use less storage space by taking
full advantage of symmetry and operating with only the upper halves of matrices.
A detailed example of Householder’s method is presented in Problem 10.9.

A number of methods can be employed to find the eigenvalues of the symmetric
tridiagonal matrix which results from Householder’s method. The most efficient and
effective techniques are based on the LR and QR transformations. In the next section
we will consider these transformations in general, and then in the following section a
specific method for tridiagonal matrices will be discussed in detail.

10.7 THE LR AND QR ALGORITHMS

The LR algorithm was originated by Rutishauser[27] in 1958, while the QR algorithm is
due to Francis[28] and first appeared in 1961. The letter L refers to a lower triangular
matrix (its original meaning was Left), while R refers to an upper triangular matrix
(Right). The letter Q denotes an orthogonal matrix.

The LR algorithm is based on the fact that virtually any matrix can be decomposed
into a product of lower triangular and upper triangular matrices. Thus if we denote the
original matrix H as H,, we can write

H,= LR, (1087)
and the upper triangular matrix R, can be expressed as
R,=L7'H, (10.88)

If we now multiply the lower and upper triangular matrices of (10.87) in reverse order, we

find
R]le(LrlHl)Ll (10-89)

In other words, the reverse multiplication R,L, is a similarity transformation of H, and
thus preserves the eigenvalues of H,. Now let

H,=R,L, (10.90)
and decompose H, as was done with H;:
H,=1L,R, (10.91)

and then compute
3= R2L2 (10.92)

Under certain conditions on the original matrix H, as k —>» the matrix H, will
approach a lower triangular matrix with the eigenvalues in decreasing order of magnitude
on the main diagonal. If H is symmetric and positive definite, then the method will
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converge, and the decomposition into lower and upper triangular matrices can be accom-
plished very efficiently by the Choleski decomposition discussed in Sec. 10.2. (See Prob-
lem 10.11.) If H is symmetric but not positive definite, then the method tends to be
unstable due to roundoff error. This can be overcome by performing the decomposition
by a method which is essentially Gauss elimination with maximization of pivot elements
by means of row interchanges[26]. We will reserve the discussion of unsymmetric H for
Sec. 10.10.

The QR algorithm is similar to the LR algorithm except that H is decomposed into
the product of an orthogonal matrix and an upper triangular matrix. That is,

H,= QR (10.93)
Now, interchanging the order of multiplication, we find
H.=R,Q,=(Qi:'H)Q, (10.94)

The transformation of H, into H, is orthogonal (since Q, is orthogonal) and thus preserves
not only the eigenvalues of H, but also symmetry (assuming that H, is symmetric). In ad-
dition, algorithms based on orthogonal transformations tend to be stable, so that the
instability which can afflict the LR algorithm is not a problem with QR. When the QR
algorithm is convergent (which it is for most matrices), H, (k —«) is upper triangular
(diagonal if the original matrix is symmetric) with the eigenvalues of the original matrix on
the main diagonal in decreasing order of magnitude. It is beyond the scope of this text to
give the details of the decomposition into Q and R in general. However, in the next
section we will discuss in detail a version of the QR algorithm which is tailored specific-
ally to symmetric tridiagonal matrices.

Both the LR and QR algorithms converge at essentially the same rate, although the
QR algorithm requires considerably more computation per step and is thus less efficient
than LR. The rate of convergence of both methods is, in fact, usually too slow to be
practical for large matrices unless some acceleration scheme is employed. Consider the
QR algorithm for the case where the eigenvalues are real and there are no multiple
eigenvalues. Recall that H, is the matrix after k iterations. Denote the eigenvalues as
AL, As, ..., A, in decreasing order of magnitude. Then an element below the main
diagonal of H,, say h{’, converges to zero like (JA|/|A;])*.  (Since kY’ is below the main
diagonal, i > j and thus the ratio |A;|/|A;| is less than one.) Another way of looking at this
convergence rate is that the difference between the bottom diagonal element A%, and the
smallest eigenvalue in magnitude, A,, is decreased by a factor of approximately A, /A, -, on
each iteration. This factor can be considerably decreased by a shifting strategy which
shows a certain family resemblance to the shifting approach used for accelerating the
power method. If we have an estimate of A, say 7., and instead of decomposing H,, we
let

H, — n.J = QR (10.95)
and then shift back on the reverse multiplication:
H,. = Rka + T]kI (10.96)

the resulting transformation is still orthogonal and converges considerably faster. In
fact, if we choose 7, as the eigenvalue of the 2 X 2 submatrix at the bottom right corner of
the matrix which is closest to h'f), then hi)— A, will be decreased by a factor of
approximately (n/A,-,)" at each iteration. When A, is found sufficiently accurately (i.e.
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does not change by more than a predetermined value on a given iteration), then the matrix
can be deflated by dropping the last row and column and continuing the iterative
process. Thus not only is the convergence accelerated, but the matrix becomes succes-
sively smaller as each new eigenvalue is found, further reducing the labor. An entirely
analogous acceleration method can be employed with the LR algorithm for symmetric
positive definite matrices, although the shift at each stage must be adjusted so that the
positive definite character of the matrix is retained.

Finally, and perhaps most importantly, we note that the LR and QR algorithms,
even in accelerated form, are not efficient enough for general use in obtaining all of the
eigenvalues of a full symmetric matrix.* However, they are highly useful in obtaining
the eigenvalues from the symmetric tridiagonal form which results from Householder’s
method. If the matrix is positive definite (or if one is willing to make it positive definite
by adding an unknown constant to all main diagonal elements), then the accelerated LR
algorithm using the Choleski decomposition is the most efficient known method. Some
special strategy will usually be required to deal with multiple eigenvalues. A safer ap-
proach, which works whether or not the matrix is positive definite, is the accelerated QR
algorithm or a modification thereof. In the following section we will consider a modifica-
tion of the QR algorithm, called the QL algorithm, which is very well suited for general
use and is quite efficient.

10.8 THE QL ALGORITHM

The QL algorithm is based on a minor modification of the QR algorithm and is intended
specifically for finding the eigenvalues of symmetric tridiagonal matrices such as those
produced by Householder’s method. The algorithm as described here is that of Bowdler,
Martin, Reinsch, and Wilkinson{29]. As its name implies, the algorithm is based on the
decomposition of the matrix into the product of an orthogonal matrix and a lower triangu-
lar matrix:

H, =Q\L, (10.97)
This decomposition is followed by the reverse multiplication of these two matrices:
H2:L|Q1=Q?1HQ|: QTH)Q] (10.98)

which is an orthogonal transformation of H,. The eigenvalues and symmetry of H, are
thus preserved. The decomposition and reverse multiplication could be carried out as
many times as desired, eventually resulting in a diagonal matrix with the eigenvalues on
the diagonal. However, the method can be considerably accelerated by using a variation
of the shift technique discussed in the last section. This modified procedure yields H;.,,
from H; through the operations

H; - 71iI = QL; (10.99)
H;.,= L;Q (10.100)

where 7; is a constant which changes at each stage of the process. Note that the shift x;
is not added back on during the remultiplication (10.100). This is accommodated by

*Qr, for that matter, in finding the eigenvalues of a full unsymmetric matrix. They are invaluable as a part of
the overall strategy for unsymmetric matrices, but we defer this discussion until Sec. 10.10.
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accumulating the shift and adding it back to each newly computed eigenvalue before it is
finally stored. The orthogonal matrix Q; is constructed as the product of a set of n — 1
simple orthogonal matrices, each of which is chosen such that it eliminates one of the
off-diagonal elements of the tridiagonal matrix. We will not go through the details of the
derivation here. We do note that symmetry is preserved due to the orthogonal transfor-
mations, and that no nonzero elements appear outside of the tridiagonal band. The nota-

tion for the elements of the tridiagonal matrix is given by
"d(lj) e(]i) b
efli) d(zi) egi)

- - (10.101)

W W @)
€a2 n-1  €xly

()] i
€n1 dn ~

Due to the symmetry, we need deal only with the diagonal elements d¥°, d¥°,...,d¥ and
the superdiagonal elements e{’, e’,..., e ,. One complete iteration through (10.99)
and (10.100) results in the following modifications to the d and e arrays:

dP=d"—n, i=12,...,n

p.=dY
¢, =1
s, =0
lig = (P-‘2+l + (e?))z)m
81 = Cisie
hivi = CiviPini
= el = s hia
i=n—-1,n-2,...,1 (10.102)
Ci = Pt/ Finn
si=edlr.,
pr=cd?— 5.8
> d{5 = b+ si(cigen + sd?)

4+1

—>€; = 81D

—-di{"" = cip,

The shift »; is first chosen in such a way that an eigenvalue tends to appear at the
upper left corner of the matrix in the position of d, as e, tends to zero. Once this
eigenvalue has been isolated, the first row and column of the matrix can be eliminated
from consideration, and the algorithm carried out on a submatrix consisting of the remain-
ing n — 1 rows and columns. This time the shift is chosen such that an eigenvalue will
tend to appear in the position of d, as e tends to zero, etc. This is continued until all
eigenvalues have been found. The resulting eigenvalues are not arranged in any specific

order on the diagonal.
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The choice of the shift m; to produce the desired behavior can now be
described. Suppose that at some stage we are dealing with the submatrix starting with
d¥. Then the shift is given by the eigenvalue of the 2 X2 matrix

()] (6]
l:dq " :l
[6)] [}
eq q+1

which is closest to d)’. The shift ; is thus chosen as one of the two values of 7, obtained
from
49— ; (qi)
det [ ¢ (i)n U? }:() (10.103)
€a €4 — W

Now suppose that we are about to iterate for the eigenvalue which will appear in the
position d,. Then compute

t, = e(d}+edD (10.104)

where € is a very small number, on the order of the smallest number which can be
represented on the particular computer being used. Next choose

by = max (10.105)

At the current stage, any off-diagonal element e!” such that

¥ < b, (10.106)
is assumed to be zero. In particular, when |e?’| < b,, then d%’ (plus the accumulated shift)
is the desired eigenvalue.

If there are multiple or very close eigenvalues, then some off-diagonal element
farther down in the matrix may also satisfy (10.106). If so, then the matrix splits at that
point into two independent tridiagonal matrices. The part of the matrix which is below
the negligible off-diagonal can then be ignored in determining the eigenvalues which ap-
pear in the diagonal positions above that point. This can result in significant savings in
computer time in some cases.

A flow chart of the algorithm is shown in Fig. 10.3. Not all of the sophistication of
the original algorithm has been included, but the essentials are present. Reference 29
also includes a slightly modified form of the algorithm which produces the eigenvectors
along with the eigenvalues. The algorithm is remarkably efficient (often only 2 or 3
iterations per eigenvalue are required) and will work accurately for almost all tridiagonal
symmetric matrices. See the original paper for some possible difficulties involving ele-
ments of widely differing magnitudes. (The algorithm is designed to be most accurate
with matrices which have the largest elements in magnitude in the lower right
corner. This is the reason for the use of the QL strategy rather than QR.) An example
of QL is given in Problem 10.10.

A different version of the QL algorithm with better roundoff error properties has
been given by Martin and Wilkinson[30].
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Fig. 10.3 The QL algorithm.
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10.9 A REVIEW OF METHODS FOR SYMMETRIC MATRICES

For single problems involving small and moderate-sized matrices (say n < 40),* efficiency
is of relatively little importance, and it is entirely reasonable and safe to use the Jacobi
method to obtain all of the eigenvalues, and, if desired, the eigenvectors as well.

If it is necessary to find all of the eigenvalues of large matrices (n ranging up to
several hundred), then efficiency becomes a prime consideration. In this event, the best
combination of efficiency and safety probably consists of Householder’s method to
produce a tridiagonal form, followed by the QL algorithm to obtain the final eigen-
values. Variations of the LR algorithm which involve the Choleski decomposition can
be more efficient than QL if it is known that the tridiagonal matrix is positive definite.

We should note that some rather effective techniques are also available for finding
the eigenvalues from a form of the characteristic polynomial of the tridiagonal matrix
which results from Householder’s method. See Wilkinson[26] for a discussion of these
methods.

For matrices of any size, the power method, including acceleration procedures as
needed, can be effectively used to find the dominant eigenvalue and its associated
eigenvector. For very large matrices (size limited only by hardware and economic con-
siderations) this is often the only possible approach. Deflation techniques can subse-
quently be used for matrices of any size to find at least the first few subdominant
eigenvalues. However, this approach may eventually stall due to the slow convergence
which results from closely spaced eigenvalues, or for large matrices will eventually fail
due to accumulation of roundoff error.

10.10 EIGENVALUES OF UNSYMMETRIC MATRICES

Unlike real symmetric matrices, real unsymmetric matrices can have complex eigen-
values. In addition, the eigenvectors are not in general orthogonal, but do possess the
weaker property of biorthogonality. This means that the eigenvectors of the matrix are
orthogonal to the eigenvectors of the transposed matrix.

While the procedures for such problems will necessarily be somewhat different from
those employed for symmetric matrices, the tools which we have acquired from previous
sections are still useful. We will not go into the details of the various methods here, but
we will give a brief overall view of the possible approaches, and indicate where detailed
descriptions of the effective methods can be found.

It was determined in preceding sections that the most efficient approach to solving
eigenvalue problems involving symmetric matrices began- with the use of Householder’s
method to reduce the matrix to tridiagonal form. The eigenvalues could then be obtained
from the tridiagonal form through the use of various modifications of the LR or QR
algorithms. A somewhat analogous approach is used for unsymmetric matrices.
However, the special matrix form which can most readily be obtained for unsymmetric
matrices is not tridiagonal, but instead consists of an upper triangular form with an addition
band of elements adjacent to the main diagonal. This form is known as an upper

*As we observed in Chapter 6, when matrix problems are involved, the meaning of “‘large” and “‘small” is
determined entirely by the available computer hardware (and money). The numbers we quote in this section are
purely for discussion purposes, and the reader should determine the various break-even points in the context of
the available computing environment.
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Hessenberg (or simply Hessenberg) form and is shown in Fig. 10.4. (This form is also
called “‘almost triangular.”)

i h ] h 12 I — - — h In
h21 h22 — — —— had hz,,
h32 - - b — —_

— hn.n -1 hnnA

Fig. 10.4 A matrix in Hessenberg form.

If Householder’s method is applied to an unsymmetric matrix, then the result is, in
fact, a Hessenberg matrix and not a tridiagonal one. However, Householder’s method is
not the most efficient method for obtaining such a form. A version of Gauss elimination,
slightly modified to ensure that it is a similarity transformation, and including maximiza-
tion of pivot elements to provide stability against roundoff error, also yields a Hessenberg
form. This approach requires only about half the number of basic operations required by
Householder’s method. This method as well as other effective approaches for accomp-
lishing the same objective is described by Martin and Wilkinson[31] and presented in the
form of ALGOL procedures.

For obtaining the eigenvalues from the upper Hessenberg form, a variety of ap-
proaches are possible, including the LR and QR algorithms. The best approach would
appear to be the stable QR algorithm in the efficient form presented by Martin, Peters, and
Wilkinson[32].

If the dominant eigenvalue of the matrix is real, then the power method can be
employed exactly as discussed in Sec. 10.3 and will yield this dominant eigen-
value. However, if the dominant eigenvalue is complex, the standard power method is
not convergent and some modifications will be required[26]. Hotelling’s deflation (Sec.
10.3) is best suited to symmetric matrices, and other deflation techniques are suggested for
unsymmetric matrices. See Ralston[3] for some discussion of the use of the power
method and deflation for unsymmetric matrices with possibly complex eigenvalues.

10.11 ALGORITHMS AVAILABLE AS ALGOL PROCEDURES

Many of the most effective algorithms for finding the eigenvalues (and in some cases the
eigenvectors) of matrices are available in the form of ALGOL procedures (the ALGOL
equivalent of a FORTRAN subroutine). These algorithms have been, for the most part,
very efficiently coded, and the conversion from ALGOL to any other language is
surprisingly simple once one has mastered the rudiments of ALGOL. In this connection,
McCracken[33] can be very helpful. As we have noted previously, familiarity with any
algebraic language makes the understanding of virtually any other algebraic language quite
simple.

All of these algorithms have appeared in the journal Numerische Mathematik (these
articles are in English), mostly in the Handbook Series Linear Algebra. The algorithms
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and the volume number, year, and page are given below for easy reference. The com-
plete titles and authors can be found in the list of references at the back of this book.

1. Choleski decomposition of a positive definite matrix. v 7, 1965, p. 362. [34]

2. Reduction of AX =ABX to HX =AX. v 7, 1968, p. 99. [35]

3. Householder’s method (real matrices). v 11, 1968, p. 181. [36]

4. The QL algorithm (also includes eigenvectors). v 11, 1968, p. 293. [29]

5. The implicit QL algorithm (has better roundoff properties than the original QL al-
gorithms; also includes eigenvectors). v 12, 1969, p. 377. [30]

6. The LR algorithm (real symmetric matrices). v 5, 1963, p. 273. [37]

7. The QR algorithm (real symmetric tridiagonal matrices—particularly suited to calcu-
lation of a few of the largest or smallest eigenvalues). v 11, 1968, p. 264. [38]

8. Balancing a matrix for calculation of eigenvalues and eigenvectors (preprocessing of
matrices with this algorithm will give best accuracy when the other algorithms quoted
here are employed). v 13, 1969, p. 293. [39]

9. Similarity reduction of a general matrix to Hessenberg form (a variety of approaches
applicable to complex as well as real matrices). v 12, 1969, p. 349. [31]

10. The QR algorithm (real Hessenberg matrices). v 14, 1969, p. 219. [32]

lllustrative Problems

10.1 Put the following special eigenvalue problem in the standard form HX = AX where
H is symmetric:
Xy
X3
X3

4 7 37x, 9
3 2 1 0
The matrix on the right-hand side is particularly easy to decompose. (It is obviously
positive definite, since the diagonal elements, which are the eigenvalues, are positive.) The
Choleski decomposition (10.28) of this matrix involves simply taking the square root of the
diagonal elements. Thus

S b~ O
N oo

X3

8 0o V2
and
% 0 0
L7'={ 0 % 0 (=L°T
1
0 0 %
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Using (10.24), the original problem can now be written as

1 1

— 0 o |l4 7 3|l= o o |z

V9 V9 1

0 % o |l7 8 21| o —é 0 ||z |=2a
1 1

0 0 —1|[3 2 1]l o o —| =z

L V2 V2™

or

r2 7 1

3 6 Va2l ” “

% 2 % Z2 |=A| 25

U T ,

V2 V2 2 ’ ?

where Z = L"X. This is the desired form.

10.2 Illustrate the Choleski decomposition of

8 1 3
B=|1 6 4
3 4 4
Following the Choleski decomposition algorithm (10.28), we find

Ly = (b)) = (8)\” = 2.828427

0
Ly= (b — >, L)l = by/l, = 1/2.828427 = 0.3535534
k=1

T
by= vV by — Z Lk= \/bzz - b= V6- (0-3535534)2
k=1

= 2.423840

0
I = (;,3, = 13kz,k) / I = ba/l, = 3/2.828427 = 1.060660
k=1

1
by = (bn -> lzkt%) / b = (b~ b}/ bss
=1
= (4 — (1.060660)(0.3535534))/2.423840 = 1.495561

7
Iy = b33_kzl§k= \/bss_lgx_lgz
=1

= V4 —(1.060660)° — (1.495561)* = 0.7989374

2.828427 0 0
L =] 0.3535534 2.423840 0
1.060660 1.495561 0.7989374
This is the required Choleski decomposition such that LL.T = B.

Thus

Zy

Z3

23

253
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10.3 Convert the eigenvalue problem

7 4 3] x, 8 1 31[«x,
4 8 2 Xy | = A 1 6 4 X2
3 2 6 X3 3 4 4 X3

into the standard symmetric form HX = AX.

In the previous problem, we performed the Choleski decomposition of the matrix on
the right-hand side of the equation into the product LL”. The next step is to find
L™'. Using the algorithm (10.32) to invert the lower triangular matrix, we find

I3 = /1, = 1/2.828427 = 0.3535534

15 = 1/l = 1/2.423840 = 0.4125684

2
- -1
,Zz Lok _=17hL  —(0.4125684)(0.3535534) _

hi=——=—"—= > 838477 =-0.0515710
13 = 115 = 1/0.7989374 = 1.251663

3
I = ~ & bl _ sl —(1.251663)(1.495561 _ _ wonsom

ln In 2.423840

3

— ~1

Zhihe oy o
ll] lll

_ = (~0.7723027)(0.3535534) — (1.251663)(1.060660) _ _0.3728357

l;ll =

2.828427
Thus
0.3535534 0 0
L =[~0.0515710 0.4125684 0 ]
—-0.3728357 —-0.7723027 1.251663

and L7 =(L™")". Now if we let

[_7 4 3
A=|4 8 2
L3 2 6

and then form H =L "AL ", we find

H=] 04558280 1.210105 —2.031250
L—0.6873331 —2.031250 10.78151

™ 0.874995 0.4558279 —0.6873331:'

The desired eigenvalue problem is now given by
HZ =\Z

where Z = L "X, and X represents the eigenvectors of the original problem.
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104

The eigenvalues and eigenvectors of H can be determined by any standard method
and are

A= 11.25110, A, =1.116762, A; = 0.4987418
and
—0.0735353 0.7174467 -0.6927215
Z = [— 0.2009482:i, Zy= [0.6696962} Z,= [ 0.7149313 :l
0.9768379 0.1917738 0.0949232

The eigenvalues are those of the original problem, and the original eigenvectors can be
determined from X = L™ "Z. For example,

0.3535534 —0.0515710 —0.3728357 ]| —0.0735353
X, =L7"Z, =l: 0 0.4125684 — 0.7723027] [-— 0.2009482J
0 0 1.251663 0.9768379
—0.3798356
=!:—0.8373193j]
1.222672

Find the dominant eigenvalue and corresponding eigenvector of

-3 8 9
8 -2 4
9 4 2

Use the power method, and show the effects of shifting to increase the convergence
rate.

The straight power method, without relaxation, and with an initial guess of

-

and an absolute convergence criterion of 107 on the eigenvalue, requires 124 iterations to
produce the following results:
0.9199474
A= 13.25761, X, =| 0.7445194
1

From the large number of iterations required, it should be apparent that |A,| = |A,|, or in other
words that the dominance ratio is close to unity. As we have mentioned in this chapter, a
strategy of shifting all of the eigenvalues by a constant may be helpful in this situation, par-
ticularly if A, and A, have opposite signs. Simply by adding a constant to the main diagonal
elements of the matrix, the eigenvalues are all shifted by this constant. We will attempt to
accelerate the slow convergence in the present problem by adding 5 to each main diagonal
element. The resulting matrix is

2 8 9
8§ 3 4
9 4 7
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Again using an initial estimate of all 1’s for the eigenvector, the power method applied to this
matrix with the same convergence criterion as before requires only 14 iterations to yield

0.9199485
Ay = 18.25760, X =| 0.7445199
1

Subtracting 5 from A, yields a value of 13.25760 which is virtually identical to that obtained
before the shift with 124 iterations. The eigenvectors are also in good agreement.

The enormous increase in convergence rate which we have observed in this case
cannot be expected in general when applying shifting. (The exact values of the first two
eigenvalues of the original matrix are 13.25761 and — 12.70709. 'The shift makes these eigen-
values 18.25761 and —7.70709 respectively. The dominance ratio thus changes from
0.95848 to 0.42213, which is obviously extremely beneficial to the power method.) However,
shifting is certainly worth trying if slow convergence of the power method is encountered,
and shifting strategies for such other methods as the LR and QR algorithms are almost
indispensible.

Show the effects of relaxation on accelerating the power method for the matrix of
the preceding problem.

We have noted in the previous problem that for an initial guess of all 1I's for the
eigenvector, and with an absolute convergence criterion of 107°, 124 iterations of the power
method were necessary to produce the dominant eigenvalue A, = 13.25761. It is instructive
to examine the first few estimates of the eigenvalue which are obtained using the power
method:

Estimate of
Iteration Eigenvalue

15.00000
13.06667
13.04592
13.57802
12.93436
13.57171
12.97441

NN R W -

The estimates of the eigenvalue appear to be oscillating but slowly converging. Each itera-
tion apparently overshoots the desired value in one direction and the next iteration over-
shoots in the opposite direction. This tendency can be overcome by underrelaxation (using
0< A <1). For the present case we will arbitrarily choose A =0.5. Using the relaxation
approach given by (10.41) and the same convergence criterion as before, we find that 14
iterations yield
0.9199480
A= 13.25761, Xi =l:0.7445192}
1

The chosen relaxation factor would appear to be extremely effective. A little further ex-
perimentation shows that the same results can be obtained in only 10 iterations with A = 0.6.
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10.6 Demonstrate the use of the Rayleigh quotient in the acceleration of the power

10.7

method for finding the dominant eigenvalue of the matrix

3 79
7 4 3
9 3 8

This is the example considered to illustrate the power method in Sec. 10.3. Consider
the result of the 3rd iteration of the power method. The eigenvector and eigenvalue estimates

are
0.9049802
V= [0.66] 132{', Aew = 18.08579
1
The Rayleigh quotient is given by
Ao = V'HV
TV
Now
3 7  97[0.9049802 16.34286
HV =7 4 3 |06611325 |=111.97939
9 3 8 1 18.12822
and thus
16.34286
[0.9049802 0.6611325 11| 11.97939
18.12822
)\R =
0.9049802
[0.9049802 0.6611326 11| 0.6611325
1
_40.83815
T 2.256085 18.10133

The exact eigenvalue is 18.10138. This accuracy is not attained with the straight power
method until the 9th iteration. Since the present answer was obtained using only 3
iterations (actually 4, since the quantity HV in the numerator of the Rayleigh quotient is
equivalent to one additional iteration), the accelerative effects of the Rayleigh quotient
should be apparent.

Illustrate the use of Hotelling’s deflation to find the second largest eigenvalue of the
matrix considered in the previous problem.

In Sec. 10.3, we found that the dominant eigenvalue and corresponding eigenvector of
the matrix are

0.9021784}

A =18.10138, X =|:0.6605912
1

Now if we calculate

_AXXT)

D=H XTX
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this matrix should have the same eigenvalues and eigenvectors as H, except that A, is

replaced by zero. Next we find

0.9021784

XTX =[0.9021784 0.6605912 1]’:0.6605912} = 2.250307

and
0.9021784
X X7 =| 0.6605912 [[0.9021784

1

0.5959711  0.4363807

[0.8139258 0.5959711
0.9021784  0.6605912

Then

MX X7

XTX, 4793968  3.510229

l:6.547187 4.793968
7.257087 5.313769

and

1

0.6605912 1]

0.6605912

O.9021784J
1

5313769

7.257087jJ
8.043960

CAXXT

H XX

1.742913
2.206032 0.489771 2.313769

2.313769  0.043960

l: —3.547187  2.206032
1.742913

Applying the power method to this matrix with an initial guess of

-

produces after 24 iterations an eigenvalue and eigenvector of

—1.869206
1.039006

A2 = —5.70586, X, = li
1

The eigenvalue differs from the exact answer of —5.70585 by only one digit in the fifth

decimal place.
One useful check is to determine if the eigenvectors X, and X, are orthogonal, as they

should be. We compute
— 1.869206
1.039006 |= 0.0000010

X7X,=1[0.9021784 0.6605912 1]|i
1

which is certainly zero to within any reasonable accuracy. Thus X, and X, are orthogonal.

Illustrate the use of the Jacobi method in finding the eigenvalues and eigenvectors
of the matrix

4 2 3 7
2 8 5 1
H= 35 12 9
7 1 9 7
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The procedure is much too long to reveal all of its details, but we will show as much of
one iteration as possible, and will demonstrate the threshold strategy. We begin by cal-

culating
4

4
Vo = 2 Z h%=338
i#j

and

i = Vvo/4 =V/338/4 = 4.596194

This is the initial threshold value; that is, on the first sweep through the matrix we will only
zero those elements which are greater than 4.596194 in magnitude. We also choose the final
threshold value at this point as p; = e, = 107X p, = 4.596194 X 107°.  When all off-diagonal
elements are smaller than p, in magnitude, we will consider the solution to be
converged. Using u, as the threshold value, we now sweep through the rows of the matrix,
searching for an off-diagonal element larger in magnitude than w,. The first such element is
h..=7, and we will now zero this element, using the notation p =1, q =4. Remember
that only elements in the 1st and 4th rows and 1st and 4th columns will be affected by these
calculations. The values of ¢ and s are first determined:

« =%(h,.—hu)=%(4—7)=—1.5

B=(hii+a)"?=(T+(-1.59"=7.158911

and then
o _1_ La_l>|/2 _ (—1— ———B——_—>l/2 _
€= (2*23 =5+ 37 1s801y) = 07776661

_al=hy_ (=1.5)(=7)

S = 2Bla|C ~ 2(7.158911)(1.5)(0.7776661) 0.6286775

We can now modify the elements of the matrix:
hi = c*hy+ s’hu—2csh..
= (0.7776661)'(4) + (0.6286775)*(7) — 2(0.7776661)(0.6286775)(7) = — 1.658911

his= C2h44 + Szhu +2cshy,
= (0.7776661)(7) + (0.6286775)*(4) + 2(0.7776661)(0.6286775)(7) = 12.65891

h'z = chi— sha = (0.7776661)(2) — (0.6286775)(1) = 0.9266547 = h:,
h's= chi— sha = (0.7776661)(3) — (0.6286775)(9) = — 3.325099 = h3
his = shy + cha = (0.6286775)(2) + (0.7776661)(1) = 2.035021 = h5.
his = shi; + che = (0.6286775)(3) +(0.7776661)(9) = 8.885027 = h,

The matrix now has the form

—1.658911 0.9266547  —3.325699 0
0.9266547 8 5 2.035021
—3.325099 5 12 8.885027
0 2.035021 8.885027  12.65891

If it is also desired to find the eigenvectors, then the R matrix, which is initialized as the unit
matrix, is modified as follows:
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riy = cry — sris = (0.7776661)(1) — (0.6286775)(0) = 0.7776661
ry=cry—sru=c(0)—s0)=0
riy=cry—sra=c(0)—s0)=0

ria = cra — sra = c(0) ~ (0.6286775)(1) = — 0.6286775

ria= Srn+ crg = (0.6286775)1) + ¢ (0) = 0.6286775
riy=8ry+cru=s(0)+c(0)=0
riu=sry+cru=s(0)+c0)=0

ria= sty + cry = s(0) +(0.7776661)(1) = 0.777666 1

Thus the modified R matrix is

0.7776661 0 0 0.6286775
0 1 0 0
0 0 1 0

-0.6286775 0 0 0.7776661

We now continue the sweep, searching for elements in H which exceed the threshold
value. The next such element is 5, inthe p =2, g =3 position, and we repeat the entire
process, this time affecting only the 2nd and 3rd rows and 2nd and 3rd columns. The pro-
cess continues until the bottom right corner of the matrix is reached. We now modify the
threshold value to

wr = /4 = 1.1399048

and begin the sweep again. (We are guaranteed that each time the threshold constant is
changed, there will be at least one off-diagonal element of the matrix which will be greater in
magnitude than the new threshold constant.) When u < uy, the process is considered to
have converged, and we stop. For this problem, the final forms of the H and R matrices are

I —3.233881 489x 107 —6.06%x 107" 1.72x 107
H= 4.89%x10°° 3.739112 0 -3.78%x 107"
—6.06x 107" 0 23.04466 5.14%10°°
1.72x 107 —3.78x 107" 5.14x 107 7.450091
0.5807812 0.6787282 0.3456577 0.2872997
R=|" 0.2037415 0.3749573 0.3117012  —0.8489628
T 0.3651426 —0.6174604  0.6883553 —0.1076074
| —0.6984646  0.1321995 0.5563532 0.4302800

The eigenvalues of the original matrix are on the diagonal of the final version of H.

Using Householder’s method, put the following matrix in tridiagonal form:

6 3

2 4
H= 3 9
1 1

1
8
1
7

N K N

We first wish to find an orthogonal symmetric matrix T, such that premultiplication of
the above matrix by T eliminates the last two elements of the first column. The matrix T, is
of the form
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In order to construct P, we need

S=Vhi+hi+hi=V2Z+3+1°=14=3.741658

Now form the vector

2+3.741658 5.741658
U= 3 = 3
1 1

(We have chosen the sign which maximizes the first element.) Now form the matrix

[75.741658
UuyT = 3 [5.741658 3 1]
1

[32.96664 17.22497 5.741658}

=| 17.22497 9 3
L 5.741658 3 1

which we note is symmetric. Now the submatrix P is given by

T
P=I-s

where the sign is the same as that chosen before. Therefore, we choose the + sign and find

S?+ huS = 14+ 2(3.741658) = 21.48332

[1 0 O:| ; [32.96664 17.22497 5.741658}

P=[0 1 0|-z—>=]| 17.22497 9 3

0 0 1 2148332 5.741658 3 1
[—0.534523 —0.801783 —0.267261:‘

and thus

—0.801783 0.581070  —0.139643
—0.267261 —0.139643 0.953452

The matrix T, is now completely determined. Premultiplication of H, by T, zeros the
desired elements, and postmultiplication by T, restores symmetry and zeros the third and
fourth elements in the first row. The details of the matrix multiplication are straightforward
and will not be shown here. The result is

6.000000 3.741657 0 0
THT = 3.741657  13.85713 1.808209  —3.138917
0 1.808209 4.291560  —-6.007794
0 —3.138917 -6.007794 2.851295

We denote this matrix as H,. Our objective now is to zero the last element in the second
column. This can be accomplished by premultiplying H, by T: where
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———————

Now

S =V'h%+ hi% ="V(1.808209) + (—3.138917) = 3.622487

and

U:[ 1.808209 + 3.622487 _[ 5.430696
—3.138917 T L—3.138917

Once again we have chosen the + sign. Now we form

29.49246  —17.04650

5.430696
uu* =
—17.04650 9.852800

= ~3.138917] [5.430696 —3.138917] =
and finally

S*+ hxS = 13.12242 + (1.808209)(3.622487) = 19.67263
The submatrix P is now given by

p= [1 0]4 1 29.49246  —17.04650
0 1 19.67263 L — 17.04650 9.852800

_[—0.499163 0.866509
0.866509 0.499162

The matrix T: is now completely determined. The product T>H,T: is

6.000000 3.741657 0 0

T.HT, = 3.741657 13.85713 3.622490 0
) ) 0 3.622490 8.407250 3.636920
0 0 3.636920 —1.264370

which is the desired tridiagonal form.

Demonstrate the use of the QL algorithm to find the eigenvalues of the tridiagonal
matrix which resulted from the preceding problem.

The diagonal elements of the tridiagonal matrix are denoted as d, through d., and the
superdiagonal elements as e, through e;. 'We cannot go into great detail in the illustration of
the algorithm, but we will attempt to show as much of one complete iteration as
possible. The initial shift 1, is chosen as the eigenvalue of the 2 X 2 submatrix in the upper
left corner which is closest to d,. Thus 7, is one of the roots of

dt[ 6—m 3.741657 }z
) 3741657 13.85713 -7,

Expanding the quadratic and solving for the roots gives
n = 15.353841, 4.503289

We choose 1, =4.503289 as being closest to 6. The diagonal elements d, through d, then
become
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d, = 6—4.503289 = 1.496711
d>=13.85713 — 4.503289 = 9.353841
d, = 8.407250 — 4.503289 = 3.903961
d; =~ 1.264370 — 4.503289 = — 5.767659
Now, following the algorithm (10.102),
p:=d,=—5.767659
c,=1
sa=0
and for i =3,
ra=(pi+ (e))'" = ((— 5.767659) + (3.636920))'” = 6.818583
gi = cieq = (1)(3.636920) = 3.636920
hy= caps = (1)(— 5.767659) = — 5.767659
- es= 5,14 = (0)(6.818583) = 0
€= pafry = —5.767659/6.818583 = — 0.8458735
83 = e;/rs = 3.636920/6.818583 = 0.5333835

ps = ¢:d; — 5384 = (— 0.8458735)(3.903961) — (0.5333835)(3.636920)
= —5.242130

—>ds=h+ s:(C3ge + S3d3)
= —5.767659 + (0.5333835)((— 0.8458735)(3.636920) + (0.5333835)(3.903961))

= —6.297877
(The arrows indicate the actual matrix element modifications.) In a similar fashion, for
i =2,
e; = 3.398715, d, = 8.890384
and for i =1,
e, = 3.997386, d. = 6.708286

A separate set of calculations yields
e = 0.1973130, d, = —0.31393%

This completes one iteration. Note that e, is considerably smaller than before. This trend
continues on succeeding iterations until on the fourth iteration, the following values are

obtained:
di =—1.387560 x 107 e, =2.474652 x 107"
d; = 4.362420 e, = 0.3344836
d; = 2992812 e;=9.705934
d, = 2.915200

with an accumulated shift of 4.182390. The value of e, is so small that we can consider d, to
have been isolated as an eigenvalue. In order to finally compute the eigenvalue, we must
add the accumulated shift. Thus
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Ar=— 138X 107"+ 4.182390 = 4.182390

We can now discard d, and e, and work only with d, through d, and e, through e;. Three
more iterations yield

A: = 8.543056
and four more iterations yield
A; = 16.84915, Ae=—2.574616

(The fourth and final eigenvalue appears along with A;, since e, =0.)

Find the eigenvalues of the matrix
7 3 1
H, =3 4 2
1 2 3

by using the LR method.

We try the Choleski decomposition, hoping that the matrix is positive definite and that
we can express H; as L,L{. The Choleski decomposition yields

2.645751 0 0
L,=| 1.133893 1.647510 0
0.3779645  9.9538204 1.395481

Since the Choleski decomposition was successful, the matrix must be positive definite. We
now form

2.228609  3.624061 1.331038

8.428568  2.228609 0.5274423
L ;rLl = = Hz
0.5274423  1.331038  1.947367

Since this matrix is a similarity transformation of H,, which was positive definite, this matrix
is also positive definite (why?) and can also be Choleski decomposed. Ten more decomposi-
tions and reverse multiplications yield

9.433488  0.0160184 0.0000184
Hi:=} 0.0160184 3.419430  0.0062214
0.0000184 0.0062214 1.147035

The process is clearly converging and will yield the eigenvalues in order of decreasing mag-
nitude on the main diagonal. These eigenvalues have in fact already been determined fairly
accurately at this point, since the exact eigenvalues are 9.433551,3.419421, and 1.147028.

Consider the following boundary value problem involving an ordinary differential
equation:

dzy 2,

P +vy=0

y=m)=0, y(@)=0

where v® is an unknown constant. Determine the smallest value of »*> which
satisfies this problem.
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This problem would appear to be out of place in the present chapter, since in its
present form it is certainly not a matrix eigenvalue problem. It is, however, termed an
eigenvalue problem, and similar problems are commonly encountered in dynamics, struc-
tural analysis, and even nuclear reactor calculations. The present problem can be solved
analytically to yield

y = A cos vx

and the smallest value of » which satisfies the boundary conditions is clearly » = 1/2. More
complex problems of this type often cannot be solved analytically, and we will examine a
numerical technique which results in a matrix eigenvalue problem of the type which we have

been considering in this chapter.
We first write the differential equation in central difference form:

Yir1 — 2% + ¥i- +
(Ax)

Taking the term involving v’ to the right-hand side and multiplying through the equation by
(Ax)’, we obtain

yi=0

= Yt + 2 = Vi = P (AX)y;

If Ax =2ar/n (n equally spaced intervals from x = — 77 to x = 7r), then there are n — 1 such
equations, which can be written in matrix form (incorporating the boundary conditions) as
r 2 -1 7] r Wi 7] I M 7]
-1 2 -1 ¥y y2
-1 2 -1 Vs ¥
—_ = - — |=vAax)| —
- 1 2 - 1 Yn-2 Va2
L -1 2400 yu-i L Yn—1_

This is an eigenvalue problem of the form we have considered in this chapter, with the
quantity »*(Ax)’ representing the eigenvalue. Any of the standard techniques discussed in
this chapter can be used to find the eigenvalues, although since the matrix is already in
tridiagonal form, the QL algorithm would seem particularly well suited.

Carrying out the calculations with n = 10 (Ax = 7/5), we find that the smallest eigen-
value is v*(Ax) = 0.09788697, or v = (5/7)(0.09788697)'"” = 0.4979464 as compared to the
exact value of 1/2. The accuracy could be improved by using a larger value of n.
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Problems

Although the use of a computer is virtually mandatory for eigenvalue problems of any size,
some useful experience can be gained by the hand solution of small problems with certain
methods. Therefore, with these problems we resume the practice of indicating with an asterisk
those problems for which the use of a computer is highly desirable. For the remaining problems,
hand calculations can yield meaningful results if no computer is available.

*10.13 Write a computer subprogram to use the Choleski algorithm to decompose an arbitrary
positive definite symmetric matrix into a product of lower triangular and upper triangular
matrices.

*10.14 Write a computer subprogram to invert a lower triangular matrix of arbitrary size using the
algorithm discussed in Sec. 10.2.

*10.15 Write a computer program to convert a problem of the form AX = ABX where B is positive
definite into the form HX = AX where H is symmetric. Use the subprograms written for
Problems 10.13 and 10.14 as needed.

*10.16 Write a computer program to find the dominant eigenvalue and corresponding eigenvector of
a matrix by the power method. The program should include the use of a relaxation factor
which can be set to 1 if the standard power method is desired. Input parameters should
include this relaxation factor and a convergence criterion on the eigenvalue. (This criterion
can be absolute or relative, as desired.)

*10.17 Write a computer program to find an arbitrary number of the largest eigenvalues (in
magnitude) and the corresponding eigenvectors of a symmetric matrix by using Hotelling’s
deflation. Input parameters should include a convergence criterion, and an integer repre-
senting the maximum number of iterations which are permitted to find each eigenvalue be-
fore the method is considered to have failed. (If this safety feature is not included, the
program may run a very long time indeed in attempting to find one of two closely spaced
eigenvalues.)

*10.18 Write a computer program to find the eigenvalues and eigenvectors of an arbitrary symmet-
ric matrix using the Jacobi method with the threshold strategy. Use € = 10°° or smaller if

possible,

*10.19 Write a computer program to use Householder’s method to reduce an arbitrary symmetric
matrix to tridiagonal form.

*10.20 Write a computer program to use the QL algorithm to obtain the eigenvalues of an arbitrary
tridiagonal symmetric matrix. Use € = 107 if possible.

*10.21 Write a computer program to find the eigenvalues of an arbitrary symmetric positive definite
matrix using the LR algorithm (acceleration need not be included). Use the subprogram
written for Problem 10.13 to do the decomposition.

10.22 Using the algorithm discussed in Sec. 10.2, invert the lower triangular matrix
4 0 0
9 3 ¢

1 2 7
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10.23 Convert the following matrix into a product of lower triangular and upper triangular matrices
using the Choleski decomposition:

5 4 2 3
4 8 3 2
2 3 10 1
32 1 13

10.24 Using the power method, find the dominant eigenvalue and corresponding eigenvector of the
following matrices:

2 3 8
(a)|]3 9 4
.8 4 1
r 4 =2 7 3 -1 8
-2 5 1 1 4 7
7 1 7 2 3 5
*
(b) 3 1 2 6 5 1
-1 4 3 5 3 2
L 8 7 5 1 2 4

10.25 By inverting the matrix and applying the power method, find the smallest eigenvalue (in
magnitude) of

(a) the matrix of Problem 10.24(a),
*(b) the matrix of Problem 10.24(b).

%*10.26 Perform a few iterations on the following matrix using the power method. Then, based on
the results, choose a suitable relaxation factor and carry the iterative process to con-

vergence.
1 3 2
3 -1 1
2 1 -2

*10.27 Using Hotelling’s deflation, find all of the eigenvalues and eigenvectors of:

(a) the matrix of Problem 10.24(a),

11 2 3 1 4 2
2 9 3 5 2 1
3 3 15 4 3 2
®) 1 5 4 12 4 3
4 2 3 4 17 5
2 1 2 3 5 8

%#10.28 Using the Jacobi method (preferably with the threshold strategy), find the eigenvalues and
eigenvectors of

9 2 7 3 4
2 10 4 1 2
7 4 7 5 1
3 1 5 8 3
4 2 1 3 6
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10.29 Using Householder’s method, bring the following matrices to tridiagonal form:

s 2 3
(a)|2 8 1
L3 1 7
F7 4 3 5 2 1
4 5 2 4 3 4
3 2 9 4 1 8
*
®) 5 4 4 3 2 5
2 3 1 2 11 3
| 1 4 8 5 3 10
10.30 Using the QL algorithm, find all of the eigenvalues of these tridiagonal matrices:
r 2 -1 0
(a) | -1 2 -1
L 0 -1 2
7 3 0 0 0
3 4 8 0 0
*b)|0 8 5 2 0
0 0 2 9 6
0 0 0 6 8

(c¢) the result of Problem 10.29(a),
*(d) the result of Problem 10.29(b).

*10.31 Find the eigenvalues of the tridiagonal form resulting from Problem 10.29(a) by expanding
the characteristic polynomial and using a root solving approach.

*10.32 Given the matrices A and B for an eigenvalue problem of the form AX = ABX, convert the
problem into the standard symmetric form HX = AX and find the eigenvalues of the original
problem. The matrices A and B are:

(a) A

by A

14 10 8 3 10 2 3 5

{10 7 4 2 B 2 7 4 1

4 8 17 3 4 8 2

| 3 2 1 3 5 1 2 5
e 1 1 3 2 3 4 7
_ 1 7 2 1 B= 31 5 6
1 2 4 3 4 5 3 2
.3 1 3 5 7 6 2 1

%*10.33 Using the LR method, find the eigenvalues of these matrices:

(6

(o)

(a)

—_

(b)

W N A

2
8
2

B W 00 A

1
2
9



Chapter 11

Introduction to Partial
Differential Equations

11.0 INTRODUCTION

It is the purpose of this chapter to introduce the reader to some of the most widely used
techniques for the numerical solution of partial differential equations. The techniques
and problems actually considered in detail are quite simple. However, these should
serve to present the concepts and terminology which are essential for the study of more
advanced techniques and complex problems. Suitable references for the study of the
more advanced techniques are suggested at appropriate points throughout the chapter.

For simplicity, we will deal throughout the chapter with second-order partial dif-
ferential equations involving two independent variables. The extensions to higher order
differential equations and to equations in three or more independent variables are usually
surprisingly straightforward. Details can be found in what has come to be considered as
the standard reference work on the subject of the numerical solution of partial differential
equations, Forsythe and Wasow[6].

11.1 CLASSIFICATION OF SECOND-ORDER PARTIAL
DIFFERENTIAL EQUATIONS

There are three basic classes of second-order partial differential equations involving two
independent variables, and a different numerical approach is required for each of the three
classes. Each class bears the name of one of the conic sections; for our present purposes
it will not be necessary to describe in detail the reason for the names. We should note,
however, that the names are derived from the form of a family of curves, called the
characteristics, which are associated with each class.

Partial differential equations belonging to each class can be put into a simple form (a
change of variables may be required) called the canonical form for that class. These
forms and their corresponding classifications are

2
%;Ckzl = (parabolic) (11.1)

2 2
%xif+g—y‘;= @ (elliptic) (11.2)
‘;x" - gy—" ~® (hyperbolic) (11.3)

269
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where ® = ®(x, y, u, du/dx, du/dy). Note that the classification depends only on the
manner in which the highest (2nd order) derivative appears.
The most commonly encountered parabolic equation is of the form

d’u _ ou

a 3T 3y (a constant) (11.4)

This equation is called the one-dimensional transient diffusion equation (with y often rep-
resenting time), or (primarily by mathematicians) the heat equation.
Commonly encountered elliptic equations are

*u d’u
+25=0 (11.5)
and ox ay
’u  ’u_
P -+ 3y constant (11.6)

Equation (11.5) is called Laplace’s equation, while (11.6) is called Poisson’s equation.
Hyperbolic equations often occur in the form

2 2
%}l—f = %yi; (B constant) (11.7)

This is called the wave equation.

In this chapter we will examine the most commonly used numerical techniques for
the solution of parabolic and elliptic equations. However, the efficient numerical solu-
tion of hyperbolic equations requires a rather different approach from that for the other
two classes of partial differential equations, and we will limit our treatment of this subject
to a short qualitative discussion in Sec. 11.4.

11.2 NUMERICAL METHODS FOR THE SOLUTION
OF PARABOLIC EQUATIONS

We will present the methods for parabolic equations by dealing with the specific example

of the one-dimensional transient diffusion equation, (11.4). However, the extension of

these methods to problems involving other parabolic equations is quite straightforward.
Conside? the following problem:

d’u_ ou
as 5= 3y (11.8)
u(a,y)= u, (11.9) yT )
u(b,y)=u, (11.10) P
u(x,0) = u, (11.11) 1
Ua b
Conditions (11.9) and (11.10) are Region of “
termed boundary conditions (the interest
problem is boundary valued in x),
while condition (11.11) is termed an

58 4

initial condition (the problem is initial 7 ’T//////// 2L
Uo

valued in y). We wish to find
u(x,y). It is useful to examine the
(x,y) domain as shown in Fig. 11.1. Fig. 11.1

x=a x=b
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The region of interest is bounded by the x axis and the lines x = a and x = b, and
extends to infinity in the + y direction. Values of u are specified on the three boundaries
of this region as shown.

We now superimpose a finite difference grid on the region of interest and adopt the
notation shown in Fig. 11.2.

ve i+

i

-1 ©
Ax [t
Ay

2
j=1
i=0 N
k=0 1 2 n—-1 n n+1} X

a b

Fig. 11.2

For the present discussion, it will be assumed that Ax and Ay are each constant (but
in general are not equal, and in fact may have different units). Instead of referring to a
point on the grid by its coordinates y and x, we can now use the indices j and k. Thus we
denote u at a point (j,k) as u;,. The initial condition is ue, =, (k=0,1,...,n+1) and
the boundary conditions are u,,=u, and u,..,=u, (G=1,2,...).

Qualitatively, the task of solving the problem numerically consists of starting from
the initial condition, and advancing the solution along the y direction in somewhat the
same way as for an initial value problem involving an ordinary differential
equation. However, for each step taken in the y direction, it is necessary to solve what
amounts to a boundary value problem in x.

Suppose now that the solution has been obtained up to y; and that we wish to
advance it to y;.,. First, the differential equation (11.8) must be written in a finite differ-
ence form. There are many possible choices for this difference form. For example,
starting from the point (j,k), the derivative with respect to x can be represented by a
central difference expression, and the derivative with respect to y by a simple forward
difference expression. This approach yields the difference equation

U1 — 2u,-,k + U1 1 <uj+l‘k - uj,k>
(Ax)’ a

— Ay (11.12)
The finite difference ‘“‘molecule,” which shows the points involved in this representation,

is illustrated in Fig. 11.3.
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j+1 A
! B C D
. Solution
j—1 known to
here

k-1 k k+1

Fig. 11.3

Since all of those values of u with subscript j are assumed known, the only unknown
value in (11.12) is u;... (represented by point A in Fig. 11.3). Equation (11.12) can be
solved directly for u;.,, to yield

A
Ui = Uik +C(¥—é;)y2_)(uj.k+l =2 + Upi—r) (11.13)
or
_ a(Ay)] ‘ [ ~2a(Ay)] ‘ [a(Ay)] A
Uik = l: (Ax)z ul.k—l+ 1 (Ax)Z Ui + (Ax)z Ui k41 (11.14)
The unknowns i, (k=1,2,...,n) can be determined from (I11.14) in any order

desired. Once all of the unknowns have been found, another step can be taken in the y
direction by repeating the process, with the newly determined values now appearing on
the right-hand side of (11.14) and assuming the subscript j. This same procedure can
obviously be used to take the first step after the initial conditions (simply set j =0 in
(11.14)). Thus (11.14) furnishes a complete method which can be used to “march” the
solution outward along the y direction, starting from the initial condition and continuing to
as large a value of y as desired.

Since the unknowns can be explicitly determined from (11.14), this method is termed
explicit, and the difference representation (11.12) is called an explicit representation.

The primary disadvantage of the explicit method is one of instability. Instability in
the numerical solution of partial differential equations is similar to that encountered in
solving ordinary differential equations in the sense that it results from an amplification of
errors (of both the truncation and roundoff variety). It is beyond the scope of this
chapter to explore this instability problem in mathematical detail. The interested reader
is referred to the classic paper by O’Brien, Hyman, and Kaplan[40] for a quite readable
introduction to this subject.

We will simply state without proof that the explicit difference solution (11.14) be-
comes unstable when

a(dy) _1
Bx) >2 (11.15)
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It is not accidental that when the inequality (11.15) is satisfied, the coefficient of u;, in
(11.14) is negative. However, we will not pursue this point further. It is probably most
useful to think of the stability criterion (11.15) as setting a maximum permissible step size
Ay when Ax and «a are fixed. Thus for a problem where « is predetermined, and where
Ax is set such that truncation error of the difference representation of 9°u/dx> is not
excessive, it is necessary that

(Ax)*
2a

Ay =< (11.16)
for stability. The crucial question is whether the condition (11.16) forces a smaller value
of Ay to be used than would be necessary to hold truncation error down to a reasonable
level. Much computational experience indicates that the answer is unfortunately in the
affirmative in most cases. It would thus appear to be worthwhile to search for other
approaches which are less restrictive on the matter of step size.

Consider a new difference representation of the original differential equation (11.8)
which is based at the point (j + 1,k). If the derivative 8*u/ox” is represented by a central
difference expression, and the derivative du/dy by a simple backward difference expres-
sion, then the resulting difference equation is

Wiiker = 2Uie i+ W sy _ l (ui+l.k - u;xk)
Ay (11.17)

(Ax) T«
The finite difference molecule depicting the points involved in (11.17) is shown in Fig.
11.4.

j+1

] D T
Solution

known to
here

Note that the values of u at the points A, B, and C are all unknown. Obviously,
(11.17) cannot be solved explicitly for the unknowns. However, if (11.17) is written for
all of the points k = 1,2,. .., n, then we have a set of n linear algebraic equations in the n
unknowns ;... Since the unknowns are implicit in this set of equations, the difference
representation (11.17) is termed an implicit representation.
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A logical first impression would be that we have exchanged the simplicity of the
explicit representation for a much more time-consuming approach. However, each of
the equations (11.17) can be written in the form

5 (Ax) _[_ (Axy
Mg+ [ 2 a(Ay)] Ui T 181000 = [ a(Ay)} U; i (11.18)

and the complete set of equations expressed in matrix form is given by

—ﬁ 1 N ’— Uisry ] rQuy‘,l — Ua 7]
1 B 1 Ujri12 Qu;,
1 B 1 U3 Quy;
- — —_ = — (11.19)
1 B 1 Uiy - Qu; ey
L 1 BIL Ui LQu,-,,, - Uy,
where
2 2
B=_2#(Ax)’ z_(Ax)
a(Ay) a(Ay)

Since the coefficient matrix of (11.19) is in the highly desirable tridiagonal form, the
number of basic arithmetic operations necessary to solve the set (and thus to take one step
of Ay) is only of O(n). But this is of the same order as the number of basic arithmetic
operations which are necessary to take one step in the y direction using the explicit
formula. It might then be expected that the compui\:er time required to take one step
would be roughly comparable for the explicit and implicit representations, and this has
been found to be true in practice.

However, the implicit representation can be shown to be universally stable for all
mesh sizes, and thus the restriction to small Ay required by (11.16) for the explicit rep-
resentation is not necessary for the implicit form. The only size restriction on Ay for the
implicit representation is that required to keep truncation error at a reasonable
level. Thus in many situations, larger values of Ay can be used with the implicit method,
resulting in significant savings in computer time. This is particularly important for those
cases where the solution approaches a “‘steady state” as y — «, i.e. where u(x,y) eventu-
ally becomes a function of x only at large values of y. Inregions where the solution does
vary slowly with y, accurate solutions can often be obtained by using the implicit represen
tation with step sizes on the order of 10 to 100 times the maximum step size permissible
with the explicit representation due to stability restrictions.

Due to the advantages of the implicit representation, the author recommends it (or
one of its other universally stable variations) as the standard method for solving (11.8)
numerically on a digital computer. However, there are still some cases where the explicit
method can be used, at least for a few steps, to advantage. This is primarily due to the
slightly different error characteristics of the implicit and explicit representations.

The truncation error of the explicit and implicit representations would not seem to be
appreciably different, since a central difference expression of error order (Ax)’ has been
used for the second derivative in both cases, and the difference expressions for the first
derivative (forward for explicit, backward for implicit) are both of error order Ay.
However, as we have seen before, two methods with the same error order do not necessarily
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have the same actual error. Thus in certain situations, one of the methods may be more
accurate than the other. Some sophisticated general programs, such as those for solving
heat conduction problems, allow a choice of an implicit or explicit method at each step, and
may even make this choice automatically. We cannot discuss this situation in detail, but
mention it here primarily to indicate some motivation for the continued existence and use of
the explicit method.

In our discussion heretofore, we have omitted a rather widely used, universally
stable variation of the implicit form called the Crank-Nicholson representation. The
Crank-Nicholson representation of (11.8) is

o [uj+l,k+1 — 2 g+ Uik + Wiserr = 22Uy + uj.k—lj’ Wk T U (11.20)

2 (Ax) (Ax) Ay

The left side of this equation is simply an average of the central difference expressions for
a(d’u/ay?) at the points (j + 1,k) and (j,k). The right side is the same difference expres-
sion as used in the explicit and implicit representations, but now it is no longer clear
whether it is a forward or backward difference expression. This can be partially clarified
by examining the finite difference molecule shown in Fig. 11.5.

i+1 A B C
# G
! D E F T
i1 Solution
] known to
here

k-1 k k+1

Fig. 11.5

Since the central difference expressions at (j + 1,k) and (j,k) are equally weighted,
their average can be thought of as an estimate of the second derivative at the point G (or if
you prefer, (j + 1/2,k)). The right side of (11.20) can in a similar fashion be considered as
a sort of central difference representation of du/dy at the point G.

The advantage of the Crank-Nicholson representation is that for given values of Ax
and Ay, the resuiting solution has somewhat less truncation error in the term involving Ay
than do the standard explicit and implicit representations. This reduction in error is
gained with very little expense in additional computation over the standard implicit
representation. The matrix form of (11.20) for the problem given by (11.8)-(11.11)is
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My 1 I Wyern T [_(151 — U, ]
1 v 1 Uiz o2
1 y 1 Ui b3
- - — (11.21)
1 v | Ui n— D1
L 1 YJL U0 d L(i),, — Up_l
where
2(Ax)’ 2(Ax)?
Y= -2 a((Ay))’ &b = ,:2" a((Ay)):,uj.k — Ujk—1 ™ Ui+

Other than the slight additional computation necessary for the calculation of the ¢, in the
right-hand side column vector, the solution to the set (11.21) proceeds in exactly the same
manner as for the tridiagonal set (11.19) which resulted from the implicit formulation.

We should note that the Crank-Nicholson representation is a special case of the
more general formula

[nuj+1,k+1 - 2u;+1,k + U1 -

Wiser1 — 2Ups + Ujs— Uivie — Uix
0 5 + (1-0) : = .
(Ax)

(Ax)’ Ay
(11.22)

where 0 is termed the ‘“degree of implicitness.” Setting # =1 in (11.22) yields the
implicit representation, 6 = 1/2 gives the Crank-Nicholson representation, and 6 = 0 the
explicit form. The representation (11.22) is universally stable for 6 = 1/2, but is only
conditionally stable for 8 < 1/2. This representation is an example of the concept called
“theta differencing” by some applied numerical analysts.

Problems 11.1-11.3 at the end of this chapter are concerned with parabolic differen-
tial equations. These problems include some discussion of boundary conditions other
than the simple ones included in the present section. Some of the approaches for solving
parabolic equations more complex than (11.8) are presented briefly in Problem 11.3.

11.3 NUMERICAL METHODS FOR THE SOLUTION OF ELLIPTIC EQUATIONS

In order to discuss most effectively
the numerical techniques for elliptic
partial differential equations, we once
again turn to an example problem. yT
Nearly all of the methods we discuss
here will, however, be directly applic-
able to elliptic problems in general.
Consider the rectangular region R R
shown in Fig. 11.6.

Suppose that the partial differen-
tial equation

3’u

d’u

Fig. 11.6
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holds over the entire region R, and that u is completely specified on the boundaries of
R. We wish to find u(x,y) on the interior of R. This is called a Dirichlet problem.
We now impose a finite difference grid on the region R as shown in Fig. 11.7.

AR |Axl
b m+1
m
m -1

I
R

2
i=1
j=0 >
k=0 1 2 3 n-1 n n+1 X

Fig. 11.7

For simplicity, we divide the length a in the x direction into n + 1 equal spaces
given by

Ax = (11.24)

and the length b in the y direction into m + 1 equal spaces given by

b

&Y =

(11.25)

The differential equation (11.23) can now be written in central difference form at a
point (j,k) as

Uik — U + Wy
(Ax)?

Wik — 2Uj + Ui _
Ay) =0 (11.26)

The dependent variable u is unknown at the mn interior points of R. The equation
(11.26) can be written at each of the interior points of R, and we thus have mn simultane-
ous linear equations in the mn unknowns u;,.

The product mn can become very large if an accurate solution is required (that is, if
Ax and Ay must be small). If the set of equations is written in matrix form, the matrix of
coefficients is sparse, but is not banded in quite the same way as we have come to expect
of sparse matrices. Instead, the matrix is “‘striped,” with the familiar tridiagonal band
along the main diagonal, but with two additional bands, each one element wide, displaced

-+
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from the main diagonal by a considerable amount. One of these stripes is above the
tridiagonal band, and the other is below.*

For general use, iterative techniques probably represent the best approach to the
solution of such sets of equations and we will deal with these techniques in some detail
later in this section. However, direct (noniterative) solution of such sets is practical if
the number of equations is not too large, and there appears to be a trend toward solving
larger and larger sets by direct methods, particularly among specialists in certain fields
involving elliptic equations. Although we will not discuss the details of direct methods
here (some useful information has already been presented in Chapter 6), we will attempt to
present briefly the advantages, disadvantages, and range of practicality of such methods.

The primary consideration is the available fast access storage capacity of the
machine being used. If we denote the number of rows and columns in the matrix as
N (N = mn for the particular problem which we have just formulated), then there will be
approximately 5N nonzero elements in the matrix (3N for the tridiagonal band and an
additional 2N for the off-diagonal stripes). In our discussion of the solution to
tridiagonal sets in Chapter 6, we found that the zero elements off of the tridiagonal band
never became nonzero in the course of the solution, and thus no additional storage was
required beyond that needed for the original nonzero elements of the matrix. In the
present case we are not so fortunate, and many of the elements of the matrix which were
originally zero will become nonzero in the course of the computation, and will require
storage space. Thus although there are only about SN nonzero elements in the original
matrix, there is a need for many more storage locations in the course of obtaining a
solution. The width of the band containing nonzero elements is given by 2r — 1, where
rmax = N>+ 1, and we should note that it often involves a prohibitive amount of book-
keeping to take advantage of the elements which remain zero in this band.

The most effective methods of direct solution require a number of storage locations
equal to only about one-half the total number of elements in the band, or about 2N*?
locations. Thus for N = 900 (a very coarse mesh for most purposes), the bandwidth will
be about 59, and approximately 54,000 storage locations will be required. This number of
locations is pushing the high speed storage limitations of many large machines. If N =
4900 (not at all unreasonable), then about 646,000 storage locations are required, which
means a large amount of time-consuming shuffling of data to and from secondary storage
(disc, tape, drum, low speed core, etc.).

Hopefully, the reader has now gained some perspective as to when direct methods
for elliptic problems are practical for whatever specific computer hardware might be
available. (We should note that the picture is considerably darker for three-dimensional
problems, and that direct methods are very seldom used.) If direct methods can be
employed, their advantages over iterative methods include:

1. Less computer time is usually required to obtain a solution of comparable accuracy
(unless an excellent first guess is available for the iterative method). This advantage is
lost if excessive data shuffling to and from secondary storage is necessary.

2. Under certain circumstances (although not for Laplace’s equation), the iterative
methods may simply not converge, while the direct method will yield answers in any
case.

*For problems involving irregularly shaped regions and different boundary conditions, the matrix will not have
exactly the form described here. The off-diagonal stripes may be of various lengths and in scattered
locations. However, all of the nonzero elements will still falt within a band whose width is considerably smaller
than the dimension of the matrix.



CHAPTER 11 INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS 279

The direct methods can, of course, suffer from roundoff error, which is not a significant
problem with iterative methods. Interchanges (e.g. maximization of pivot elements) in an
attempt to overcome roundoff problems will usually increase the number of storage loca-
tions required for the direct methods.

While Gauss elimination can be used for the direct solution of sets of equations of
the type considered here, the most effective direct methods, particularly in terms of
minimizing storage space, are those based on block partitioning and decomposition of the
matrix into lower and upper triangular forms. The details are beyond the scope of this
introductory discussion and the reader is referred to Fox [41] and Forsythe and Wasow [6]
for the mechanics of the methods.

It is the author’s feeling that direct methods should be carefully explored by anyone
who intends to become deeply involved in solving many elliptic problems. For general
use, iterative methods are preferable since they are easier to program, use much less
storage space, and are applicable to sets of equations of any size.

The simplest iterative method—and one of the most effective—is successive over-
relaxation by points (SOR). This is precisely the relaxation method discussed in Chapter
6, and involves a simple modification of Gauss-Siedel iteration. We first multiply (11.26)
by (Ax)* and collect coefficients of the various unknowns:

i+ (s + [~ 22 85 e+ G5 Jrs o+ [§2 Ji-e =0

(11.27)

The coefficient of u;, is obviously the largest in magnitude, and since there is one equation
of the form (11.27) for each u;,, the set of equations can clearly be arranged in the
diagonally dominant form which is essential for the convergence of a Gauss-Siedel type
method. Solving (11.27) for u;, vields

_ Wik + U+ [(Ax)z/(Ay)z](uj+l,k + U 14)

U« 2+2(AX)2/(A)7)2 (11.28)
Often it is desirable to set Ax = Ay, and in this case (11.28) becomes
1
Ui = P s+ Wit + Ui + Uy ic) (11.29)

By sweeping through all of the interior points of R in any orderly fashion, and solving for
u;, from (11.28) (or (11.29)) at each point, one complete Gauss-Siedel iteration is carried
out. This can be repeated until convergence is attained. For the particular problem
under consideration, this iterative process will always converge. However, as we indi-
cated at the beginning of this discussion, it is much more effective to employ overrelaxa-
tion rather than straight Gauss-Siedel iteration. This overrelaxation can be accomplished
by using (6.51) to modify each value of u;, after it has been computed using Gauss-Siedel
iteration. Equation (6.51) written in terms of the variable u;, is

W =ul+ A" —ull (11.30)

where the number of the iteration is denoted by the superscript, and the asterisk indicates
the Gauss-Siedel value. Since we have mentioned overrelaxation, obviously we will be
interested in values of A between 1 and 2.

In Chapter 6, we noted that while an optimum value of A exists for any problem, it is
often difficult to find this optimum value. Fortunately, a great deal of information is
available on estimating optimum relaxation factors for the sets of equations which result
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from the application of finite difference methods to elliptic problems. The relatively
straightforward method which we will present here is from Forsythe and Wasow[6].
Much additional information on the choice of relaxation factors can also be found in the
same reference and in Varga[42] and Fox[41].

The optimum overrelaxation factor for the problem considered here can be esti-
mated by

2
Aupl—m)ﬁ (11.31)
where w? is determined as follows. Let
Yii = ull " —uid (11.32)
A norm of Y“*" is given by
Iy )= 2 2 YL (11.33)
Now
Y(l+l) .
”TWW”—M)' as [ —>wx (11.34)

Generally, this estimation of A, is carried out using Gauss-Siedel iteration (A =1 in
(11.30)). As each value of uj," is computed on a sweep through the matrix, the value of

4*D can be calculated from (11.32) just before the newly computed value ujy™" replaces

the old value u{2 in memory. This Y{" can then be added to a running sum which
eventually becomes || Y| through (11.33). In this way no significant additional amount
of storage space is required over that necessary for the Gauss-Siedel iteration. The use
of (11.34) to estimate »” presents something of a dilemma. Obviously if we wait until [
becomes very large (many iterations) then we will have an accurate estimate of ?, but it
will not be needed since we will have already solved the problem using Gauss-Siedel
iteration! If, on the other hand, ! is too small, then we will obtain a poor estimate of o’
and hence of A... (For the first few iterations, it is entirely possible that | Y "I/l Y|l
may be greater than 1. This would obviously cause disaster if it were used as an estimate
of w’>in (11.31).)

One effective procedure is to simply take enough iterations to ensure that the
estimate of @’ has settled down to a reasonably constant level less than 1, and then use
(11.31) to estimate A.,.. This may require from ten to several hundred Gauss-Siedel itera-
tions, depending on the problem and mesh sizes involved. The estimate of A is then
used in (11.30) and the problem iterated to convergence using this relaxation
factor. Even if the estimate of A, is fairly crude, the convergence rate will still be far
better than with Gauss-Siedel iteration alone. (We might note that in terms of con-
vergence rate it is generally better to overestimate Ao, than to underestimate it.)

We now turn to a brief qualitative discussion of the most efficient class of iterative
methods for elliptic problems, the alternating direction implicit (ADI) methods.
Denoting the current iteration by the superscript (I + 1), and the preceding iteration by (1),
we rewrite the difference equation (11.26) in the form

ufo = 2uf+uR | - 2ul + uy

(Ax)* Ayy
Note that the difference representation of 3°u/dy” involves unknown values of u from the
current iteration, but the representation of 8°u/dx’ involves only known values of u from

=0 (11.35)
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the preceding iteration. If (11.35) is written for every value of j along a vertical line in
Fig. 11.2, then we obtain a set of simultaneous equations involving only the values of u
along that line. Moreover, the matrix of coefficients of that set is tridiagonal. A similar
tridiagonal set can be formed for every vertical line. These tridiagonal sets can be solved
independently, resulting in new u values over the interior of R. Now we reverse the
process, representing the horizontal (x) derivative with unknown values from the current
iteration, and the vertical (y) derivative with known values from the preceding
iteration. This results in a tridiagonal set of simultaneous equations for each horizontal
line, and the solution of these sets again gives a new u value for every interior point of the
region R. Tt is usual to consider one complete iteration as consisting of the solution along
the vertical lines followed by the solution along the horizontal lines (or vice versa). This
iteration can be repeated as many times as necessary until convergence is attained. In
practice, an acceleration parameter, analogous to the relaxation factor used in (11.30), is
used to modify the computation for each “half” of the iteration. If a single optimum
value of this acceleration parameter is used, then the convergence rate of the ADI method
is essentially the same as that of SOR with an optimum value of A. If, however, a series
of properly chosen different acceleration parameters are employed in cyclic order, then
vastly superior acceleration rates can be attained. The reader is referred to Forsythe and
Wasow [6], Varga[42], and Westlake[43] for detailed treatments.

It should be noted that ADI methods also represent a most efficient direct
(noniterative) method of solving equations of the form

a(azu+ 62u> _du
ax*  ay*) ot

See Forsythe and Wasow [6].

We have confined our discussion in this section to simple rectangular regions and
Dirichlet boundary conditions. Many of the most difficult problems to deal with in the
solution of elliptic equations arise from the irregularly shaped regions and unusual bound-
ary conditions which are typical of real physical problems. Forsythe and Wasow[6] and
Allen [44] provide much useful information in these areas. See also Problem 11.6 for an
example involving boundary conditions which are not of the Dirichlet type.

Examples of numerical solutions to elliptic equations can be found in Problems
11.4-11.6.

11.4 NUMERICAL METHODS FOR THE SOLUTION
OF HYPERBOLIC EQUATIONS

It is possible to formulate straightforward finite difference methods for the solution of
hyperbolic equations. In particular, for the wave equation (11.7), the methods are very
similar to those which were developed for parabolic equations in Sec. 11.2, and include a
conditionally stable explicit formulation and a universally stable implicit method. See
Fox[41] for the details of these methods and see also Problem 11.7.

However, the most effective numerical techniques for hyperbolic equations are
based on the method of characteristics. 1t is beyond the scope of this book to discuss this
approach, and the reader is referred to the book by Abbott{45], and to the extensive treat-
ment of the subject which can be found in the literature of the compressible fluid flow and
plasticity fields. The most notable advantage of the method of characteristics is that
discontinuities in the solution, which are quite common with hyperbolic problems, can be
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accurately represented and maintained as the solution is carried out. 'With the usual finite
difference methods, such discontinuities tend to ‘““diffuse’ or smear out.

11.5 FINITE ELEMENT METHODS

We should not close this chapter without at least a brief introduction to finite element
methods as applied to problems involving partial differential equations. The finite ele-
ment approach is a relatively recent development which has its origins in the field of solid
mechanics (elasticity, plasticity, and structural analysis). As of this writing, finite ele-
ment methods have replaced finite difference methods in many areas of solid mechanics
and are making inroads into fluid mechanics, heat transfer, and other fields. However, in
fields other than solid mechanics, much of the emphasis is still on the development of the
finite element approach itself, rather than on the solution of problems. For the solution
of problems of practical importance, finite difference methods are employed in the major-
ity of cases, and the methods discussed earlier in this chapter are most relevant. In any
case, the potential of finite element methods in all fields involving partial differential equa-
tions appears sufficiently great to warrant some introductory discussion.

With the finite element approach, the partial differential equations describing the
desired quantity (such as displacement) in the continuum often are not dealt with
directly.* Instead, the continuum is divided into a number of “finite elements,” which
are assumed to be joined at a discrete number of points along their boundaries. A func-
tional form is then chosen to represent the variation of the desired quantity over each
element in terms of the values of this quantity at the discrete boundary points of the
element. By using the physical properties of the continuum and the appropriate physical
laws (usually involving some sort of minimization principle), a set of simultaneous equa-
tions in the unknown quantities at the element boundary points can be obtained. This set
of equations is in general quite large, but the matrix is banded.

For those situations where the finite element technology has been developed, there
are three primary advantages of the finite element approach over finite difference
methods. These are:

1. Irregularly shaped regions can be handled easily, without the special treatment usually
required by finite difference methods.

2. The size of the finite elements can easily be varied over the region, permitting the use of
small elements where strong variations occur and large elements where only gentle var-
iations are expected. With finite difference methods, at least in their conventional
form, the use of many such mesh size variations can cause bookkeeping difficulty.

3. For comparable accuracy, the finite elements can usually be considerably larger than
the mesh elements of a finite difference grid. As a result, when elliptic problems are
involved the band matrix referred to earlier is usually small enough to be solved
directly without recourse to the iterative methods which are usually necessary with
finite difference methods.

Required reading for anyone interested in the subject of finite elements is the book
by Zienkiewicz [46], which deals not only with solid mechanics but also with extensions of
the method into other areas of engineering and science.

*It should be noted, however, that a significant amount of work has also been done on the development of finite
element methods directly from the differential equations. This approach has been found to be particularly useful
in fields other than solid mechanics. See Ref. 46.
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Illustrative Problems

111

Solve the problem

ou_ ou
x> ay

u(0,y)=200, u(l,y)=200, u(x,0=0

by using an explicit numerical technique with Ax =0.2. Show results for two
different values of Ay: 0.04 and 0.015.

The explicit stability criterion for this problem requires that

2 2
Ays(—A—;—)=£0'72)—=0.02

Since Ay =0.04 exceeds this value, we would expect instability, while Ay = 0.015 should
provide a stable solution. Solutions for the two values of Ay at x = 0.4 are shown in Fig.
11.8 as a function of y. The solution for Ay = 0.015 is smooth and stable, and approaches
the correct ‘“‘steady state” value of 200. (A more accurate solution for small y could be
obtained by using smaller values of Ay in this region.) The solution for Ay = 0.04 is clearly
unstable, as would have been expected from the stability criterion. (No attempt has been
made to draw a smooth curve for this solution; the solution points were simply connected
with straight lines.)
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Fig. 11.8
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11.2 Formulate an implicit numerical solution to the problem
ou_ ou
x> Ay

u
u@©,y)=10, ——(Ly)=7, u(x0=0
Using the notation of Sec. 11.2, the gradient condition on (3u/dx)(1,y) can be ex-
pressed in backward difference form as

au 3t — Al F Ui _
ax (1Y) 2(Ax) =7

Note that we have used a difference representation which is of error order (Ax) to be
consistent with the truncation error of the central difference representation of 3°u/éx’ used
in Sec. 11.2. The quantity u;., .., is unknown for this problem, and the finite difference form
of the boundary condition furnishes the necessary additional equation. If we write this
equation in the form

[11tcin1+ [ 4Jth10 + Bl ner = 14(AX)

then the matrix formulation (11.19) can be written for the present problem as

I¢] 1 N7 tien ] (Qum - IOT
1 B 1 Wjsi2 Qu;z
1 B 1 Uir13 Qu;
1 B 1 Ujrin Qu,,

1 —4 3_1 _.uj+1.n+|J L 14(AX) -

This set is no longer tridiagonal, but it can be simply converted to tridiagonal form. This is

left as an exercise (Problem 11.10).

An alternative formulation is often used to handle the gradient boundary condition.

Consider Fig. 11.9.

Imaginary points

Lt — Ax -]
I
|
— .
k=n n+1 n+2 X
Fig. 11.9

We have added a column of “imaginary” points at a distance Ax from the true
right-hand boundary. We assume that the differential equation also applies to this added
region, and hence we can write the difference equation (11.17) at k = n + 1, yielding
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Ujrinez — 2ui+l,n+l + Ujsin _ Uisyn+1 — Upna
(Ax)’ At
The gradient boundary condition can be expressed in central difference form as
Uirins2™ Uivim =7
2(Ax)
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These two equations are sufficient to complete the set. Note that we have added the
additional unknown ;... at the imaginary point and hence require one more equation than
in the previous formulation. The entire set in matrix form can be written as

_B 1 7 r Ujr1) T —Qu“ — 107
| B 1 U1 2 Qu,;:
1 B Uji1a Qu;s
1 B 1 Hjein+t Quj,,.ﬂ
L -1 0 ]_4 L Hj+(,n+2J L 14(Ax) -
This form can also readily be made tridiagonal. Once again the details are left to Problem
11.10.
11.3 Devise a finite difference method for solving the nonlinear parabolic equation
Pu_ ou
ax? 8y

There are many possible approaches to this problem. We will limit our discussion to
two implicit methods, both of which are universally stable. Using the notation of Sec. 11.2,
one possible difference form for the differential equation is

Wi k61—

20U g+ Upsrp- -u [uj-H‘k - ui.k:l
(Ax)’ b N

This form is very similar to the implicit form (11.17) employed for the one-dimensional
transient diffusion equation, except that the nonlinearity on the right side of the equation has
been accommodated by using the known value u;, to multiply the difference representation
of du/dy. (Recall that those quantities with subscript j + 1 are unknown, and those with
subscript j are known.) The resulting equation is linear in the unknown values of u, and the
solution procedure is virtually identical to that for (11.17). The only modification necessary
is a slight change in the diagonal elements of the tridiagonal matrix and in the rlght hand side
column vector of (11.17) to include u;,.
We briefly note that another possible difference representation is

= 2Uji ¥ Wi - [ui—H.k - ui.kjl
(Ax)z i+ 1.k Ay

Since the unknown u;..« has been used to multiply the difference representation of du/dy,
this difference form involves (u;..+)’ and hence is nonlinear in u;.,.. The set of simultane-
ous algebraic equations which results when the difference equation is written for each point
in the x direction is thus nonlinear in the unknown values of u, and must be solved
iteratively. This additional complication can, under certain circumstances, be balanced by
the increased accuracy which usually can be obtained from the nonlinear difference form.

Uj1,6+1
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11.4 Solve Laplace’s equation on

the interior of the region shown

in Fig. 11.10 using the indicated ve
boundary conditions  with
Gauss-Siedel iteration. u =100

We arbitrarily choose the T
reasonably coarse mesh of Ax =

Ay =0.125, providing 8 mesh u =200 u = 400
spaces in the y direction and 16 in
the x direction. This means that
there are a total of 105 (7 X 15) in-
terior points and thus 105 simul- =300
taneous equations to be solved,

each of the form Fig. 11.10

% ¢

1
U = Z Wio1k + Wik + W) + Uiksr)

We will discuss the adequacy of this mesh size later.

The first problem we face is that of choosing an initial guess for the unknown at each
point. The simplest and most commonly used initial guess is a constant over the entire
region, and we will take this approach. (It should be noted that a more sophisticated initial
guess can result in faster convergence in many cases.) We will consider the effect of two
different initial guesses, u = 0 and u = 200 in the interior of the region. Obviously u =0isa
poor guess, and we would expect that more iterations would be required to satisfy a given
convergence criterion than would be necessary for an initial guess of u = 200.

We employ an absolute convergence criterion of € = 0.1, and sweep through the region
from left to right along lines parallel to the x axis, starting at y = Ay and moving upward one
line when the right-hand boundary is réached on each horizontal sweep. Using an initial
guess of u =0, 61 iterations through the entire region are required in order to satisfy the
convergence criterion at every point. (To provide some perspective, this requires
about 7.5 seconds of IBM 360/67 central processor time.) Some of the answers are shown
in Fig. 11.11.

u =100
154.13 157.68 191.05
201.49 210.32 251.73
u =200 u =400
247.97 256.95 284.92
0.25 jt—— 0.5 —mf

u =300

Fig. 11.11
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11.5

11.6

With an initial guess of u = 200, only 36 iterations are required to yield essentially the
same answers, and the advantage of the better initial guess should be apparent.

The exact solution at the center of the region is u = 221.95 as compared with the value
from our numerical solution of 210.32. The numerical solution is in error by about 5% at
this point, but it can be improved as much as desired by using smaller mesh sizes (and
tightening the convergence criterion).

Solve Problem 11.4 by estimating and using an optimum overrelaxation factor.

We begin by using Gauss-Siedel iteration for the first few iterations. The initial guess
is a uniform value of u = 200. The norm | Y], and «°, which is the ratio of the norm on the
present iteration to that on the preceding iteration, are shown below for the first 10 iterations:

Iteration Y o’

1 33.37 —
2 6.57 0.19674
3 2.90 0.44189
4 1.69 0.58114
5 1.12 0.66700
6 0.81 0.72215
7 0.62 0.75847
8 0.48 0.78341
9 0.39 0.80030
10 0.31 0.81305

By the tenth iteration, the value of w” has settled down sufficiently that it is probably best to
estimate Ao, at this point, rather than to pursue what would appear to be a policy of
diminishing returns in trying to obtain «’ more accurately. From (11.31), we find

2 2
1+VIi-w® 1+V1-081305

Using overrelaxation with this value of A, we find that the absolute convergence criterion of
€ = 0.1 is satisfied at all points in 14 more iterations. Thus a total of 24 iterations are
required for this process as opposed to the 36 iterations required in Problem 11.4 using
Gauss-Siedel iteration with the same initial guess.

The reduction in the number of iterations which can be accomplished by the use of an
optimum overrelaxation factor is much more dramatic when mesh sizes are small, since
small mesh sizes result in a large number of equations and a relatively slow convergence
rate.

Aopt = = 1.39628

Formulate the solution to Laplace’s equation on the region shown in Fig. 11.12.

The only new feature of this problem is the presence of gradient boundary
conditions. Using the notation of Sec. 11.3, these conditions can be expressed in difference
form as

—gy’i(x,O) ~ T Hak 2?;;3—3%‘“ =0  (written for k=1,2,...,n)
and

a 3 jn+ _4 'n+ j,n— . »

5;“(4,y)= Hinst Z(A“;) Yinn — 100 (written for j=1,2,...,m)
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u =200 — =100

2l
i
[~

Fig. 11.12

The difference representation of du(x,0)/dy is forward and of error order (Ay)’, while that of
du(4,y)/ax is backward and of error order (Ax)’. In our earlier consideration of elliptic
problems, only the values of u on the interior points of the region were unknown, and
corresponding to each of these unknowns was the difference form of the original differential
equation written at that point. For this problem, the values of u along the boundaries y =0
and x = 4 are also unknown, and the difference forms of the boundary conditions furnish the
necessary additional equations. Solving each of the equations for the unknown which ap-
pears in it, we find

Uo.x =%(-u2.k +4u,.), k=12,...,n

Uins) = %[2(100)(Ax) + AU, — Upn-1], i=L2,....m

These equations can now be solved along with the usual equations at the interior points by
Gauss-Siedel iteration (or overrelaxation).

We should note that the other commonly encountered way of handling gradient bound-
ary conditions is to use a central difference at the boundary along with an “‘imaginary” point
outside the boundary. This approach was discussed in Problem 11.2 in connection with a
parabolic problem, where the single additional unknown at the imaginary point was relatively
insignificant. For the present problem, an entire line of additional unknowns would be
added along the bottom and right boundaries. This could mean a significant amount of
additional work. )

The corner point at x =4, y =0 does not enter into any of the calculations, and, in
fact, cannot be uniquely determined even after the solution is obtained, since either of the
boundary conditions could be used to solve for it. Physically speaking, boundary condi-
tions of the type considered here cannot be extended all the way into the corner, so this is a
mathematical problem rather than a physical one. Similar situations are often encountered
in the solution of elliptic equations on rectangular regions by analytical methods.

Devise an explicit finite difference representation for the wave equation

Fu_
ax*

’u
Bayz

and indicate the probable stability criterion.
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Problems involving the wave equation are initial valued in one variable (we will
assume it is y) and boundary valued in the other (x). The initial values specified are usually
u(x,0) and ou(x,0)/dy. We now impose a finite difference grid on the region of interest and
associate the subscript j with y, and k with x. If central difference expressions for the
derivatives are employed about the point (j,k), then the differential equation can be rep-
resented as

Wijers = 2Uip + Ui _ Bl:“j+l,k = 22Uy + uj—l.k]
(Axy’ Ayy’

Solving for u.,, we find

o= [ o [0 o 220 o

This representation is clearly explicit, since we can solve directly for u;.,,. At first glance, it
might appear that this method is not self-starting, since u values with subscripts of jand j — 1
are involved. However, since one of the initial conditions is on du/dy, a difference
expression for this derivative will relate u,, to u,, and thus provide the necessary values of
u,, for starting.

Since we have not discussed the details of stability analysis, our only hope in this
regard is to attempt to draw an analogy to the explicit representation of the parabolic one-
dimensional diffusion equation (11.14). Recall that this representation became unstable
when the coefficient of u;, was negative. For the present problem, we might then expect
the method to be stable only if

@y’ _,
B(AxY

A complete stability analysis reveals that this is indeed the correct stability criterion.

Problems

*11.8  Solve the following problem numerically:

*11.9

2u_ ou
ax’  dy
u(0,y) =100, u(10,y)=300, u(x,00=0
Use Ax = 1 and suitable values of Ay. Use an explicit method up to y = 5; then shift to an
implicit method and carry the solution to the “steady state.”

Given the following problem:

ou_ ou

x> dy
u(0,y)=50, u(ey)=0, u(x0=0

Find u(x,y) by any suitable numerical method. Stop at the point where u(1,y)=40.
(There is no “steady state’” solution for this problem. Why not?)

11.10 Convert the nontridiagonal sets obtained in Problem 11.2 to tridiagonal form.
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*11.11

1112

11.13

*11.14

11.15

*11.16

11.17

NUMERICAL METHODS

Complete the solution which was begun in Problem 11.2. Use Ax = 0.1 and an initial Ay of
0.005, increasing Ay as desired as the steady state is approached. Carry out the solution to
the point where u(1,y) reaches 95% of its steady state value. (You may use either of the
matrix formulations discussed in Problem 11.2.)

Formulate an implicit method for solving problems involving the following parabolic equa-
tion:

3 u\ _ ou
ax <G(u) ax) B dy
where G(u) is a known function of u.

Solve Laplace’s equation numerically for the region shown in Fig. 11.13.
The boundary conditions are con- u = 100

stant at the indicated values. Use two

dlfferept approgches in obtaining your o :

numerical solution:

(a) Gauss-Siedel iteration with a uni- u =200 u =200
form grid size of 0.25 in each 1
direction. Do not take advantage
of symmetry.

{b) Repeat the solution as in part (a),
but use the symmetry of the problem u =300
to reduce the amount of work. Fig. 11.13

Solve the problem which was formulated in Problem 11.6. Use Ax =Ay =0.2, and an
absolute convergence criterion of 0.1 on u. The method should be one of the following:

(a) Gauss-Siedel iteration.

(b) Optimum overrelaxation.

If optimum overrelaxation is used, it will of course be necessary to first estimate A... In
any case, use a uniform initial guess of u = 150 over the region.

Laplace’s equation in cylindrical coordinates is

3u 1ou 138u
TEt-—t——s=0

ar® rar r°o6

Formulate a finite difference representation of this equation using central differences and
indicate how Gauss-Siedel iteration could be used to solve the difference equations over any

desired region.

Solve by an appropriate numerical method the following problem involving Poisson’s equa-
tion:

1)

2
SH==10, u©y)=0

2
U
5+

x y

D

u(x0=0, u(l,y)=0, u(x1)=0

Using the Crank-Nicholson concept discussed in Sec. 11.2, formulate an implicit difference
representation of the wave equation and discuss its probable stability characteristics.



Appendix
Interpretation of Flow Charts.

Tables of Weights and Zeros for Gauss
Quadrature.

A FORTRAN 1V Subroutine for Matrix
Inversion.

INTERPRETATION OF FLOW CHARTS

We have adopted a very simple notation for the flow charts used in this book.
Rectangular boxes are employed where actual arithmetic operations and substitutions are
involved. Thus

A < B=C

means that A assumes the value of B times C. Similarly,

ie—i+1

results in the increase of the index i by 1.
Oval boxes are used for simple logic statements. The question “Is i greater than
n?” is represented by

. N
i1 >n

Y

where the Y branch corresponds to an answer of Yes, and the N branch to an answer of
No. For several reasons we have not adopted the diamond shaped boxes which are
sometimes employed for logic statements.

201
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Virtually every compiler has a suitable statement which should be used to carry out
the actual computer programming of those loops which involve the incrementing of an
index variable until it reaches a specified limit. Typical examples are the FORTRAN DO
statement and the ALGOL FOR statement.

A few flow charts are sufficiently complex that to put in all of the necessary connect-
ing lines would result in a confusion of crossed lines or would require a large amount of
space. In these cases the following convention is used:

A connecting line between the circled numbers is implied, and the circled numbers may be
physically separated by any vertical or horizontal distance.
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Table A-1 Zeros and Weights for Gauss-Legendre Quadrature
n & Wi n + & Wy
2 0.5773502692 1.0000000000 0.1252334085 0.2491470458
0.3678314990 0.2334925365
3 0.0000000000 0.8888888889 - 0.5873179543 0.2031674267
0.7745966692 0.5555555556 0.7699026742 0.1600783285
o | Cowioss | oesidsise poBiss0Rs | 00471753364
00000000000 0.5688888889 0.0950125098 0.1894506105
s | ossasl | omsasens OIBIGIISSIE | 01626034150
0.9061798459 0.2369268850 ' '
6 0.6178762444 0.1495959888
0.2386191861 0.4679139346 0.7554044084 0.1246289713
6 0.6612093865 0.3607615730 0.8656312024 0.0951585117
0.9324695142 0.1713244924 0.9445750231 0.0622535239
0.9894009350 0.0271524594
omomonon | ostmmiey
7 07415311856 0.2797053915 0.2277858511 0.1491729865
0.9491079123 0.1294849662 0.3737060887 0.1420961093
0.5108670020 0.1316886384
0.1834346425 0.3626837834 20 0.6360536807 0.1181945320
0.5255324099 0.3137066459 0.7463319065 0.1019301198
8 0.7966664774 0.2223810345 0.8391169718 0.0832767416
0.9602898565 0.1012285363 0.9122344283 0.0626720483
0.9639719273 0.0406014298
0.0000000000 0.3302393550 0.9931285992 0.0176140071
0.3242534234 0.3123470770
9 0.6133714327 0.2606106964 0.0640568929 0.1279381953
0.8360311073 0.1806481607 0.1911188675 0.1258374563
0.9681602395 0.0812743884 0.3150426797 0.1216704729
0.4337935076 0.1155056681
0.1488743390 0.2955242247 0.5454214714 0.1074442701
0.4333953941 0.2692667193 " 0.6480936519 0.0976186521
10 0.6794095683 0.2190863625 0.7401241916 0.0861901615
0.8650633667 0.1494513492 0.8200019860 0.0733464814
0.9739065285 0.0666713443 0.8864155270 0.0592985849
0.9382745520 0.0442774388
0.9747285560 0.0285313886
0.9951872200 0.0123412298

This table of zeros and weights for Gauss-Legendre quadrature has been excerpted
from Ref. 15 and rounded to 10 decimal places. More extensive tables can also be found in
Ref. 14.



294 NUMERICAL METHODS

Table A-2 Weights and Zeros for
Gauss Quadrature Applied to In-
tegrals of Form [; f(x) log, (x) dx

n Xk Wy

2 0.112009 0.718539
0.602277 0.281461
0.063891 0.513405

3 0.368997 0.391980
0.766880 0.094615

0.041448 0.383464
0.245275 0.386875
0.556165 0.190435
0.848982 0.039225

This table has been adapted from Ref. 15.

A FORTRAN IV SUBROUTINE FOR MATRIX INVERSION

The routine given here employs Gauss-Jordan elimination with column shifting to maxi-
mize pivot elements. The routine is called by the statement

CALL INVDET (C,N,DTNRM,DETM)

where C is a square two dimensional array containing the matrix to be inverted, and N is
the row and column dimension of the matrix to be inverted. On return from the sub-
routine, the inverted matrix is stored in C in the same position as the original matrix (the
original matrix is destroyed). The magnitude of the determinant of the original matrix is
returned in DETM, and this magnitude, divided by the Euclidean norm of the matrix, is
returned in DTNRM. There are no error exits, and attempting to invert a singular matrix
will simply return erroneous results. However, extreme ill-conditioning or singularity
will usually be accompanied by a very small value of DTNRM.

The matrix C has been dimensioned as 70X 70 in the subroutine. This must be
changed as necessary to agree with the dimensions of the corresponding array in the
calling program. The dimension of J must be at least 21 greater than the row or column
dimension of C. The value of N can be any integer less than or equal to the row and
column dimension of C.
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123

124

125

126
135

127
128

137
138

139

130
141

142
144

131
132

136
133

163

143

SUBROUTINE INVDET (C,N,DTNRM,DETM)

DIMENSION C(70,70),J(120)
PD=1.

DO 124 L=1,N

DD=0.

DO 123 K=1,N
DD=DD+C(L,K)*C(L,K)
DD=SQRT(DD)
PD=PD*DD

DETM=1.

DO 125 L=1,N
J(L+20)=L

DO 144 L=1,N

cC=0.

M=L

DO 135 K=L,N

IF ((ABS(CC)-ABS(C(L,K))).GE.0.) GO TO 135

M=K
CC=C(L,K)

CONTINUE

IF (L.EQ.M) GO TO 138
K=J (M+20)

J (M+20)=J (L+20)
J(L+#20)=K

DO 137 K=1,N

$=C(K,L)

C(K,L)=C(K,M)

C(K,M)=$

C(L,L)=1.

DETM=DETM*CC

DO 139 M=1,N
C(L,M)=C(L,M)/CC

DO 142 M=1,N

IF (L.EQ.M) GO TO 142
cc=Cc(M,L)

IF (CC.EQ.0.) GO TO 142
C(M,L)=0.

DO 141 K=1,N
C(M,K)=C(M,K)-CC*C(L,X)
CONTINUE

CONTINUE

DO 143 L=1,N

IF (J(L+20).EQ.L) GO TO 143

M=L
M=M+1

IF (J(M+20).EQ.L) GO TO 133

IF (N.GT.M) GO TO 132
J (M+20)=J (L+20)
DO 163 K=1,N
€C=C(L,K)
C(L,K)=C(M,K)
C(M,K)=CC
J(L+20)=L
CONTINUE
DETM=ABS (DETM)
DTNRM=DETM/PD
RETURN

END

295



References

AN AW

~1

10.
11.
12.
13.

15.

16.
17.
18.

19.

20.

21.

22.

296

. Salvadori, M. G. and M. L. Baron: Numerical Methods in Engineering, 2nd ed., Prentice-Hall,

1961.

. Carnahan, B., H. A. Luther, and J. O. Wilkes: Applied Numerical Methods, John Wiley, 1969.

. Ralston, A.: A First Course in Numerical Analysis, McGraw-Hill, 1965.

. Conte, S. D.: Elementary Numerical Analysis, McGraw-Hill, 1965.

. Froberg, C.-E.: Introduction to Numerical Analysis, 2nd ed., Addison-Wesley, 1969.

. Forsythe, G. E. and W. R. Wasow: Finite Difference Methods for Partial Differential Equations,

John Wiley, 1960.

. Rice, J. R.: The Approximation of Functions, Addison-Wesley, 1964.
. Meinardus, G., translated by L.. Schumaker: Approximation of Functions: Theory and Numeri-

cal Methods, Springer-Verlag, New York, 1967.

. Pugh, E. M. and G. H. Winslow: Analysis of Physical Measurements, Addison-Wesley, 1966.

Acton, F. S.: Analysis of Straight-Line Data, Dover.

Hamming, R. W.: Numerical Methods for Scientists and Engineers, McGraw-Hill, 1962.
Acton, F. S.: Numerical Methods That Work, Harper and Row, 1970.

Lanczos, C.: Applied Analysis, Prentice-Hall, 1956.

. Stroud, A. H. and D. Secrest: Gaussian Quadrature Formulas, Prentice-Hall, 1966.

Abramowitz, M. and 1. A. Stegun, eds.: Handbook of Mathematical Functions with Formulas,
Graphs and Mathematical Tables, Dover, 1964.

Davis, P. J. and P. Rabinowitz: Numerical Integration, Blaisdell (now Xerox), 1967.
Henrici, P.: Discrete Variable Methods in Ordinary Differential Equations, John Wiley, 1962.
Crandall, S. H.: Engineering Analysis: A Survey of Numerical Procedures, McGraw-Hill,
1956.

Butcher, J. C.: “On Runge-Kutta Processes of High Order,” Journal of the Australian
Mathematical Society, Vol. 4, pp. 179-194, 1964.

Shanks, E. B.: “Solutions of Differential Equations by Evaluation of Functions,” Mathematics
of Computation, Vol. 20, pp. 21-38, 1966.

Hall, T. E., W. H. Enright, B. M. Fellen, and A. E. Sedgewick: ‘“Comparing Numerical Methods
for Ordinary Differential Equations,” SIAM Journal on Numerical Analysis, Vol. 9, No. 4, pp.
603-637, 1972.

Gear, C. W.: “The Automatic Integration of Ordinary Differential Equations,” Communications
of the Association for Computing Machinery, Vol. 14, pp. 176-190, 1971.



REFERENCES 297

23.

24.

25.

26.
27.

28.

29.

30.

31

32.

33.
34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44,
45.
46.

Keller, H. B.: Numerical Methods for Two-Point Boundary-Value Problems, Blaisdell (now
Xerox), 1968.

Bulirsch, R. and J. Stoer: “Numerical Treatment of Ordinary Differential Equations by Extrapo-
lation Methods,” Numerische Mathematik, Vol. 8, pp. 1--13, 1966.

Curtiss, C. F. and J. O. Hirschfelder: “Integration of Stiff Equations,” Proceedings of the
National Academy of Sciences, Vol. 38, pp. 235-243, 1952.

Wilkinson, J. H.: The Algebraic Eigenvalue Problem, Oxford University Press, London, 1965.

Rutishauser, H.: “Solution of Eigenvalue Problems with the LR Transformation,” National
Bureau of Standards, Applied Mathematics Series, No. 49, pp. 47-81, 1958.

Francis, J. G. F.: “The QR Transformation,” The Computer Journal, Vol. 4, pp. 265-271, 1961
(Part I) and pp. 332-345, 1962 (Part II).

Bowdler, H., R. S. Martin, C. Reinsch, and J. H. Wilkinson: “The QR and QL Algorithms for
Symmetric Matrices,” Numerische Mathematik, Vol. 11, pp. 293-306, 1968.

Martin, R. S. and J. H. Wilkinson: ““The Implicit QL Algorithm,” Numerische Mathematik, Vol.
12, pp. 377-383, 1968.

Martin, R. S. and J. H. Wilkinson: “Similarity Reduction of a General Matrix to Hessenberg
Form,” Numerische Mathematik, Vol. 12, pp. 349-368, 1968.

Martin, R. S., G. Peters, and J. H. Wilkinson: “The QR Algorithm for Real Hessenberg
Matrices,” Numerische Mathematik, Vol. 14, pp. 219-231, 1970.

McCracken, D. D.: A Guide to ALGOL Programming, John Wiley, 1962,

Martin, R. S., G. Peters, and J. H. Wilkinson: “Symmetric Decomposition of a Positive Definite
Matrix,” Numerische Mathematik, Vol. 7, pp. 362-383, 1965.

Martin, R. S. and J. H. Wilkinson: “Reduction of the Symmetric Eigenproblem Ax = ABx and
Related Problems to Standard Form,” Numerische Mathematik, Vol. 11, pp. 99-110, 1968.

Martin, R. S., C. Reinsch, and J. H. Wilkinson: “Householder’s Tridiagonalization of a
Symmetric Matrix,” Numerische Mathematik, Vol. 11, pp. 181-195, 1968.

Rutishauser, H. and H. R. Schwarz: “The LR Transformation Method for Symmetric
Matrices,” Numerische Mathematik, Vol. 5, pp. 273-289, 1963.

Reinsch, C. and F. L. Bauer: “Rational QR transformation with Newton Shift for Sym-
metric Tridiagonal Matrices,” Numerische Mathematik, Vol. 11, pp. 264-272, 1968.

Parlett, B. N. and C. Reinsch: “Balancing a Matrix for Calculation of Eigenvalues and Eigenvec-
tors,” Numerische Mathematik, Vol. 13, pp. 293-304, 1969.

O’Brien, G. G., M. A. Hyman, and S. Kaplan: “A Study of the Numerical Solution of Partial
Differential Equations,” Journal of Mathematical Physics, Vol. 29, pp. 223-251, 1951.

Fox, L.: Numerical Solution of Ordinary and Partial Differential Equations, Pergamon Press,
dist. by Addison-Wesley, 1962.

Varga, R. S.: Matrix Iterative Analysis, Prentice-Hall, 1962.

Westlake, J. R.: A Handbook of Numerical Matrix Inversion and Solution of Linear Equations,
John Wiley, 1968.

de G. Allen, D. N.: Relaxation Methods in Engineering and Science, McGraw-Hill, 1954.
Abbott, M. B.: An Introduction to the Method of Characteristics, American Elsevier Publ., 1966.

Zienkiewicz, O. C.: The Finite Element Method in Engineering Science, McGraw-Hill, London,
1971.



Answers to Problems

The number of decimal digits given for the numerical answers varies somewhat, but does not
exceed 7, since this is the (single precision) word length of the IBM 360/67. Except as noted, these
numerical answers are the results of actual computer runs using the specified method, and may not
agree to all digits with the exact solution to the problem. The reader can in many cases expect to
obtain results which differ slightly from the answers given here, depending on the computer and
programming techniques employed.

CHAPTER 2
242 sinh x =x + X3+ x*/5t+ X771+ - -
2.13 1.02153

2.14  Error bound = 0.0070518, actual error = 0.0050167. Note that the term involving x* is not
present, so the error term must involve x°.

2.15 sin x = (sin w/H[1+(x — 7w/ — (x — w42~ (x — w431+ (x — w/4)* {4+ - - -]

216 1/(1-x)=1+2x+3x>+4x*+5x*+ - -

217 No. Not only is log.(0) infinite, so are all of the derivatives of log, x evaluated at x = 0.
218 x-2x"3

219 1-x%2+5xY24

2.20 The series is convergent. It is not necessary that the ratio of any two specific succeeding
terms be less than one as long as one of the convergence tests is satisfied.

221 g(x)=x+x3+ xS+ XTI+ -
h(x)=1+x*2+ x*/41+ x*/6!1+ - - -

222 1+3(x—-D+3x-1P+Gx-101=%x

223 0.940316
298
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CHAPTER 3

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

dﬁ
O = (e 65 10— 20fies+ 15f12= 6+ )+ O(h)

f'(x) = Qfies— ez + 18f., — 11£)/6h + O(h)’

(X)) =

Bf}ﬁ’." (1 + 9)ﬁ‘+l +f;

ih’0(1+6)

Exact answer = — 0.3826824

forh = w/10
forward O(h) backward O(h) central O(h)’
—0.5203500 —-0.2324857 —0.3764178
forward O(h)’ backward O(h) central 6(h)*
—0.4018839 —0.3877978 —0.3825588
for h = 7 /20

forward O(k)
—0.4535205

backward O(h)
—0.3086988

central O(h)’
—0.3811097

forward O(h)
—-0.3866921

backward O(h)’
—0.3849109

central O(h)*
-0.3826741

4th degree polynomial

f'(1)=~0.798 for h =0.025

h = 107 for accuracy within a few percent.

f(x;) = 0.2406 + OCh )
(%)= —0.0618 + O(h)

299

If the function to be differentiated is a constant, then the difference representation of any
derivative must yield zero.

Biased difference, first error term = ——g f(x)

5

Central difference, first error term = —% F(x)

Actual error, biased difference = 0.0152557
Actual error, central difference = 0.0008339

Oh)
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CHAPTER 4
4.11 Third degree polynomial. The coefficient of x°® is 1.
412 f(4.31)=197.17
4.13 (a) 10.909 (Bessel, 1.05 as base line)
(b) 7.034 (Stirling, 0.9 as base line)
(c) 25.708 (Gregory-Newton backward, 1.5 as base line)
(d) —1.473 (Gregory-Newton forward, 0.3 as base line)
4.14 f(4.3)=-10.007
417 f(1.3)=-—411
418 f(6.3)=0.226
4.19 Results are virtually identical since the base lines of the tables used in 4.13 were almost full.
4.21 f(3.4)=13.745
4.22 f(9)=-12.953

4.23 f(3.0) =36.769 (polynomial extrapolation)

4.24 f(5.0) = 5.04 (polynomial extrapolation on a log-log scale)

CHAPTER 5
5.13 V3 =1.732051

514 Y75=4.217163

5.15 x =1.23511

5.16 x =0.73909

517 x =0.567143

5.18 Same root as 5.17

5,19 x = 1.16556, 4.60422, 7.78988, 10.94994, 14.10172
5.20 x =3.831698

5.21 x =-0.713967, 1.57251, 2.17178, 4.19268
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5.22 f...=2.158887 at t =0.374201
5.23 x =2.70, 2.70, 3.40, 3.40
5.24 x = 1.87510, 4.69409, 7.85476, 10.99554, 14.13717
CHAPTER 6
6.14 (a) X =[100.3335, 28.66667, — 32.66669]"
(b) X =[1.0, 0.75, 0.25]"
6.15 (a) X =[—21.86188, 11.46568, 2.376447, — 8.514801, 0.7475478, — 15.50981, 18.08498]"
(b) X = [288.1675, —315.7456, — 265.2044, —374.2180, — 503.0234, 216.9468]"
6.16 See answers to 6.15.
6.17 X =[8.705757, 7.823031, 7.586369, 7.522449, 7.503435, 7.491301, 7.461781, 7.355828,
6.961553, 5.490388]"
6.18 0.745
6.19 Magnitude of determinant = 1.91 x 1072, Set is singular.
6.20 (e =10 for all problems)
(a) X =[6.1656, 6.0191, —1.0892]"
(b) X =10.8119, 0.5638, 5.7390, — 1.1630]”
(c) X =[4.1992, 0.4955, —2.0308, 7.7589, 8.4767, 2.7424, 7.0443, 4.8825]"
(d) X =[2.6943, 9.0222, —2.1541, 4.8317, 8.7579, 0.7241, — 1.7160]"
6.21 See answers to 6.17.
6.22 Initial guess, x; =10 (i=1,2,...,10). A =1, 9 iterations; A = 1.3, 12 iterations; A =
1.6, 22 iterations; A = 1.8, 44 iterations. (e = 107 for all cases) i
6.24 X =[0.8890, —0.8126, 2.1419, 2.64971" (e = 1079
CHAPTER 7
7.9 (a) g(x)=15571671-5.301162x
(b) g(x)=71.38016—1.503378x
7.10  g(x)=1.130053 + 1.284786x — 0.0693512x"
711 g(x) = 1.454021 x>0
712  g(x) = 1.27338¢"0440x
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7.13  g(x)=0.9999681x — 0.1664924x> + 0.0079856x°
Maximum error in g(x) =5.855x 10%.
Maximum error using first 3 terms of Taylor series = 1.984 x 107,

7.14 g(x)=0.75y’—0.75y — 6.132813
Error bound = 0.6328125

7.15 Exact value = 0.7853981.
Continued fraction at sixth convergent = 0.7853661.
Error in continued fraction = 3.2 x 107,
Number of terms in Taylor series for comparable accuracy = 15,625.

7.16 Rational approximation — 33.625 usec
Taylor series— 44.625 . sec

CHAPTER 8

All answers are exact except as indicated.

8.20 (a) log.3=1.098612
(b) 3.749644
(¢) m/4+log(cos w/4) = 0.4388245
(d) 2/3
(e) log(1+e)—log2=0.6201130

8.21 36.375 (4 points)
8.22 36.375
8.23 (a) 7.560909
(b) —0.8473821
(c) 1.449651 (computed)

8.24 (a) =/8 log.2=0.2721982
(b) 0.828994 (n = 24 with Gauss quadrature)

8.25 (a) Let y =e¢™* and the integral becomes

1
J’ 1 nyz = m/4=0.7853981
0

(b) w/(2e)=0.5778636
(c) 1.033477

8.26 (a) V=/2=10.8862269
(b) —3.420544
(¢) =8 =1.243308

8.27 (a) 1/(4e)=0.0919698
(b) 0.2546940 (50 x 50 Simpson’s rule)
(c) 4.486770 (50 X 50 Simpson’s rule)
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8.28 (a) m/2=1.570796
(b) 7’/4 = 2.467401
(c) 0.185784 (Romberg € = 1079
(d) 0.974302 (Special Gauss, n = 4)
(e) —0.5772157
) 6.0

8.29 58.39580 (Simpson’s 1/3 rule + Simpson’s 3/8 rule)

CHAPTER 9

For all problems where no method is specified in the problem statement, a fourth-order
method has been used with sufficiently small step sizes to ensure good accuracy.

9.18 t 0.1 0.2 0.5 1.0 1.5 2.5

y 0.099668 | 0.197375 | 0.462116 | 0.761592 | 0.905146 | 0.986614

9.19 t 0.5 1.0 1.5 2.0 3.0 4.0

y 1.05785 1.21611 1.45636 1.76314 2.52248 3.40419

8.20 t 0.2 0.6 1.0 14 1.8
y 2.96714 2.73649 2.41648 2.16894 2.04838

9.21 t 0.5 1.0 1.5 2.0 2.5 3.0 35

y 1.11099 1.43438 2.06784 3.40014 7.01648 25.1192 5562.21

9.22 t |65 1.0 1.5 2.0 2.5 3.0 35 4.0

y |0.094705 | 0.512513 | 0.777002 | 1.09373 | 0.994983 | 0.732393 | 0.042280 | —0.552708

9.23 t 0.8 1.6 24 32 4.0
y 0.937240 0.635519 0.107287 —0.785498 —3.66414
9.24 t 0.4 0.8 1.2 1.6 2.4 3.2 4.0

y 0.933176 | 0.739006 | 0.438683 | 0.071843 | —0.637120 | —0.990543 | —0.825770
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9.25 t 0.3 0.6 0.9 1.2 1.5
y 557.371 584.179 610.352 635.821 660.516
9.26 t 0.2 0.5 1.0 1.5 1.9 ?
y 0.449335 0.135342 0.018331 0.0022586 0.001031 ?
Using a standard method (4th order Runge-Kutta with At = 0.05), the solution reaches a
minimum at ¢ = 1.9 and (erroneously) starts to climb. This differential equation is “stiff,”
and as noted in the text, special methods are required.
9.27 x 2.0 3.0 4.0 5.0 6.0 7.0
y —0.240197 | —0.785408 | —0.548954 | 0.084748 0.531348 0.457088
9.28 See answers to 9.27.
9.29 x 0.4 0.8 1.2 2.0 2.8 3.6
y 0.106119 0.420342 0.922318 2.30579 3.88034 5.47927
y' 0.529424 1.03352 1.45796 1.91102 1.99493 1.99991
(x = 6 used as effective infinity.)
9.30 See Table 9.11.
9.31 b 0.4 0.8 1.6 24 34 4.4
y 0.088067 0.312440 0.979799 1.75527 2.75221 3.75210
CHAPTER 10
0.2500000 0 0
10.22 L~'=| —0.7499998 0.3333333 0
0.1785714 —0.0952381 0.1428571
2.236068 0 0 0
1.788854 2.190891 0 0
1023 L=| 8044272 0639009  2.965075 0
1.341640  —0.1825730 —0.0281048 3.341538
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10.24

10.25

10.26

10.27

10.28

10.29

10.30

10.31

(a) A, =14.20680
X, =[1.0, 1.357335, 1.016850]"
(b) A, =21.30525
X, = [0.8724071, 0.5400626, 0.9973493, 0.5643892, 0.4972264, 1.01"

(a) A =4.361548
(b) A;=1.621394

A= 3.979469, X, =1{1.0, 0.6929171, 0.4503604]
Relaxation factor of 0.7 is near optimum.

(a) A = 14.20680, X, =[1.0, 1.357335, 1.016850]"
A= —6.568357, X, =[1.0, 0.0912823, —1.105274]"
As = 4.361548, X, =[1.0, —1.332120, 0.7947350]"

(b) A =27.99135, 13.86755, 10.97669, 8.711922, 5.988826, 4.463617
X, ={1.0, 0.9414426, 1.448744, 1.367083, 1.866736, 0.9641095]"
X, =[1.0, —2.474414, —4.866274, —2.367334, 5.378862, 1.633608]"
X;=[1.0, —0.5812529, 0.9383285, —1.139132, —0.617812, —0.14475911"
X, = [1.0, 0.6026523, —0.6093723, 0.1082658, —0.3642792, —0.1582096]"
X, = [0.1954650, —0.4906382, —0.0703992, 0.2646958, —0.5129469, 1.0
X, = [—0.4932583, 1.292125, 0.0521190, —1.171804, —0.0861762, 1.0]"

A =21.52072, 8.704882, —1.002006, 5.448329, 5.327831

X, = [0.5558476, —0.2354614, —0.4953664, —0.5394152, 0.3150124]"
X, =10.3714356, 0.8916923, —0.1988552, 0.1641874, —0.02045471"
X; =[0.5347477, —0.0241771, 0.6851004, —0.2977896, —0.3942298]"
X, = [0.4164587, —0.3702576, —0.3196153, 0.6266419, —0.4411753]"
X5 =1[0.3060631, —0.1084728, 0.3788793, 0.4480103, 0.7418185]"

(a) Diagonal elements:
hy =5.0, ha, = 8.230751, hs; = 6.769226
Off-diagonal elements:
hi, = 3.605552, hy: = 0.8461447

(b) Diagonal elements:
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h]] = 7.0, h,zz = 1563634, h33 = 9.265319, h44 = 4.296923, hss = 7.156559,

o = 1.644807
Off-diagonal elements:
hi2=17.416199, hy = 10.16117, hi. = 2.481489, hus = 3.561502,
hsg = 2.923074

(a) M =3.414213, 2.000004, 0.5857906

(b) A =6.757132, 2.466472, 12.78438, 15.12421, —4.132152

(c) A =2.612795, 6.691607, 10.69557

(d) A =3.011776, —0.0415249, —1.685141, 7.941682, 10.53280, 25.24023

A =2.612795, 6.691607, 10.69557
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10.32 (a) A =2.714084, —0.0765076, 1.227267, 0.5346729
(b) A =0.7497229, —1.791780, 2.600704, —0.4901396
(Note: B is not positive definite and A must be decomposed instead.)

10.33 (a) A =11.35097, 6.824839, 4.824121
(b) X =16.85295, 10.73615, 6.364584, 2.045894

CHAPTER 11
11.8 ) x 2.0 4.0 6.0 8.0
0 0 0 0 0
1.0 17.97 0.39 1.17 53.91
50 56.69 38.98 69.26 160.95
10.0 85.49 90.56 128.99 202.95
15.0 105.82 124.49 164.24 225.41
20.0 118.83 145.71 185.67 238.76
25.0 126.93 158.85 198.84 246.92
% 140.00 180.00 220.00 260.00
11.9 x
5 1.0 2.0 50 10.0 20.0
1.0 23.24 778 0.07 0.00 0.00
2.0 30.51 15.58 0.76 0.00 0.00
4.0 36.05 23.79 3.90 0.03 0.00
6.0 38.56 28.06 7.43 0.23 0.00
8.0 40.08 30.77 10.52 0.65 0.00

Since the right boundary condition is at infinity, the solution will simply tend to penetrate
deeper and deeper into the region with increasing y, but will never reach a “‘steady state.”

11.10 Consider first the formulation involving the backward difference form of the boundary
condition. Subtracting the next-to-last equation (row n) from the last equation (row n + 1)
changes the last equation to

[—4 - ﬁ]u,-ﬂ,,‘ + [2]u,»+1,,,+1 = 14(Ax) - Qu,-,,,

The set is now tridiagonal. A similar treatment for the alternative formulation, this time
involving the addition of the last two equations, results in

[Blujsines + 2]t 1042 = 14(AX) + Qu,;,,

for the last equation. The resulting set is tridiagonal.



ANSWERS TO PROBLEMS

11.11 v u(6.3,y) u(0.6,y) u(l,y)
0.1 5.126 2.463 3.079

0.2 6.941 5.090 5.820

0.3 8.098 7.080 8.213

0.4 8.972 8.629 10.118

0.5 9.653 9.839 11.613

1.0 11.381 12.919 15.417

S 12.100 14.200 17.000

u(1,y) reaches 95% of 17.000 at about y = 1.26.

11.12 Linear difference representation:

oy B T 2Ujrx t Werkt G (bjper) — G(ui.kﬂ)][ui“:"ﬂ — u"“'"*‘]
G(“}.k)[ (A.I)Z :}+ [ 2(Ax) 2(Ax)
T3 Hix
Ay

Various nonlinear difference representations are also pessible.

1113 x 0.25 0.50
y
0.25 235.71 242.85
0.50 199.99 199.99
0.75 164.28 157.14

11.14 (a) Table of u values from Gauss-Siedel iteration:

X 1 2 3 4
y
0 1284 1113 1207 1782
0.4 123.4 109.1 116.8 169.5
0.8 109.3 103.4 106.5 140.5

(b) Answers essentially as above, A= 1.50.

11.15 Difference representation:

Ui — 2Upp + U1k 1 I:uj-H.k - H1~1,k]
2(Ar)

(Ary 1
1 [ui'kﬂ = 2 + ui.k—l:} =0

MG @6y
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Solving for u;, yields

Uk = 1 {[ 12+ 1 ]u‘+lk+[‘1_z"—1—]u'—1k
" [ 2 + 2 ] (ArY  2rAr]T (ArY 2rAr]o™
(Ary " riaey
+ [‘%J Uje+1 + [——L‘-] u'k—l}
raaeyl™ riaAey] ™

Gauss-Siedel iteration can now be applied in the same manner as for the rectangular coordi-
nates case.

11.16 5 * 0.10 0.25 0.50
0.10 0.5196 | 0.9391 1.1582
0.25 0.9391 1.8051 2.2858
0.50 1.1582 | 22858 | 2.9370

These values were obtained using Ax =0.05 and an absolute convergence criterion of
€ =0.0001. The values in the other 3 quadrants of the square can be found from symmetry.

1147 Ut -1 — QUi+ Uj—i k41 + Ui st = 2Ujarx + Uirr - ~ pUitk ~ 2 + U1k
y 2(Ax) 2(Ax)’ © (Aayy

This difference representation is universally stable.
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Accelerated power method, 233
Adams-Bashforth formulas, 196
Adams formulas, 196
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ALGOL procedures, 251

Backward differences, 16, 20
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269
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Elliptic partial differential equations, 269, 276

Euclidean norm, 100
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Explicit method, 272
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Finite-difference calculus, 16
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rational, 128, 129
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Gauss-Jordan elimination, 91, 95
Gauss quadrature, 155

tables of, 293, 294
Gauss-Siedel iteration, 101, 105
Gregory-Newton interpolation, 37

Householder’s method, 241, 243
Hyperbolic partial differential equations, 269,
281

Ill-conditioned matrices, 100
Implicit method, 273
Initial-value problems, 186
Integration, numerical, 144
improper integrals, 160, 162
multiple integrals, 159
Newton-Cotes formulas, 150
Romberg, 150, 154
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Integration (cont.)
Simpson’s one-third rule, 149
Simpson’s rule, 148
Simpson’s rule with end correction, 150
trapezoidal rule, 144
Interpolation, 35
central difference, 41
Chebyshev polynomials, 45
cubic spline functions, 47
Gregory-Newton formulas, 37
Lagrange polynomials, 43
with unequal spacing, 43
Inverse interpolation, rooting finding by, 71
Inversion, matrix, 98
Iteration, Gauss-Siedel, 101, 105
optimum overrelaxation factor, 279, 280
overrelaxation, 104
relaxation, 101, 104
tridiagonal matrices, 97
underrelaxation, 104

Jacobi’s method, 236, 240

Lagrange polynomials, 43

Least-squares cutting fitting, 121, 122
Linear algebraic equations, solution of, 88
LR algorithm, 244

Matrix, determinant, 89, 100
eigenvalues, 227
ill-conditioned, 100
inversion, 98
operations, 85
terminology, 83

Modified Newton’s method, 69

Muttiple integrals, 159

Newton’s method, 66
Newton-Cotes formulas, 150
Newton-Raphson method, 66

Ordinary differential equations, Adams for-
mulas, 196
Adams-Moulton formulas, 198
boundary-valued, 203
convergence, 192
Euler’s method, 189
initial-valued, 186

INDEX

Ordinary differential equations (cont.)
predictor-corrector method, 199
Runge-Kutta formulas, 194
shooting method, 205
simultaneous sets, 202
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Overrelaxation, 104

Overrelaxation factor, 104
optimum value of, 279, 280

Parabolic partial differential equations, 269,
270
Partial differential equations, 269
classification of, 269
elliptic, 269, 276
hyperbolic, 269, 281
parabolic, 269, 270
Power method, 231
Predictor-corrector method, 199

QL algorithm, 246, 249
QR algorithm, 244

Rational functions, 128, 129
Relaxation, 101
Root finding, 64
bisection, 65
inverse interpolation, 71
modified Newton’s method, 69
Newton’s method, 66
Newton-Raphson method, 66
secant method, 70
special methods, 73
Runge-Kutta formulas, 194

Secant method, 70

Shooting method, 205, 207

Similarity transformations, 235
Simpson’s rule, 148

Simultaneous algebraic equations, 88
Simultaneous differential equations, 202
Stability, 192, 272, 289

Subdominant eigenvalues, 234

Taylor series, 7
Theta differencing, 276



