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PREFACE

THE solution of many mathematical problems requires the com-
putation of values of elementary functions for various values
of their arguments. Even in antiquity and in medieval times,
tables were prepared of the values of trigonometric functions
and formulae for the approximate computation of certain functions,
for instance Heron’s iterative formula for the extraction of square
roots (cf. Ch. I, § 3.6, 1°). Subsequently, the computation of values
of elementary functions, and the construction of tables of them,
was a most important factor in stimulating the development
of mathematical analysis. Indeed, power series were invented
for this very purpose—by Mercator for logarithms; by Newton
for trigonometric and inverse trigonometric functions, and also
for power functions; by Euler for the exponential function,
etc. Iterative processes (e.g. Newton’s method) were also applied
for solving equations.

Mathematicians of the eighteenth century (Lambert, Euler,
Lagrange, etc.) used continued fractions to represent elementary
functions. In recent years, the technique of expansions in orthog-
onal polynomials has been widely applied for computing functions.
The Chebyshev polynomials, which give good convergence,
have proved to be particularly useful for this purpose.

Since the advent of program-controlled high-speed electronic
computers, which make it possible to evaluate elementary funec-
tions on a large scale, various algorithms have appeared for
computing values of these functions to a specified accuracy.
The choice of algorithms depends upon the peculiarities of the
machine, e.g. the accuracy required for the computation, the
availability of fixed-point or floating-point arithmetic, the amount
of “memory’’ which is available, etc. Usually an algorithm which
is selected is used as a basis for constructing a ¢‘standard program”’
(or sub-routine) which is stored in the machine, to be entered
whenever values of the function are to be computed. These algo-
rithms are frequently based on orthogonal polynomial expansions,
or on iterative methods, etc.

In recent years a large number of works have appeared,
which are devoted to the computation of various functions by

ix
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a variety of approximate formulae. The new formulae appearing
in the literature have been from time to time combined with
previously-known formulae, systematized and presented in the
form of tables, handbooks, etc. As an example, we cite the widely-
known and extremely detailed Tables of Integrals, Sums, Series
and Products by 1.S. Gradshtein and I. M. Ryzhik. But for the
elementary functions, the only book which has appeared is the
recent handbook by Hastings, Hayward and Wong [49], contain-
ing polynomial and rational approximations. Material from
their book is used in this present handbook. But there has not
appeared so far any comprehensive collection of computational
formulae for the elementary functions.

In this handbook we describe methods for computing poly-
nomials, elementary rational functions, exponential and loga-
rithmic functions, trigonometric and inverse trigonometric
functions, hyperbolic and inverse hyperbolic functions, and
in addition a number of formulae relating to them are given.
These methods and formulae play an important role, since much
of the labour involved in the numerical solution of problems
consists of computing values of the elementary functions, and
of various combinations of them. This handbook gives many
distinct representations of the elementary functions, in the form
of power series, series of polynomials (orthogonal and otherwise),
continued fractions, limits of iterative processes, etc.; and it
gives a large number of approximate formulae for computing
the elementary functions to various degrees of accuracy. The
main part of this handbook is concluded by a description of
algorithms which are used for computing the elementary functions
on the computers “Strela”, BESM, M-2, M-3 and “Ural”.

In the appendices we give some brief details of certain functions
which are connected with the elementary functions, and which
are encountered in the handbook: the hypergeometric function,
the Gudermannian, harmonic polynomials, and certain special
polynomials. The polynomials of Legendre, Chebyshev, Laguerre
and Hermite are treated separately, and numerical tables are
given of some systems of numbers and of special functions, which
are used in representing elementary functions.

The material in this handbook is arranged in the following
manner. Each section is devoted to a particular function or group
of functions. Some general information is given about the function,
followed by material concerning the computational methods,
which is arranged in the following order: power series expansions,
infinite products, expansions in polynomials (orthogonal and
otherwise), series of polynomials for approximations to any
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degree, specific approximating polynomials, continued fraction
expansions and other series of rational approximations, specific
rational approximations, and finally iterative processes.

Since all of the elementary functions are analytic, it is permis-
sible to expand them as power series, continued fractions, etc.,
in some part of the complex plane. We have in mind prinecipally
functions of real variables, but in a number of cases we observe
that an expansion is valid in some part of the complex plane.

For many of the formulae, we include tables of the coefficients
entering in the formula.

In some cases, we give an algorithm for computing the value of a func-
tion ““digit by digit”’, i.e. an algorithm for computing successively the
digits o4, o, &, ..., of the binary representation of a number y.} In
this representation

Y = Og-OlyCly.ve Oy vuuny
(where the o; are either 0 or 1) denotes that

[»4 o ¢4
—i+§:—+...+-2%+...

Y = oy + 5

In this handbook we use the following uniform notation.
If a specific approximate expression () is given for a function
F(z), then the error is denoted by r(x):

r(z) = F(x) — Q(z).
The upper bound for | r(x) | over the region being considered is
denoted by r. The relative error r(x)/F(z) is denoted by &(z),
and the upper bound for |g(x)| over the region under considera-
tion is denoted by e.
If a function F(x) is given by an infinite series

[o¢]
Fla) = a@),
k=0
then the remainder term of the series is denoted by r,(x):
n
ra(@) = Fla) — ) ax(@). (0.1)
k=0
We shall use the compact notation for continued fractions, i.e.
% ) ap
dy + dy +oet dy Ao
T A geueral treatment of “digit-by-digit”’ methods is given by J. H.

W ensley (1959), in ““ A class of non-analytic iterative processes”, The Computer
Journal, 1, 163-167. (G.J.T.)

F = ay+
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instead of
F=a,+ ——a—lT
o
B
We denote by ‘;" the nth convergent of the continued frac-
tion:
Gt y

d 4 dy +ot 4,
If F,a; and d; are functions of z, then

Ay = A,(x), Dy= Dyx).
Sometimes the expressions for

A, Au(x)
D, — D,()

are written underneath corresponding “links’ of the continued
fraction:

a]_ a2 a,
a — —— —
T 4+l et G
G A 4 4,
1 D, D, D,

Chapter V of reference [1] should be consulted for the recur-
rence relations between the A4, and the D,.
The difference
A ()

(o) = Fla)— 320

0.1%)

is denoted by 7,(z).
Similarly, if y = F(x) is regarded as the limit of an iteration
sequence {y,} (r=0,1,2,...), then

ra®) = F(z) — ya(2), eto.

In all of these cases, if the function is given over some interval,
then 7, denotes an upper bound for |r,(x)] over that interval:

|7a(®@)] < Tn
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The following notation is used for the relative error:

7a ()
F(z)’

and &, denotes the upper bound for |g,(x)] over the corresponding
interval.

The following points should be borne in mind, in connection
with the references given to the literature. The first number
printed to the right of a formula or table indicates the source
from which the formula or table is taken: the number is that
of the reference within the bibliography at the end of this book.
The second number, enclosed within round brackets, indicates
the page number in the source.

In conclusion, we wish to express our deep gratitude to
V. Ya. Pan for sending the manuscript of his work on optimal
methods for computing polynomials, to V. 8. Linskii and A. N.
Khovanskii for their assistance in selecting the material, to V. L.
Vazhenin and M.N. Obuvalin for providing some formulae
concerning the approximation of functions by polynomials,
and to I. Ya. Akushskii, Ye. A. Zhogolev and G. S. Roslyakov
for sending material concerning the algorithms employed for
computing the elementary functions on several computers.

&n(x) = (0.2)



INTRODUCTION

ONE of the most commonly occurring of all mathematical opera-
tions is that of computing values of elementary functions: rational,
power, trigonometric, inverse trigonometric, exponential and logar-
ithmie, hyperbolic and inverse hyperbolic.

For hand calculations, the evaluation of elementary functions
reduces to using tables, with some interpolation if necessary.

At the present time there exists a very wide choice of tables
of the elementary functions, with varying accuracies and nota-
tions (cf. the Handbook of Mathematical Tables, [4], [16]).

In recent years, there has been a marked increase in the
amount of computation, in connection with the advent of com-
puters. With these machines, it is inconvenient to read in bulky
information about functions (e.g. extensive tables); instead
numerical algorithms are used for computing functions. These
algorithms reduce to performing a certain number of elementary
operations, and only a small amount of information needs to be
read into the machine (e.g. the coefficients of formulae).

In these machines the elementfary operations include: arith-
metic operations; operations such as taking the modulus of a
number, or its integral or fractional part (cf. the reduction for-
mulae in Ch. ITI, § 1.1, 6°, which are described in terms of these
operations); and certain logical operations controlling the compu-
tational process (e.g. if different algorithms are applied in sep-
arate parts of the range of the argument, then for any given
value of the argument the logical operations will direct the com-
putation to the approbriate algorithm).

As a consequence of the demands of machine computation,
an extensive literature has arisen which is devoted to represen-
tations of the elementary functions, and algorithms for approxi-
mate computation of them. Handbooks of this general type
(e.g. Gradshtein and Ryzhik [26]) contain material on the rep-
resentation of functions by power series; other books (e.g.
Khovanskii [34]) represent functions by continued fractions;
and a number of papers in the journal Mathematical Tables
and Other Aids to Computation (now called Mathematics of
Compuiation) represent functions by expanding them in series of
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orthogonal functions. The well-known handbook [49] contains
much material on best-approximating polynomials and rational
approximations to the elementary functions. The manuals for
various computers describe algorithms for computing elementary
functions, which form the basis of the ‘‘standard programs”
employed for computing these functions on the machine: the
algorithms used on a number of computers are collected together
in Chapter 1V.

The choice of an algorithm is determined by the characteristics
of the computer, e.g. the accuracy with which computations
are performed, the system of arithmetic (in the binary system
the computation of exponential and logarithmic functions reduces
to evaluating 2 in the interval (0, 1), and log,xz in the interval
(1,2) or (},1): iterative procedures for computing “digit by digit”’
may be restricted to the binary system, etc.); the nature of the
given number (in machines with floating or fixed point); the
choice of elementary operations (on machines without automatic
division, in a number of elementary operations it is convenient
to use algorithms not requiring division: e.g. instead of using

Heron’s formula for computing }/z, we may use an iterative process
together with a special algorithm for computing 1/x; cf. p. 29).

Approximate methods for computing a function f(z) on
an interval (@,b) reduce to computing some function ¢(x)
which is ““close” to it. The ‘“‘error of the method” is the difference

7(2) = f(x) — ¢ (). (0.3)

In order to estimate the accuracy of such an approximation,
it is necessary to introduce certain numerical characteristics
of the error r(x) over the range (@, b), which are called ‘‘norms”
of the function r(x). The most important norms are the following
(which were in fact, used already by P.L. Chebyshev):

(1) The “wuniform norm” of the error r(z), i.e. the maximum
value of r(z) in the interval (a,b):

e =max |r(z) =max |f(x)—pl).  (04)

x C (a,b) x C (a,b)

(In fact, |Ir||. is the same as 7, as defined above.)
(2) The ““quadratic norm” of the error r(z) (or mean-square
norm) over the interval (@, d) is defined as:

b b
Hr(x)Hzﬂ/ f [r(x)]zdx———]/ [ —gPdz,  (05)
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or, more generally, if o is some function of # which is positive over
the range (a,b), (¢(x) > 0), then the quadratic norm with weight
o(z) is defined as:

b
(@) |lg,e = l/ [ r%0d. (0.5")

Polynomial approximations are the most useful form of
approximation function since they can be computed in a simple
manner, and rational functions likewise are very useful. Let f(x)
be a function which is continuous over the interval (@, b). We
shall denote the set of nth-degree polynomials by {P,(z)}. For
any specified norm of the form (0.4), (0.5) or (0.5"), and for any
specified interval (a,d), there exists a polynomial from this
set for which the norm of the difference

r(x) = f(x) — Py(x)

is minimized, and moreover this polynomial is unique. This
polynomial is called the nth-degree polynomial of best approxi-
mation to f(x) on (a, b) (in the sense of the given norm). If we speak
simply of a ‘polynomial of best approximation’, then this is
to be understood in the sense of the uniform norm.

We shall now make some comments on several ways of
representing functions.

1. Power series. The elementary functions can be represented
as power series in a number of ways. We shall consider the Taylor—-
Maclaurin series for a given function f(x):

=y #R)
flz) = Zf—k—(!o—)xk. (0.6)

k=0

Truncating this at the nth term, we get an nth-degree polynomial
Sp(x) (a finite Taylor series):

Sy(x) = 140) z*. (0.7)
k!
k=0
The polynomial S,(z) has the following properties:
(1) f(@) = 8u(z) + 0(2"); 0.8)

where S,(x) is the unique nth-degree polynomial of best approxs-
mation P,(x), for which f(x)—P,(x) = o(z").
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(2) Consider the system of nth-degree polynomials of best
approximations to f(x) over the interval (0, &), either in the sense
of the uniform norm or of the quadratic norm, with any weight
o(x) > 0. As h — 0, these polynomials tend to S,(x). Hence we
can say that the. polynomial S,(x) gives the best approximation
to the function f(x) in the vicinity of zero.

The power series expansions of some of the elementary functions are
particular cases of hypergeometric series (cf. Appendix § 3). The coefficients
of the powers in the series for certain other elementary functions can be
expressed in terms of Bernoulli numbers or Euler numbers.t

If a function F(z, p) of two variables (z, p) is decomposed into a power
series in p with coefficients a,(x), which are functions of z;

T EDY (@) o, (0.9)

n!
n=0

then F(x,p) is called the generator of the system of functions {a,{x)}.
Fixing a wvalue of p = py in (0.9), we get an expansion of the function
Fo(z) = F(x, py) in terms of the functions ai(x) (cf. for example, Ch. I,
§ 3.2, 1°). Fixing the value of z at # = x,, we get the expansion
Dy(p) = F(xy, p) as a power series in p (cf., for example, Ch. II, § 1.2, 5°).

2. Series of orthogonal polynomials. A system of polynomials
{P,(z)} (n=0,1,2,..)) is said to be orthogonal on (a,b) with
weight o(x) (where p(x) > 0) if

b
[ Pu@) Pui)e(@)dz = 0

when 7 # m.

An extremely important role in the approximate computation
of a function f(x) is played by its expansion in a series of the
polynomials P,(x) (cf. [I], Ch. IV):

0O
F@ =" cPufa). (0.10)

n=0

The computation of the first » coefficients ¢, reduces to (n+1)
successive integrations of the function f(z)e(x) (cf. [I], p. 224).
Truncating the series (0.10), we get a finite sum for the function
flz):

n
Qule) = Y o Pyla). (0.11)
k=0

t Cf. Vol. 69 of the I.8.M. in Pure and Applied Mathematics, Perga-

mon, 1965.
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TareoreM. The polynomial Q,(x) is the nih-degree polynomial
of best quadratic approximation to the function f(x), with weight
o(x) over the interval (a,b).

It is important to note that the polynomials @Q,(x) give,
in a number of cases, good approximations to f(x) in the sense
of the uniform norm. This holds particularly for expansions in
Chebyshev polynomials, which are the set of orthogonal poly-

1
nomials with weight function (1—a?) * on the interval (—1, 1).
They are an important source of polynomial approximations,
particularly for the elementary functions. Sums of Legendre
polynomials give rather good uniform approximations.

In this handbook, we give a number of expansions of the ele-
mentary functions in terms of the polynomials of Chebyshev,
Legendre and others. Explicit expressions for some of these poly-
nomials are given in Appendix I, § 4.5, and tables of values of these
polynomials are given in Appendix II, Tables 7, 8 and 9.

3. Continued fractions (cf. [I], Ch. V). The principal source
of rational approximations to a function f(z) is its expansion
as a continued fraction, of the form

bO bl b2

T+ a a4
where the b; and the a; are polynomials in z. Then the conver-
Po(x)
Qx ()

function f(z), which has been decomposed.
An important role is played by continued fractions of the
form :

(0.12)

for (0.12) give rational approximations to the

1T G ’
L R (0.12)

Let us be given a power series
a -+ o+ a2 -... (0.13)

The fraction (0.12’) and the series (0.13) are said to be con-
Jjugate to one another, if the series expansion of the nth con-
vergent of the continued fraction (0.12') differs from the series
(0.13) only in the coefficients of powers of » higher than the nth.
On page 282 of reference [1] there is given an algorithm for
constructing a continued fraction of the form (0.12°) which is
conjugate to a given power series. We note that the continued
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fraction (0.12") frequently converges to the corresponding funec-
tion f(x) over a larger region than does the conjugate Taylor
series expansion.

Tilley’s formula for the expansion of a function as a con-
tinued fraction is given on p. 303 of reference [1]. In the theory
of continued fractions, it is the analogue of Taylor’s series. On
pages 309-311 of that reference there is given Obreshkov’s for-
mula, which is a generalization of Taylor’s formula, by means
of which series of rational approximations can be obtained for
some of the elementary functions.

Let a given function f(x) be expanded in the vicinity of z = 0
in the form of the series (0.13). The system of rational functions

Ry (x)
Si(x) ’

where Ri(x) and S;(z) (k,1=0,1,2,...) are polynomials of
degrees k and [ respectively, form a system of Padé approximations
if the expansion of the fraction R;(x)/S;(z) in powers of x differs
from the series (0.13) only in terms for which the power of «
is greater than k- 1--1. This is a generalization of the system
of convergents of the conjugate fractions (0.12).

4. Interpolation. Interpolation formulae are one of the sources
of approximating polynomials. From the point of view of approxi-
mation, interpolation formulae for the range (—1, 1) give good
results if their nodes coincide with the zeros of Chebyshev poly-
nomials (c¢f. Appendix I, § 4.6, and also [1], p. 255).

5. Best approximations, by polynomials and otherwise. The
theory of best approximation by polynomials (or otherwise), in
the sense of the uniform norm, was founded by P. L. Chebyshev.

Let a polynomial P,(x) of best approximation (in the sense
of the uniform norm) be constructed for a function f(x) over
the range [a,b]. Then the difference

r(x) = f(x) — Py(x)
attains the values - /, where

h = |lr(x)} = max r(z)|,
xclab]

at n 41 points &; in the interval [a, b],
e <E < <. <& <0,
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and if r(&) = h, then r(§;,;) = —h according to Chebyshev’s
theorem. Iterative processes for constructing polynomials of best
approximation are based on this property of the polynomials
of best approximation P,(x). We note that an interpolation
polynomial for f(x) with nodes at the zeros of the nth degree
Chebyshev polynomial may be used as a good initial approxi-
mation to P,(z), or finite expansions in Chebyshev polynomials
may be used instead.

We shall consider a more general problem. Let us be given
a class of “well-behaved” functions ¢(z, a,, a,, ..., a,), depending
upon the parameters a,, @, ..., a,. For each choice of the values
of these parameters, the norm of the error

“r(x)”c == ”f(x) —-(p(x, Qyyenns a’n)”c
over the given interval (a,b) is a function of these parameters.
That function gg(z) = @(z, d?, ..., a®) of this class for which
the norm of the error is minimized is said to give the best approxi-
mation to f(x) on (@, b). For many important classes of function
¢(x,ay, ..., a,), the error

r(x) = f(z) —@(z, al?, ..., a®)
of the best approximation retains the properties indicated above
for the errors of polynomials of best approximation; viz. r(x)
attains its extremal values 4% (where A = [[r()|.) at n+1
points, with alternating signs at successive points. Hence those
methods for constructing polynomials of best approximation,
which are based on this property, can be extended directly to
these more general approximations. As an example we may cite
the powers of polynomials
- &%
(p(x, Ao Ays -0y an) = (Z akxk) ’
k=0 ‘
rational functions, etc. (cf. [49]).

6. Iterative processes. These consist of the construction of
an iterative sequence {y, = y,(x)} converging to the function
y(x), where yo(x) is an initial approximation and y, = f(¥u)
if n>1. The most important sources of such processes are itera-
tive methods for solving the equation

Flz,y) =0, (0.14)
whose solution is the function y = y(x); e.g. Newton’s method:
F(w’ yn) (0'15)

Yt =T F @)
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We denote the current error of the approximation by

7a(2) = y(@) — Yu(2).
With Newton’s method,

a1 (%) = 0(r3(2)).
This explains the rapidity of the convergence in a number of
instances for this method.

Examrrr 1. y= ]/ = satisfies equation (0.14), where F =y2—z,
F, = 2y: (Heron’s formula, cf. Ch. I, § 3.6, 1°).

gy i 1 =z
%+1—-?/n 2?/” - 2 (yn+yn)-

Exaverr 2. The function y = satisfies (0.13), with

1
Ve
F=x—y? and F, = 2y~3:

2—Yx

1
o5t T2 (3ys—2y3)

Yni1 = Yn —

(cf. Ch. I, § 3.6, 2°).

One should endeavour to choose the initial approximation
Y% (x) in such a manner that it can be computed simply (e.g. in
the form of a linear function, or a constant), and such also that
an approximation with the required accuracy is produced by as
small a number of iterations as possible.

Newton’s method is used for improving an approximation
Yo(x) to a function y(x) satisfying (0.14).

7. Differential equations. The elementary funections are
solutions of simple differential equations. For example, ¥ = sin z
and y = cos x are solutions of the equations

Wr+y =1
and

yll + y — O;
y = tanz is a solution of the equation

y =1+ /8

ete. (cf. Table A on pp. 280-281 of [II]).
In machines which can solve differential equations, an ele-
mentary function may be evaluated by solving a differential
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equation which it satisfies. In [I], Ch. V, § 3, there is given La-
grange’s method for solving one class of differential equation,
producing the solution as a continued fraction expansion, which
is applied there for producing expansions of the functions (1 + )",
arctan z, Inz, tanz, tanh =z, etc. In his book [17], Lanczos
describes the 7-method which he devised for solving certain
differential equations, giving a series of polynomial and rational
approximations for the functions which are the solutions of these
equations.

CovMmENT. Sometimes, the interval over which a function f(x) is given
is divided into sub-intervals, in each of which f(x) is to be computed by
a particular algorithm to the required accuracy by the minimum number
of operations. But if & fine subdivision of the interval is used, then the
“logic” of the computation is complicated and, as a rule, the amount of
initial information needed is increased.

The elementary functions satisfy functional equations which conneet val-
ues of a function for various values of the argument. These relations, together
with appropriate transformations of the variables, enable us to reduce
the computation of these functions to computing them over some definite
interval. The following transformations of variables are frequently used:
the transformation

22— (b+a)
- b—a

which linearly transforms the interval (a, b) on the z-axis to the interval
(—1, 1) on the y-axis; as a particular instance of this we have

3 . ¥
y=2xr—3 (a:—-—2—+?)

which transforms the interval (1, 2) to the interval (—1, 1), with its inverse.
The formula y = 1/2 gives a transformation of the interval (1, o) to the
- xr —
interval (0, 1) and conversely; y = oy |
to the interval (—1, 1) and conversely.

Exampre 3. Formula 1° in Ch. II, § 1.3, with ¢ = In 2 and with the
interval (—1, 1) transformed linearly to the interval (0, 1), reduces to
the formula 2°.

transforms the interval (0, 00)



CHAPTER I

RATIONAL AND POWER FUNCTIONS

§ 1. Polynomials?

1.1. General information. In computational practice, it is
often necessary to evaluate polynomials for specified values
of the argument. It is not uncommon for the approximate com-
putation of the value of some function to be reduced to the com-
putation of approximating polynomials.

Polynomials are often evaluated by Horner’s rule,* according
to which an nth-degree polynomial

Pux) = g2 +a 2"+ ... +ay_1x+a,

is represented in the form

Po(@) = (...(@% + 0)7 -+ G) T + ... -8y )T+ 0y, (L)

and the computation of the value of P,(x) proceeds in the order
indicated by the brackets.

The evaluation of a polynumial P,(z) by this scheme re-
quires » multiplications and n—k additions, where & is the number
of zero coefficients a;. If @y = 1, then n—1 multiplications are
required. It can be shown that for polynomials of general form,
it is impossible to construct a scheme which is more economical
than Horner’s scheme, in the number of arithmetic operations
required.

However, if polynamials of a special form are being computed,
the number of operations required may be less than for the uni-
versal Horner’s scheme. For example the computation of the
power 2" by Horner’s scheme involves the multiplication of n

t The properties of polynomials are explained in the book Higher
Algebra (in Russian) by A, P. Mishina and I1.V. Proskuryakov, in the
series ‘‘Library of Mathematical Handbooks™.

t Also known as nested multiplication (G.J.T.).

10
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factors (z.z...%), requiring n—1 multiplications. But in order
to get, say a®, we could form successively

22 =zx, 2*=a2%? %= it

ie. only three multiplications are needed instead of seven.
A polynomial P,(z) is sometimes evaluated by a computation
scheme consisting of two stages: in the first stage, by means
of operations confined to the coeﬁiczents of the polynomial, it is
transformed to a special form; in the second stage the polynomial
which has been reduced to the special form is evaluated for
specified values of its argument. It can happen that the number
of operations required by the second stage is less than that for
Horner’s scheme. This type of computation is convenient when
a polynomial P,(x) is to be evaluated for many values of = (since
the first stage of the computation need be done once only), as
for example in the case of a polynomial which is used for approx-
imate computation of an elementary function. Hereafter, when
we speak of the number of operations required for computing
a polynomial P,(x), we shall have in mind the number of operations
needed for performing the second stage only of the computation.
In all of the examples given below, the computation of a poly-
nomial P,(x) by such methods is reduced to the successive compu-
tation of certain auxiliary polynomials — the first stage of the
computation of finding the coefficients of these auxiliary poly-
nomials.

As an oxample, we cite the scheme of J. Todd [29] for computing an
arbitrary sixth-degree polynomial Pg(x):
Py(x) =2 + A2° + Bet - Oz® |- Da? - Ex + F
by means of the auxiliary polynomials
p(x) = (= + b)), pox) = (P + = + b)(p1 + bs)s
Ps(x) = (P2 + b)(Py + b5) + bs,
where the coefficients b; are determined in such a manner that
Pa(z) = Pe(x).

By equating the coefficients of powers of z on both sides of this laiter
identity, we get a system of equations for determining the required coeffi-
cients b;:

3b,+1=4
3bi+2b1+b2+b3+bs = B,
b3 + b2 4 2b,b, + 2b,b; + 2b,b; + by +b; = C,
b3b; + b1bs + bibs -+ bybg + by b5 + bybg + baby + bybs + by = D,
bybyby + bbby + by bgbs + byb, -+ bybs = E,
bybgbg + byby + bg = F.
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The system is readily solved by a method of substitution, leading to
the solving of & quadratic equation: the coefficients b; may be complex.
If, however, the coefficients prove to be real, then the second stage of the
computation requires only three multiplications and seven additions,
instead of the five multiplications and six additions of Horner’s scheme.

Similar transformations may be extended to polynomials of higher
degree.

Yu. L. Ketkov [14] gave a general representation of an nth-degree
polynomial for n > 6, which always leads to real expressions, and which
requires [$(n + 1)] + [1n] multiplications and » + 1 additions for evaluating
an nth-degree polynomial.

Ketkov’s scheme reduces, for instance when n = 2k, to successive
evaluation of the polynomials:

Ny(x) = 2(bo + @),

Ni(@) = (N + by + 2)(Ny + by) + bs,

Ng(z) = Ny Ny + by -+ bs,

No (%) = (Np + Oxbok—s) Nok—2 -+ O bok—2® —+ bak—15
where & =0, 8¢ =1 if % is even; and & = 1, & = 0 if & is odd
(k> 3).

The condition that Py(x) = Ny {z) leads to a system of equations for
computing the b; in terms of the coefficients of Py(x). In the paper [14],
a computational method is given which always produces real coefficients
b;.

In the article [2], E. Belaga gives a strict proof of the impossi-
bility of constructing a scheme for computing arbitrary nth-
degree polynomials, in which the second stage requires less than
[#(n+1)] +1 multiplications and » additions.

We give below a scheme by V. Ya. Pan which, in the second
stage of the computation of a polynomial P,(x), requires a number
of operations which is very close to the number indicated in the
work of K. Belaga.

1.2. V. Ya. Pan’s method for computing polynomials. 1°. In
order to compute a polynomial P,(z) in the complex plane,
we construct the auxiliary polynomials g¢g(z) and py(2)
(1=1,2,...,[3n]), which are connected by the relations:

g(2) = 2(z+4), 2(2) =g(2)+24 4,

le(z) = p2l—-2(z) [g(Z) + }'21-—1] + }'21 (l =2 ’ 3: ey k)’ (1 2)
P) = @ Pei (2) if n=2k, ’
" Qg2Pox(2) +An if n=2k+1.

The first stage of the computation consists of the determination
of the coefficients 4;. The second stage, i.e. the successive evalua-
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tion of the polynomials g(z), p,(z), ete., requires n 4 1 additions
and [§(r+1)]-+1 multiplications. Whatever the coefficients
of P,(z) may be, if n > 4 there exist complex values of the para-
meters Ay, As, ..., Ay, such that the formula (1.2) enables us to
compute P,(z) for an arbitrary point z.

It is sufficient to consider the case of even n to explain the
method for determining the coefficients 4;. We write p,,(z) and

gz) + gy (1 =2,8,4,..., k) in the forms:

2 f a2 L 4 al) and 22 A2+ Ay,
respectively. It is easy to show that

a; ay — a,
w2 ;=12 .. 2k, =20,
a; ao (?' ’ ) 2‘1 ]Cdo
We obtain

Dok (2) = Dog—2 (2)[22 + A2+ Agp 1] + gy

Removing the brackets and equating coefficients for each
power of z on both sides of the equation, we get a system of
algebraic equations for expressing the ‘‘parameters” A, _,, Ay
oV (j=1,2,...,2k—2) in terms of 4, and ¥ (s =1, 2,
..., 2k), and accordingly, in terms of ay,a,,...,a,. Next, in a
similar manner we find expressions for Ay _g, Aoy, 0fF 2 (I =1,
2,...,2k—4) in terms of A, and of*V (j=1,2,...,2k—2),
and so on until we get to A,. Thus we have obtained a set of
values of A,, 45, ..., 4, as required. We note that the solution
of each of the equations of the above system reduces to the so-
lution of a single algebraic equation of degree I, where I =1,
2,..., k—1.

2°. There are several schemes for computing a polynomial
P,(x) on the real axis (cf. [23]).

(a) Scheme for evaluating quartic polynomials:

Py(x) = gyt + 0,22 4 ... +-a,.
We represent P,(z) in the form
Py(x) = ap{(g(x) + 1) (9(%) + 2+ A) + Ay},
9(x) = z(x +4,),

where

212

%%, _ 0  , G 2
e A= 2R g+,

=R hhA )=, A=t 4,
0 0

(1.3)
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For example,

22 ozt zb 2B

1
cosle“—g‘!'—l—'z!—g—!—}-'é—!:—s-iPG(y), Where y=x2,
Then
P,(y) = [g9(y) + 5383-125][9(y) -+ y — 4446-875)]
-+23978403-984375,
where

9(y) = y(y — 28°5).
(b) Scheme for polynomials P,(x), where 6 < n < 12. We use
the auxiliary polynomials

g(x) = 2(x+ 1), h(z) = g(z) +=,
7g(@) = [9(x) + Al [h(2) +2 +45] + 44,
and also (according to the value of n) the polynomials
Po(®) = r,@)[h(x) + 4] + s, l
Ps(x) = ps(x)[g(x) + A,] + 4s,

Po(x) = 2pg(x) +25,
P (@) = po(x)[g(x) + A3 ]+ Ay -

(1.4)

Here,
aopn(x) (n=6’8’9’11)’
Pn(x) =
TPy -1 (x) + ay, (n = 7: 109 12)'

The first stage consists of finding the coefficients 4;, by a
method similar to that described in the scheme (a).

With » =6 and » =7, the parameters can be expressed
rationally in terms of @, ..., a,.

We denote

Pe(T) = Ol xs?k .

N

k=0

Provided only that
270ty — 18a, 01, -+ 503 # 0,

there exist real values of the parameters A, 4,, ..., 4,; and if
these are substituted into the formula (1.4) the polynomial
P, (x) may be evaluated for any real z.
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For n = 6 and n = 7, this condition may be rewritten in the form
27 aza? — 18a,0,a, 4- 502 £ 0.

(¢) Scheme for polynomial P, (x) for n > 5. We construct
the auxiliary polynomials g(x), A(x) and p,(z), where

gl@) =@+, k@) =g@) +x, pe)==,

Ps(@) = Ps_1(2) {(9(®) + Ags_o) (A(2) -+ Ags—1) + Ass) (1.5)
+Z-4s+1 (:5' == 1, 2, ...,k),

o P () if n=4k41,
P ) apzpi(x) 2, if n=4k-12,
"® =\ [o@) @) + Far) + Al if n=db+3,

a2 [Pe(@)(G(®) + Ans) + Ina] + 4n  if n=4k} 4

The second stage of this scheme requires [{n]+2 multipli-
cations and = 41 additions.

There always exists a set of real values of the parameters
Ais gy ..., A, satisfying the expressions (1.5), if » > 5 and if the
coefficients ay, @, ..., @, are real. In order to find these values, we
may use the relations

P25(%) = ¢s(2) Ps—1 () 4+ Ags11,
where

qs = (g(x)+Z'4s—2)(h(x)+24s—l)+l4s (s=lc,k—1,lc—~2,..., 1)7

and then apply the same method as above. The principal differ-
ences are the following: firstly, for all coefficients of p,(x) and
for the three coefficients of g¢;(x), expressions are written in
terms of the coefficients of p;_; (x) and 4, ; and then the parameters
Ads—s> Ags—1, Ags are expressed in terms of the values found for
the coefficients g,(x) and A,, by formulae which are analogous
to the formulae (1.3) of the scheme (a).

If 6 < n < 12it is preferable to use the scheme (b) rather than (c¢), since
the coefficients for this scheme (b) may be found, as a rule, more simply
than for the scheme (c). Moreover, for n = 6 and n = 8 it requires fower
operations than does the scheme (c).

(d) In certain cases (e.g. on a machine with floating-point arithmetic),
when n is large and even (n > 10), the following scheme may be used for
computing the polynomial P,(x):

gle)y=z(@@+14), k@) =g@+z p)=hi)+i,
Pas+2(®) = Pas(@)[qs(®) + Aasir] + Ansto ‘
(s=1,2, ..., k—1), (1.6)
p { ao[pi(w) 4 28x] if n=2k
") =\ oolpe(@) + el +an i m— 2t 1,
where N is a natural number.
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Here,
h(z) for even s,

Ik-1(%) = g(z), g5 () = { 4(@) for odd s
and 1 <s <<k —2.

This scheme requires = -- 2 additions, and [{(n 4 1)] + 1 multipli-
cations and, moreover, a shift of the decimal point corresponding to a
multiplication by 2V.

The following method is used to determine the values of A, A5, ..., A,.
First we fix the value of the natural number N and then, in the manner
described above, we find the required real values of the parameters, corre-

sponding to

a®) = Bk=1 _ oN.

A drawback to this scheme is that the values found for A,, 23, 4,, ..., 4
are real if and only if a sufficiently large value of N is chosen.t

§ 2. Elementary rational functions

2.1. Power series expansions.

lpl" ud
< y T
ST P
For example,
o0
D=t <1,
1 | k=0
1—}-2}- 1 b 1 k
__2(___), 2] > 1
z x
k=
1 232 g L
2°7=—3—2(—§,—x—_1)’ 1<z <2, o1 Sgn
P
@
go_ L+ _ 1 Z(k-l—l)(k 2)
. (1+x)m '—"(m__l)! - ”{" e

w1 (=2, |2l <1

1 Similar economical techniques for evaluating polynomials are inves-
tigated by D. E. Knuth in “Evaluation of polynomials by computer’’,
Comm. Assoc. Comp. Mack. 5, No. 12, 595—599 (1962). (G.J. T.)
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and in particular,

1 0
e = (k + 1)( — z)*.
(14 =)? kz;

2.2. Expansions in polynomials, orthogonal and otherwise.?

0
1 1
1°, - ___(1+2Z Ty x)
a — bx ]/az__bz k=1p k(@)
bl <a, |¢f <1,
__a——]/d2—b2 2p"
=—

s Tp—1 = 77— .
P YT @1 —p)
L 12 (1 Tee—1)
-] - k=1
KETI TR O<zst

g=2a-+1 _2(a2+a)%.

This formula is valid for complex @, provided that |arga| <
in,a # 0.

t A series of Chebyshev polynomials

f@) =Y & Thi)
r=0

(where the Z' means that the first term of the series is to be taken as $a,)
is most conveniently evaluated by means of an algorithm analogous to
nested multiplication. This algorithm, which was devised by C.W. Clenshaw
(““A note on the summation of Chebyshev series’’, MTAC 9, 118-120, 1955),
consists of generating a sequence of numbers byis, bpiys ..., by by the
recurrence relations:

bpiz =0, by =20,

by = 22bpyy —bpistar (r=n,n—1,...,0).
Then,
f@) = §(bo — b).

Tables of the coefficients of Chebyshev series expansions (mostly to 20
decimal places) of a number of common mathematical functions are given
in the recent publication: C. W. Clenshaw, *‘Chebyshev Series for Mathe-
matical Functions”, NPL Mathematical Tables, Vol. 5, H.M.S.0., London,
1962. (G.J.T.)



18

CH. I. RATIONAL AND POWER FUNCTIONS

go. ~§£i (@), a>b, o<1
“a—bz b 2 PR > @ ’
=0
_a—]/c_z2~b2 , __2p"+1(n+1—np).
PTG ey

o0

— Y
et 3 Y PTE—22), 1<z<

z 1/2 =)

-
f—— / 3
p=38—2)2=01715728 ... <.‘10 ,
n B+l 3n—1

2p

a1 =7 <3% x10"<10 ¢.

1
o 1 _l+p

p=2—b—2yT=8, »_ =201P

R g

1 2 X
3°. = — 1) p* Uy (x),
e P ]/az_bz;(w VAT

a—yE T
_esve-i

p

[oo]

c1_ s

T =2Y2) DA -2), 1<z<2,
%=0

p=38—2)2=01715728...
2.3. Infinite products.

—=Tla+w), w<t
j=o

1°, =
1—u

If w =1—uay,, this formula assumes the form

1 ® .
2 —=yo | | 1+ @ —apo1
j=0

2

n

3

"1—ba2 1—p (1+2Zp"’1’2k(x)), 18] <1, |z} <1,
=1

18(93)

(Such formulae are used for division on certain machines.)
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2.4, Iterative processes. There is an iterative formula for

1
computing the reciprocal of a quantity y = -

1
Y1 =¥2—wy) (=0,1,2,..), 1imy,-=—x—. 18(92, 93)

100

The process converges to 1/x, if the modulus of the relative
error gy(x) of the initial approximation satisfies the inequality

leg(@)] = |1 —ay,| < 1.1

If 1 <x<1, we get that
(a) The best constant to take as an initial approximation is

4 1
?/o=§» €o=?'

(b) The best linear approximation is

1
Yo =75 (48 — 32z), £ = ==

(¢) The best quadratic approximation is
Yo = 0-45469 4 (1-71285 — x)?, g = 0-03715

Three iterations starting from this approximation give an error less than
2-38,

§ 3. Power functions

3.1. Power series expansions.
viv—1) ,
TR

viv—1)...(v—k+1)
i at 4 ...

If v is neither a positive integer nor zero, then the series converges
absolutely for |z| << 1 and diverges for |x|> 1: if # = — 1 the series

1°° A +2)=1+4v + +...

e

T This iterative process for inverting the scalar « is a particular case of
the well-known iterative procedure of Hotelling for improving an approx-
imation Y, to the inverse Y = X' of a non-singular matrix X. Cf. V. N.
Faddeeva, Computational Methods of Linear Algebra (translated from the
Russian by C.D. Benster), Dover, New York 1959, pp. 99—101. (G.J.T.)
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converges for y > — 1 and diverges for v < — 1: if ¥ =1 it converges
for » > 0, and if » is a positive integer (v = n), then it reduces to & finite
sum.

o 1 1 1.1 , 1.1.3
2°. (1ix)2==li»-§—m——24x :l:246x

3

1.1.3.5
R
2.4.6.8xi"' 26(35)
1.3.5
o — 2 -
3% ko175 x+ 2 F 5 e
1.3.5.7
Tl
+ 5 eg . 26(35)

3.2. Expansions in polynomials, orthegonal and otherwise.

o k
t V1—2pztp 2px+p B Zp Pl

[Ip] < min |z + /22 —1]; 26(396); 30(91); 27(489)

>y 1

=) Pule)
ki1 Tk
k=0 P
[Ip| > max o+ y/22—1]. 26(396);  66(70)
(a) = aZk"Pk(x), 0p<l
]/ —pr %=0
1 1 ‘ 1

[+ o]
=p Z o*Pi(3—22), 0=3—2}2 ~ 0-1715728,
k=0

2 1 1
= — = — 1 4+ —— a 0-4355210,
g 1/3[1+(3—-1/2)21 o T

1 <z 2.
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]/1—x2 2Z<4k+1){ Lot }sz

(z} <1, (=Dl =1). 26(396); 66(72); 61(385)

. oz @wN\ (2% — 1)11(2k - 1)!!
3'71?;2“’2‘2 P43 S e L en®

k=0

(el <1, (=Ll =1). 26(396); 61(38b)

) _af1 =2 2k — 3)!11(2k — 1)1
4:]/1—582—?{2 ;(475—]"1) 22k+1k[(k+1)| X

Xsz(x)} (el <1, (=D!=1).  26(396); 61(385)

5. y=1=z (0<z<]).

An approximation ¥, is given by the formula

1
% » T = 0<<z<l),
Cn

where the cﬁ are the coefficients of the Chebyshev polynomial T, (x), expanded
in powers of = (cf. Appendix I, § 4-5, 3°).

3.3. Polynomial approximations.

1°. The computation of A + Bi.
If A > B, then

VA+Bi =1/Z]/1+§4;
and if 4 < B, then
VA + B =]/7§]/%+i,

after which the problem reduces to computing the following
quantities:
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z==—, y=yl+tix O<z<]),

xr =

SIS

. y=Vits (0<z<1),
for which we have the following approximations:

V' 1+ iz = 1+ 00184z + 0-081022 -+ 4(0-5201z — 0-065322);
= 1 2(0-0184 + 0-0810z)  (r = 0-002)
+ 12(0-5201 — 0-0653z) (7 = 0-0023);
V1+ iz = 1—000316x + 0-142372% — 0-0407%23  (r = 0-0002)
-+ 12(0-50637 — 0-03108z — 0-02020232)
(ri = 0-00023);

Vi+z = 07071 4 2(0-3807 + 0-0111z)
+4[0-7071 — 2(0-3548 — 0-1035z)];

V' — 1+ iz = 2(0-5201 — 0-0653%) + i[1 + x(0-0184 + 0-0810z)];

|/i —x = 0-7071 — 2(0-3548 — 0-1035x)
+4[0-7071 + 2(0-3807 -- 0-0111z)].  17(490-493)
2°. y= ]/a—: .
The number z is represented as the sum of two numbers 43 and B2,

where Af is a known squate, and B2 < Af.
BZ
Notation: —_= k, y* is an approximation to y.
i
(a) y* = A(1-0075 4 0-4173k), ¢ = 7-5 x 1078,
(b) y* = A(1-000625 + 0-485025k —0-07232k2), ¢ = 6-4 X 104

3.4. Continued fraction expansions.

o v 1 v 11—z 1A+
U ra =1 117 _~3 -3119
2—9»= (n—92)z (n+ )z

-2 —...= 2 —@m+nAF2)—... 34(101)
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o v___l_ Ve I+»)e (A—v2 L4y
R I i e A
22— (n+v)e (@m—r)2
+ 5 + .o+ 2 + 2n41 4 ...

The continued fraction converges on the plane of the complex variable

34(101)

z, cut on the real axis from z = — 0 to = —1.
o _ 1 Lk 1+ vzl + =)
¥ U+2V =3 7 UTse — 51 Gine
22 +v)z(l +2) n(n + v)2(l + )
—~3+(B+re —wie—n+142n 4+ 14+ — 34(102)
o 1 YT (1—9)z 2(2 —v)x
4% (l+x)v_T-l+'v:v + 2—1—»2 + 3—(2—v)x +...
ni{n — v}z
v+ 4+l —(n—v)x 4 ... 34(102)
o _ T (14 )z (1—v)z (2+v)x
.ty =1t S 3T 2
(n +v)x (n —v)x 34(102)
ve— 2 —(2n+ 1)1 4 2)—...
o _ vz (I—2z ($42)2 @C-—-vz
Oty =1t T 4+ 4.
(n~2v)z (n+v)x 34(102)

et 2 4+ 2041 4.0

The fraction converges on the plane of the complex variable z, cut on
e real axis from £ = — ®© to z = —1.

X (1 —v)z(l 4+ 2)

Tt =14 1+ (l—nz — 2+(3—n)x —...

n{n — v)a(l + z)

w—n+14+C2n+4+1—ve—... 34(102)
° - T 14+ 2(2 + v)x
8. (tay =1+ 1—yz +2—(1+»zx+ 3—(2+v)x ...
nin + v)@ 34(102)
oo tnt+1—(n+v)x+t ...
Qv (1 — v2)a? (4 — v¥)o?
9, (14 z) =
Aoy =t o s~ 3@ 1a) — 5@ +a)
2 .2} 2
(n” — v 34(104)

e — @ FDE F ) —...
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o [z 1) 2 =1 i
10'(m—1)—1+x—v+ 8z + bBx ...
va_nz
—_— 34(106
e+ @+ Dz .. (106)

11°. Let /= ~ a. Then

x—a2 x—a?
Ve=at+— + 24 ..

The continued fraction converges on the plane of the complex variable x,
except for that part of the real axis satisfying the inequality — o0 < z < 0.
In particular, for @ = 1:

z—1 z—1 z—1 z—1

Vo=1+—— + 2 + "2 + 2 + e

1 z4+1 3x1+1 224-6x--1 6x2-+10x+1

1 2 z+3 4z + 4 2+ 10z + 5 34(108)
12°. Series of rational approximations.

G 1y
— m+k
(a) 2"~ — 1(310)
Cpsr 2

v=0

where n is any real number. If m = £, this equation assumes
the form

(010, ,
G @)

(b) o m =2

Z( l)vovc"(x 1)y

v=0

3.5. Rational approximations.

1°. Within a relative error less than7js® over the range
01 <z <10;
]/- 1 + 4z
xR~
44z

48(68)
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o o A+yB _ 11 :
2J&~A—w? Y =3 GE) 01 <z < 100),

ag =4, bs=1. 60(85)

3°. Application of “‘Padé rational approximations”. A variety of rational
. . Yo . . .
approximations for the functions ‘/ x are given below for various intervals.

These approximations may beé improved by means of Heron’s iterative
process (cf. § 3.6, 1°) when n = 2, or by Newton’s general formula (cf.
§ 3.6, 6°) for n > 2. The choice of intervals is determined by the system
of computation (binary or decimal).

(a) Extraction of the square root (in binary arithmetic)

N=22mgp 025<z<]1, VN =2m, ]/;, where i is an integer.

The interval (0-25, 1) is divided into two intervals: 0:25 < = < 0-5 and
o<l

S — . .

Ve~ Yy =cio Z L 0p5

0265 <2<<05] Ob<2]

€10 1-792 843 2-535 463 57(151)
11 1-707 469 4-829 452
C2 1-071 429 2-142 858

The initial approximation is taken as:

Yo = €10 — 13 (@ + cpo) .

Over the range 0-25 < # < 0-5, we have ¢ = 1-4 x 10-3, Next, Heron’s
method is applied to the initial approximation y,. Two iterations give
& < 5 X 10738,

Cay Cos
T 4 Cgg — & | Cyyq

I/EN Yo = Co0 —
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0:25 < x <05 0b<e<l

5 53

5(ﬁ) 5(‘7‘)

20, 4072
021 7 7
47 47
Cop 1z 3
. 4 16
3 49 49
3 3
Coy 14 o

57(151)

Over the range 0-25 < x < 0-5 we have g == 10-5. Next Heron's
method is applied to the initial approximation y,. The application of a single

iteration gives & < 5 X 10-1t,
(b) Square root (for decimal arithmetic)

N=10m 2 102 <21,

The interval (10-2, 1) is divided into four sub-intervals

(10-24%-1,  10-%%), k=1, 2, 3, 4; r=10%.

d, ds
zt+d, —x+d,

For the first subinterval (in which % = 1) we have

‘/;Nyo=do

dy | 0674055 | d; | 0000211
d, | 0:098002 | d, | 0-010 904
d, | 0-170 836

(1 <100z < 7).

(o)

57(151)

and g = 17X 10-5. Next, Heron’s method is applied to the initial approx-
imation y,. A single iteration ensures accuracy to nine significant figures,

and two iterations give eighteen correct significant figures.

For the interval (10-2/%—1, 10—2%) where ¥ = 2, 3 or 4, the coefficients

dy, dy, dy, dg, and d, in the formula («) are to be replaced by

dorki2, drokie, dyk, dgok and dgk
respectively.



§ 3. POWER FUNCTIONS

(c) Cube roots (in binary arithmetic)

N = 2%m o,

27

N —amt, 2o pol

The interval (273, 1) is to be subdivided into three sub-intervals:

(2-—-3, 2—2), (2-2,

3~
‘/xmy0=ao—

1) 1
-2—) and (?, 1).

ay
z+b

2-8 < 2 L 22 22 L 21 2l <l
a, 1-126 25 1-418 986 1-787 81
a; 0-301 67 0-760 160 7 1-915 48
b, 0-357 14 0-714 28 1-428 56
57(152)

where g = 1-2 X 10-3 for 2-3 < & < 2-2, A single iteration by Newton’s
formula (§ 3.6, 6°) gives the first eight significant figures correct.

P
]/xm?lo=ao—

21 as
z+b —x+b,

23 <z L 22 222 21 <z <1
Qg 1-576 745 1-986 574 2-502 926
ay 1-267 028 3-192 710 8:045 125
b, 1-153 061 2-306 122 4612 244
ay 0-022 490 6 0-089 962 4 0-359 849 6
b, 0-096 938 8 0-193 877 6 0-387 755 2
57(152)

where g, = 7-5 X 10-% for 2-3 < x < 2-2. The first four significant figures
are found by means of only two divisions. A single iteration by Newton’s
formula increases the number of correct significant figures to fifteen.

3.6. Iterative processes. 1°.
extraction of the square root

y=Va,

Heron’s iterative formula for
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which is a particular case of Newton’s formula, is:
yf+1=%(yi+§7) (=0,1,..).
The iterates produced by Heron’s formula satisfy the relation
yi— V& _ (yo—l/g)zi
¥+ l/“—’ Yo+ ]/; .

Over the range 7 <{x < 1, the best linear approximation is

— ! 1 V2| ~ 05903z + 0-4173.
Yo A= 4= 2
V8 +12

Starting from this initial linear approximation, two iterations
give r = 2731,

Over the range 1 <<z <2,

ran@) _ [ro@) |2,
5 | <2

-1 1
8@ =yw T =1, leln 5 e 19(17); 18(94);
5(227); 57(150)
Supplement to 1°. Tables are given below of the coefficients a and b for the

initial approximation y, = ax 4 b, to be used in Heron’s method for com-

puting y = ]/?v_over the interval (0-01, 1) when the decimal system is being
used. The coefficients are so chosen for the various sub-intervals that the

second iterate y, gives the value of ]/; with 8, 10 or 12 correct significant
figures. When g, is being computed, the value of x need be taken with
only three significant figures.

8 figures 10 figures
Interval a b Interval | a b

0-01-0-02 4-1 0-060 0-01-0-02 42 | 0-0585
0-02-0-03 32 0-078 0-02-0-03 31 | 0-0803
0-03-0-08 22 0-110 0-03-0-05 2-5 | 0-0991
0-08-0-18 14 0-174 0-05-0-08 2-0 | 0-1240
0-18-0-30 10 0-247 0-08-0-13 1.6 | 0-1545
0-30-0-60 0-8 0-304 0-13-0-23 1.2 | 0-2060
0-60-1-0 0-6 0-409 0-23-0-39 0-9 | 02749
0-39-0-60 0-7 | 0-3550
0-60-0-84 06 | 0-4148
I 0-84-1-0 0-5 | 0-5005
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12 figures 12 figures

Interval a b Interval a b

0-010-0-014 | 4-58 | 0-05439 || 0-145-0-195 1-21 | 0-20596
0-014-0-020 | 3-84 | 0-06482 || 0-195-0-260 1-05 | 0-23745
0-020-0-028 | 3-23 | 0-07712 || 0-260-0-350 0-91 | 0-27395
0-028-0-040 | 2-72 | 0-09153 || 0-350-0-470 0-78 | 0-31953
0-040-0-056 | 2-29 |0-10876 || 0-470-0-630 0-68 | 0-36649
0-056-0-076 1-95 | 0-12781 || 0-630-0-820 0.59 | 0-42301
0-076-0-105 | 1-66 | 0-15004 || 0-820-1-0 0-52 | 0-48005
0-105-0-145 1-42 | 0-17548

2°, Iterative formula without division, for computing y = 1

Ve
(and also Yz = xy).
_ 3 . | R .
Y1 = 5 ¥~ 5 Wi (t=0,1,...),

1 -~
g1 (@) = — —2—]/ e} (z)(3 + & (2) V).
Over the range 3 < « < 1, the best constant initial approximation is

Yo =2(2 — V/2) & 1-1715729, & < 0-172;

and the best linear initial approximation is

Yo =

2 ‘(3+1/'2‘_x)
(3+,/§)(%+_;_]/§+61/5)_1 ;

A — 0:80999x - 1-78773, g < 0-022. 18(96)

3°. The iterative formula
3 ?/;2
Yir1a = Y, (—2 "‘)’

for computing ]/ x, requires no divisions, apart from inversion
of the quantity 2z. When x = 2"»,, the initial approximation
can be taken as

n

— ) 5(230); 20(135)
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4. y =y,

¥i (4} + 32)
3yi+z

Yiyp =

5°. y = }/z. An iterative formula without division, suitable
for binary arithmetic, is:

1 1
Yo =Y — 5 Y% Fn = z—z?(zi —3),

where y, =z, 2 =2—1 (limz; =0). 5(230)
i»®
6°. Newton’s rule: y = V=,

s = [(n — Dy + 5,.‘—”:] 12(180)

7°. Generalized Newton's method for y = i'/ x, applicable to values
n of the order of 10 or greater:

(n—1yi + (n+ D=
(n+Dyi + (n — D=

12(181)

Yit, =

8° ¥y = i'/ x. First we replace y by the variable z, where z = 10%y
and k is an integer (positive or negative), thereby reducing the problem
to that of finding =z =Vz where 0 << X < 1. The replacement should
be done in such a manner that X is as close as possible to 1. Next, the number

1. . .
l= s to be computed with a relative error ¢ < 0-1X. Then we have

the following iterative formula without division:
=4+ X—2) (X<zn< 1. 12(182)
9% y = ]'7; (Iteration with quadratic convergence).
Yinn = ¥i+ Uyi —myff ),

whero I — —— | m = 12(184)
n

In contrast to the method of 8°, the values of [ and m must here be
computed to high accuracy.
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10°. Iterative formula for extraction of the cube root y = i’/ x:
+ 5w
T3
297 + @yt
2[e;°
3

11°. Tterative formula for extraction of the fifth root y = i/ x:
-1
x x x
w1 = Yi | 2|yt —)+—][2( ; -—)+ i] ,
Yina y[ (y + v v ¥+ " yi
lejaa] < 2 X g3 57(152)

12°, Vot =a(1 +-2%) (1 +§Z’?) (1 +-2—Z—2)

where

Yirn = 5% +

57(150)

‘8j+1i <

59(304, 354); 68(455)
Here,
2a(a® |- x) 5 202}z
207 4+ x <yatz< 2¢ °
2a(a® + x) —— _ 204z a’ -z

8.7. Various formulae. Poncelet’s formula. Historically, the earliest
of the best approximations by linear functions were the so-called Poncelet
formulae, which we give here.

1°, ]/az—;—bzm oa + fb,
loj> b} (Fb<a<<w.b, k=0,1,2,..);

o = 2 »
14+ V201 +#0) — 2k Y114
2(YT+ 7 — k)
ﬂ‘_" s
1+ 20+#) —2ky/I 1k
s=1-ua 70; 71(318-321); 72(279)

We give below a table of numerical values for the coefficients of the
linear function oa 4+ 8b, and the error bounds.
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2 o B g=1-a

a and b 1
arbitrary 0 | 0-82840 | 0-82840 0-17160 or —-

with °
a>b 1 | 096046 | 0-39783 0-03954 or —2%
a > 2b 2 | 098592 | 0-23270 0-01408 or 7%
a > 3b 3 | 099350 | 016123 0-00650 or .I%Z
o> 4b 4 | 099625 | 012260 0-00375 or 2(136
a > 5b 5 | 099757 | 0-09878 0-00243 or 417
a > 6b 6 0-99826 | 0-08261 0-00174 or 529
a~>Tb 7 | 099875 | 0-07098 0-00125 or —8-(1)0—
a > 8b 8 | 099905 | 0-06220 0-00095 or I 01 9
a>9 9 | 099930 | 0-05535 0-00070 or _1%28_
a > 10b 10 | 0-99935 | 0-04984 0-00065 or 1538

70; 71(323); 72(280)

2°. (a) ]/m2 — btas 6:097a — 6-026 (1-01b < @ << 1-02b),
1
£ == 0-0309 or 55
(b) ]/a3 —b% &~ 1:1319a — 0-726360 (0 < b < 0-91a),

g = 01319 or —-1 .
7
(c) Va? — b® ~v 1-018623a — 0-272944b
a
(0<b<—§-, or 2b<a<00).

¢ = 0-0186 or -5!3—. 70; 71(334, 335); 72(290)
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3°. ]/a2 + b2+t oya+ fy ]/b2 -+ ¢? (Ist operation);

= o, @ -+ B1(2b -} B,¢) (2nd operation);

= 18+ f10,b + 1 fyc5

where «;, 0, B; and f, are determined as in 4°, and &, €, are the relative
error bounds corresponding to the first and second iterations respectively;

_52_._;._
r = ]/az + b2 + c? (51+ ﬁ182 ‘l/m—*‘;—%—cz) < (81 +ﬁ]_82) l/az + b? + c2,

In particular, if a*> b2 4-¢? and b2 > ¢%, we have «, = o, = 0-96,

e 1
By = B = 0-4; & = & = 0-03954; 7 < V/a> L b® + c* (81 + —2-‘/2ﬁ181)

= 0-0507 ]/az—[—bz—}-cz. 70; 71(335); 72(291)
4°. Horvatk’s formula:

Va*+ &%+ ¢~ aa 4 fb 4 ye.

(a). If no assumptions are made concerning the relative magnitudes
of the numerical values of a, b or ¢, then

o= f=y=071732, ¢= 0268,
V& £ Fn 0732(a + b +-¢), &= 027. 51(68)
(b) If |a| > |b] > le|, then
o = 0:939, § = 0-389, y = 0-297,

V@ + 8+ 2~ 0939 + 0-389b + 0-297¢, &= 0-06.  51(69)



CHAPTER II

EXPONENTIAL AND LOGARITHMIC
FUNCTIONS

§1. The exponential function

1.1. General information. 1°. The exponential function
a* (@ >0,a # 1) is defined everywhere on the real axis, it is
continuous, convex and monotonically increasing for a >1
(or decreasing for ¢ < 1). If @ > 1, then a* increases more rapidly
than any power of z, ie. for any value of «,

Iima*z~%*= o0.
x>+

For any arbitrary base @ > 0, the exponential function a*
is connected with the exponential function e* (with the base
e = 2-718281828459045 ...) by the identity

ax — exlna_

The principal relations for the exponential function are:

x

a~ Y% 5
x, e 1% — X X\ __ X X ¥y
a a)’-—a”,ay_a ’, (a)”-—ay,]/a—a ,

where  and y may have any numerical values.
Exponential functions with different bases may be trans-
formed to functions with a common base, by using the identity

b = alossd,
Any number x may be represented in the form
x =n +y, where n = E(z), y = {z}, 0 <y <.
Hence,

a* = a*-a’.

34
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Accordingly, the computation of an exponential function
may always be reduced to a computation for an argument y in
the range (0,1).

Furthermore,

@ = (@ = ((...(@F 2. )2

m times

In this manner, the computation of the exponential function
is reduced to a computation for an argument y in the range
(0, 2-™), where m can be any positive integer.

2°. The exponential function as the limit of powers:

1
e* = lim (1 + i)n = lim(1 +-hz)".
n—>o n h—>0
The approach to the limit is uniform, so that the derivative of
’ -1
the power function [(1 + i)n] = (1 + i)n also tends to e*
n n

as n— o0, ie. () = e~
3°. The function y = Ce** satisfies the differential equation
of ‘“organic growth”
y =ky.

More generally, if A is a root of the nth-degree algebraic
equation

n
Dk =0, (2.1)
k=0
then the function y = Ce’* satisfies the differential equation
n
> ay® = 0.
k=0

4°. If } is a solution of equation (2.1) and if @ = A%, then
the function y = Ca* is a solution of the difference equation

Z‘ ay(e+kh) = 0.
k=0

5°, Euler’s formula gives a definition for the exponential
function e® everywhere in the plane of z (where z = x4 1):

e* = ¢€* (cos y }-¢ sin ).
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For the imaginary arguments z = 4- 2n¢, 4 s or t-imi, the
function e* assumes the form

4
=1, et=_1, e 2 =41.

In the complex plane the function e* is periodic with the
imaginary period 2mi:

ez+n.21zi — ¢%

1.2, Power series expansions.

[=] X N xk
1° ¢ ZZF 26/(36)
= ©-
o x . N (xlna)k
2°. a _; o 26(36)
o x _ X N szxg" )
¥ g =1l—5+ ; oSr @< 26036 32(320)

2
n eex=e(1—}—x—!—2~;—+§3—?'—{—%+ ) 26(36); 39(126)

pix+xY)

5.¢ * =I(p) + 2Z(x"+x"‘)In(jp).
n=1

1.3. Expansions in polynomials, orthogonal and otherwise.

A. Ezxpansions in Chebyshev polynomials.

1° e =1y @) +2 2. It @) Te @) (I2] <1),

20 (a an
sl ) < —, o 2 s (sl <D
o 2

19(6); 55(110, 114)

2°. f = e—;—[lo(%) +2 kZ I, (%) Ty (2x—1)]

0 <z <1). 18(101)
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L 1 ® 1
3°. 9% = 2° [Io(iln 2) +2 Z I (—2—111 2) T, (2x—1)]
k=1

k
3710k

©

37

<z <1,

18(102); 19(7)

k I (_;) I (% In 2)

0 1-063 483 370 74 1-030 254 491 81
1 0-257 894 305 39 0-175 901 603 92
2 0-031 906 149 18 0-015 165 005 18
3 0-002 645 111 97 0-000 873 781 81
4 0-000 164 805 55 0-000 037 797 02
5 0-000 008 223 17 0-000 001 308 64
6 0-:000 000 342 12 0-000 000 037 77
7 0-000 000 012 21 0-000 000 000 93
8 0-000 000 000 38 0-000 000 000 02
9 0-000 000 000 01

18(102)

4°. ¢* = (e—;i)2= e%[lo(—::) + 2 ilk

(]

1
(0 < <5). 18(102)

1 2]
3T, (1 1 2
5°. 2x=22[10(—1n2)+2 Ik(—1n2) T, (4x~1)]
4 ; 4

1
(O<x< )

2

18(102)

&

a(3)

1
Ii{—In2
"(4“)

OO WO

1-015 686 141 22

0-125 979 108 95
0-007 853 269 66
0-000 326 794 39
0-000 010 204 36
0-000 000 254 98
0-000 000 005 31
0-000 000 000 09

1-007 521 170 16
0-086 969 024 12
0-003 762 940 69
0-000 108 610 07
0-000 002 351 70
0-000 000 040 74
0-000 000 000 59
0-000 000 000 01

18(102)
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x

X a, =
6°. 107 = o =20 4 ;aka(x) (Iel <),
1
ay = 2Ik (TM_)’
r, < L U 7 g loge.
1— Otz
Ont1
k ar Tk
0 | 2169147 476 660 513 190 741 362
1 | 0-599 821 658 383 255 642 328 086
2 | 0-085 153 585 765 270 650 944 524 88 104
3 | 0-008 113 939 789 138 247 927 893 63X 10-5
4 | 0-000 581 443 119 239 232 582 513 36 10-¢
5 | 0-000033 378 565 899 425 867 451 18 10~
6 | 0-000001 598 039 880 644 344 284 69 10-°
7 | 0-000 000 065 610 602 217 712 768 95 1010
8 | 0-000 000002 357 820 784 237 217 79% 10-12
9 | 0-000000 000 075 334 639 407 421 23 10-13
10 | 0-000 000 000 002 166 674 498 5S2 59 10-15
11 | 0-000 000 000 000 056 657 102 243 15% 1016
12 | 0-000 000 000 000 001 358 214 469 32 10-18
13 | 0-000 000 000 000 000 030 057 520 64 1020
14 | 0-000 000 000 000 000 000 617 703 13 10-22
15 | 0-000 000 000 000 000 000 011 849 923 10-23
16 | 0000 000 000 000 000 000 000 213 <5X 10~
78(88)
7°. ¢ F = Za,ka(,?x— ) (0<z<1).
k=0
o 0-645 035 270 a, | 0-000199 919
a, | —0-312 841 606 as | —0000009975
s 0-038 704 116 ag | 0-000 000 415 (145)
a; | —0-003 208 683 a; | —0-000 000 015
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B. Ezxpansions in Legendre polynomials.

8°. ex=k20akPk(x) (| < 1).

y 1-175 201 193 644 ag | 0-000 099 454 339 113
a, 1-103 638 323 514 a; | 0-000 007 620 541 309
a, 0-357 814 350 647 ag | 0-000 000 506 471 974
ag 0-070 455 633 668 ay | 0-000 000 029 718 142
a, 0-009 965 128 149 a0 | 0-:000 000 001 560 868
a; 0-001 099 586 127 a;; | 0-:000 000 000 074 628

3 ckie! Sy ()
. k=0
9°. Y= ¢* = lim yn(x)’ Yp =

n
n—om Z Cﬁk’
k=0

, 17(468)

where the
k

Sk(x)~—1+x+ + T

are the successive ‘““partial sums” of the Ta,ylor series, and the cf
are defined on pp. 449 and 503 of reference [17].

The successive approximations over the interval (0,1) are:

Yo = 1’
14 22
yl = 1 Y
9 | 8z |- 8x?
Yo = 9
113 4 114z -+ 482? 4 3228
Ys = 113 ’

s =

1825 - 1824x - 928a® - 2562 -+ 128x*
1825 :

The y, converge to e* more rapidly than do the partial sums of the Taylor
series,
n

Z w k! Sy (z)

10°. y=¢5, yu(2)= s 17(469)
(=114 Z ik
k=0
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where
22 xk
:S’k(w)=1+w+§'!‘ +~--+—k—!—, 17(468)
_ N [n+k—1
c’,‘, = 92k—1 [2 (Zt k) — (:Z j b )](_1)k+n’ 17(450)

and the ¢& are coefficients of the powers of & in the expansion of the Che-
byshev polynomial T, (22 —1) (cf. Appendix 1, § 4.5, 4°).
The successive approximations in the range (0, 1) are:

8 - 16z
yl = 9 ’
114 - 962 -+ 9622
y2 _ 113 (1’ - 0 01):
411 76822 1223
ys = 1824 - 856991;—25 822 - 512« (r = 0-00086),

36690 - 36640z - 1872022 4 51202% + 2560z%
36689 :

4 =

The maximal error does not exceed the inverse of the denominator.

1.4. Polynomial approximations.
1°. Approximations for e*.

4
1
(a) e"zZakx" (—§<x<0), r=>5x10"".

k=0
@ 0-999 999 6 ag 0-162 8427
oy 0-999 958 6 ay 0-032 534 0
@, 0-499 330 9

(b) &~ Zakwk (—1 <z <0), r=24x10-=.
=0

a | 0999 999 98 a 0-041 223 25
ay 0-999 998 45 as 0-076 543 11
as 0-499 975 05 aq 0-000 849 01

as 0-166 515 09
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7

(€) ¢~ Zakw" (o] <1), r=2x10-7,
k=0

@y 0-999 999 8 ) a5 0-041 635 0

a, 1-000 000 0 as 0-008 329 8

a 0-500 006 3 a 0-001 439 3

0 0-166 667 4 a, 0-000 204 0

1 10

(d) = Y gzt (2] <1).
a 0-250 000 000 ag 0-000 347 223
a, 0-250 000 000 a, 0-000 049 587
as 0-125 000 000 g 0000006199 3(9g9)
ay 0-041 666 666 a, 0-000 000 706
a, 0-010 416 666 ayg 0-000 000 070
a 0-002 083 340

2°. Approximations for 2% over the range 0 < < 1.
7
(a) 2~ Zakx" 0 <z <)

k=0

a, 0-999 999 999 93 ay 0-009 613 530 02
a, 0-693 147 187 87 s 0-001 342 985 66 7(5,6)
@y 0-240 226 356 70 ag 0-000 142 992 74

(7N 0-055 505 295 42 Oy 0-000 021 651 59

=0
a, | 1-000 000 000 040 a; | 0-001 301 780 490 28
a, | 0-693 147 151 142 ag | 0-000 191 629 879 96
ay | 0-240 227 029 850 a; | 0-000 008 390 778 29
as | 0-055 500 205 505 4 ag | 0-000 007 561 668 20
a, | 0-009 633 032 340 04
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(¢) 2% = {[(Z akx")zr}z O<z<l), r=0(10"9.

ay 1 as { 0000 108 419 178 11
ay 0-086 643 396 773 a, | 0-000 023 481 760 517
a, 0-003 753 591 712

3°. Approximations for 10%. The following formulae (a) to (d)
are a series of best approximations to 10%, in the form of squares
of polynomials of degrees from 4 to 7, over the range (0, 1).
(cf. [49], pp. 141-144).

4
@) 10~ Zakx"]z 0<z<1), &=8x107.

k=0
dy 1 ay 0-208 003 0
a, 1-149 919 6 a, 0-126 808 9
a, 0-677 432 3

b
(b) 10% & Zakmk]" 0 <z<l), &=35x10-
k=0

e 1 a, | 0-261 306 50
a, 1-151 384 24 a, 0-058 906 81
a, 0-661 308 51 a, 0-029 366 22

(¢) 10° = [iakx"]z O0<z<l), &=16x10".

k=0
o ’ 1 ay | 0075467 547
o 1151 287 586 g 0-013 420 940
o 0-662 843 149 g 0-005 654 902
o 0-253 603 317

(@) 10"~ [72 akx"]z O<z<l), e=5x10"

k=0

a, 1 g 0-072 951 736 66
a, 1-151 292 776 03 as 0-017 421 119 88
ay 0-662 730 884 29 ag 0-002 554 917 96
G 0-254 393 574 84 Gq 0-000 932 642 67
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4°. Approximations for 10%4. The formulae (a) to (n) are
a series of approximations to 104 (which equals ¢¥¥™) by poly-
nomials of degrees from 2 to 15 for |2 | <1 (cf. [78], pp. 89, 90).
Note that 10¥ = [(10%/4)2]2,

2
(a) 1074 » Zakx", r = 88X 104,

K=o
a | 00994
a, | 05998
a | 01703
3
(b) 104 a2z, r=61x10-5
k=0
a | 009942 || o | 017031
a | 0567548 || o, | 003246
4
() 10"~ Y aa*, r=33x10-S.
=0
a, 1-000 002 a, 0-032 456
ay 0-575 480 a 0-004 652
a, | 0-165 656
5
(d) 104 x ) agz*, r=17x10""
a, 1-000 001 6 as 0-031 788 2
a; 0-575 646 7 a, 0-004 651 5
a, 0-165 655 6 s 0-000 534 1
6
(e) 1074~ Y a2, r=68x 1072,
0, 0-999 999 998 a, 0-004 574 839
ay 0-575 646 732 as 0-000 534 057
ay 0-165 684 391 ag 0-000 051 137

as 0-031 788 188
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7
(f) 1074 Zakw",
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r = 24 x 10710,
k=0
ay 0-999 999 997 6 a, 0-004 574 839 0
o, 0:575 646 272 6 as 0-000 526 708 7
s 0-165 684 391 3 Qg 0-000 051 137 3
Qg 0-031 791 862 0 a; | 0-000 004 199 1

8

104~ ) apaf, r=T7x10712,
k=0
' 1-000 000 000 002 as 0-000 526 706 667
Oy 0-575 646 272 571 ag 0-000 050 533 674
ay 0-165 684 315 844 Qy 0-000 004 199 079
a3 0-031 791 862 032 Qg 0-000 000 301 801
ay 0-004 575 216 291
9
(h) 104 = ) aaf, r=22x 1071
G 1-000 000 000 002 2 as 0-000 526 741 211 5
oy 0-575 646 273 249 1 Qg 0-000 050 533 674 1
(8 0-165 684 315 844 2 ay 0-000 004 155 685 8
Og 0-031 791 852 992 1 ag 0-000. 000 301 801 1
a, 0-004 575 216 201 0 Qg 0-000 000 019 285 7

10
) 1072~ ) ao¥, r=57x 1075,

0-999 999 999 999 999
0-575 646 273 249 134
0-165 684 315 952 548
0-031 791 852 992132
0-004 575215 424 299
0-000 526 741 211 507

Qg
U
Gs
ay
Q19

0-000 050 536 100 735
0-000 004 155 685 790
0-000 000 299 027 717
0-000 000 019 285 668
0-000 000 001 109 337
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11
G) 104~ a

45

r = 15X 10718,

0-999 999 999 999 998 6
0-575 646 273 248 511 0
0-165 684 315 952 547 7
0-031 791 853 004 596 5
0-004 575 215 424 298 6
0-000 526 741 141 705 1

0-000 050 536 100 735 3
0-000 004 155 845 336 0
0-000 000 299 027 717 0
0-000 000 019 126 121 3
0-000 000 001 109 337 3
0-000 000 000 058 016 9

12
104 =~ Y apat,
=

(k)

r = 30 X 1018,

1-000 000 000 000 000 001
0-575 646 273 248 511 030
0-165 684 315 952 449 877
0-031 791 853 004 596 500
0-004 575 215 425 439 511
0-000 526 741 141 705 104
0-000 050 536 095 867 452

0-000 004 155 845 336 035
0-000 000 299 037 105 003
0-000 000 019 126 121 288
0-000 000 001 100 992 474
0-000 000 000 058 016 873
0-000 000 000 002 781 623

13
Q) 1074 ~ ) gk,
k=0

r = 64 x 10-20,

1-000000000 000000000 62
0-57564627324851142118
0-16568431595244987732
0-031791 853004 58555894
0-00457521542543951081
0-000526741141 79263159
0-000050536 095867 45204

a7
Qg
Oy
AT

0-000004 155845035 94058
0-000000299037 105002 59
0-:000000019126 621 44552
0-00000000110099247358
0-000000000057616746 99
0-000000000002781 62323
0-00000000000012311560

14
(m) 10*% = Y @af, r=12x10"2,

1

0:575646273248511421182
0-165684 315952449937 857
0-031791 853004 585558943
0-004.575215425438542252
0-000526741 141792631590
0-000060536 095873263 394
0-000004155845035940579

ag

0-000000299037088398732
0-000000019126 621445516
0-000000001101016825900
0-000000000057616746991
0-000000000002763912452
0-000000000000123 115602
0-000000000000005060223
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15

(n) 107 Zakx", r = 21 % 10-%,
=0

0-99999999999999999999979
0-57564627324851142100473
0-16568431595244993785734
0-03179185300458556557866
0-00457521542543854225205
0-00052674114179255992718
0-00005053609587326339430
0-00000415584503628183046

0-00000029903708739873190
0-00000001912662061134669
0-00000000110101682589952
0-00000000005761783899443
0-00000000000276391245210
0-00000000000012238759936
0-00000000000000506022298
0-00000000000000019413402

1.5. Continued fraction expansions.

R N z z
T 11— 1 42— 3 - 2
_1_ 1 24x 6-2x 12 4 62 4 «2
1 l1—=2 2—x 6 — 4x - 22 12 — 6x 4 22
x x x
- 5 + + 2 —2a+1 +... 34(111)
60 1 24z - 3a?

60 — 36 I 922 — 2?

The continued fraction converges everywhere in the plane of
the complex variable z.

90 e"——l— x x 2z nx
) 1 —1+42 -24+2 — 8342 —...—nt+14z—
34(111)
0 g% d z z z
Fe=14+ 7 _ 7 4 3 — 2
1 14z 24z 6 4 4x | 22 12 4 62 4 a2
1 1 2—= 6 — 2z 12 — 6z |- 22
x x x
L L T 4TrT— 34(112)
60 4 36z - 922 - 28
60 — 24x |- 322

The continued fraction converges everywhere in the plane of
the complex variable. z.
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o x x x 2z nx
S At i ppel B s S IR oy e
34(112)
2z 2 a2

[o] X o —
8% =14 g— 6 + 10
1 242 1246zx422 1204-60zt1222 4

1 2—z 12—6x+a® 120—60z+1222—23

272

+ 14

1680 -+ 840z - 18022 4 2023 - 24

1680 — 8402 - 18022 — 202° 1 2

xz
18 +...

30240 - 15120z 1 336022 1- 42023 - 302% + 2
30240 — 151207 - 336022 — 4202° I 30* — 2

+

wz
T 34(112
e+ 220 +1) +... (112)
6. FoL 2 2 2 7
’ 1 =24z 6 4 10 ...+ 2(n4-1) +...
34(113)
7° e* = 1+ : »
1——+F
where
P «?/4.3  2%/4.16  2%/4.35 224 . [4(n — 1)2—1]
T 1 4+ 1 4+ 1 1 Fores
z 2n
(&)
1y ()] < - , 65(264)
D,_1D,]] 42—1)

i=1

with equality occurring only at the point x = 0.
An equivalent form for expressing F is:

22/4.4  22/4.4.8 22/4.8.8 22/4.8.16
34 + 58 4 18 4+ 916 4 .

=
65(265)
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The number of terms needed to give 12 correct significant figures
is listed in the table:

xz F in the form 7°
01 4
1 6
10 17
R . x x%/4 2%f4 z2[4
8. =14 1@+ 8 4+ 5 et Z—1 4.
2
With |z | < 1, we have r, = 0-84 X 104, 7, = 0-33 X 10~7, r, = 0-81 X 10-1°,
64(194)
90. ex —_ 1 + ,_2__ ﬁ. 3:..2_ xz xz :1}2
1 —-246 + 10 4 14 4 18 4-...
rg <1011 if O0<z<l. 20(134)
Y+
10°. & = 1
0. e=r"0 (<),
where
x> x2 x> x? .
=24+ == - 20(249
Y= G L 104+ 14 + 18 +... (249)
re < 10-11,
A series of rational approximations is given by:
m 0'\;’ xv
v ol
11°. &~ — v=0 Omse ! _ 1(310)
3 (_1),,0}2 .
v=0 Grn+k v!
With m = k we get
12°, &

 2b(2k—1)...(k+1)+CH(2k—1)(26—2)... (k+1)z+... +o*
~ 2k(2k—1)... (k+1)—CLH2k—1)(2k—2)... (k-+1)zt... + (—1)k*
1(310); 34(152)

where the C¥ are the binomial coefficients.

This expansion contains all the convergents of the expansion
(ef. § 1.5, 5°).
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Another representation is:

ol T L 17(422)
> G (—a)
k=0
where
o (2n — E)!
T m—k)E!

The numerical values of the coefficients are given in Table XV
on p. 516 of reference [17]. The first four approximations (for
n=1,2,3 and 4) are:

242 12 4- 6x - 22 120 4 60x - 1222 J- 23

22—’ 12 —6x 422 ° 120 — 60z + 1222 — 23 ’

1680 -}- 840z 4 180x% 4 2023 -} x*
1680 — 840z - 18022 — 2023 - 2 ’

r=11x10"7 (|| <1).

o] X A Pm(x) _k
13°. & x Po(—2) (Jz] <2"1n2).
Here
- a*
2m)! Pp(z) = m! —k)
(2m)! Py (x) = m ;(21% Ol r—
. n! 2 ...f_..l._xz____
lea(@)] < (20 +'1)-1 Gl g[trile 2 B@MD) 55(111)
1+ tanh ﬁ)
_ 2 D, (x) + An(x)
14°. & = zD(x)—A(m)’
1 — tanh (E—) i "
2
An(@) . ;
where D, () is the mth convergent of the expansion of the

hyperbolic tangent:

55(111)

6B B
x 2 2 2 2
tanh("z“)=T+ 3 4 5 4.t 2mt1 ..
(cf. Ch. III, § 3.6, 6°).
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1.6. Rational approximations.

el
PEENREWEY

w[&

8

a, | 0864864 || B, | 1-297 296

a, | 0898128 | 8, | 037422

a, | 010206 b, | 00183708

ag | 0-002 041 2 bg | 0-000 109 35
r = 10-9,

Each of the expressions within square brackets is a very good
approximation either to

cosh% or sinh—:—. 60(84)

i

2°. Table of rational approximations (Padé approximations)
for
ex ~ 'N P(x)

~ L <
Do) ° p+g<2

(where p and g are the degrees of the polynomials N, and D,
respectively).

p Numerical values
0 1 2 .
q resulting for @ = 1

2
0 1 142 1+x+%— 10020 25
2
| bl
1 3.0| 275
1—2 11— 1=
) 3
x x 2
1 gy |1ty tyy
3 2.0 | 2-6 |2-714 286
gt Z(1-2,4 %12 1 2
B) 37 T% 2 T 12

81(170)
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3°. The formulae (a) to (e) are a series of rational approxi-
mations to e™* over the range [0, c0) (cf. [49], pp. 181-184, and
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[48] p. 68).

1
(8) e —5———, r=24X%X10"% (0 <z <16).
|2 axat]*
k=0
ay 1 a, 0-029 273 2
a, 0-250 721 3 ag 0-003 827 8
(b) e * = ——4——1————, r=23x10"% (0 <z <16).
[ aa]!
k=0
a, | 1 ag 0-002 277 23
a, | 0249910 35 a, 0-000 266 95
a, | 0-031 58565
(¢) e*x ——5—L——, r=24%x10% (0 <z <16).
[ ae]*
k=0
ay 1 ay 0-002 673 255
ay 0-250 010 936 a, 0-000 127 992
a, 0-031 198 056 as 0-000 014 876
1
(d ey ———, r=25x10"7 (0<z <16).
|3 aa]*
k=0
a, |1 a, 0-000 171 562 0
a, | 0-249 998 684 2 as 0-000 005 430 2
a, | 0-031 257 583 2 ag 0-000 000 690 6
a; | 0-002 591 371 2




52 CH. XI. EXPONENTIAL AND LOGARITHMIC FUNCTIONS

() e*x —5———, r=11X 10-7.
|2 aua' [’
k=0
ay 1 ag 0-000 326 627

a, 0-125 000 204 a, 0-000 009 652
@y 0-007 811 604 as 0-000 000 351

4°, The formulae (a) to (c) are rational approximations to
1—e™
x
over the range [0, c0) (cf. [49], pp. 129-131).

2
x Zak.f", r=2X10-3{0 < 7 1 < 1-0),
1—e™™ S Vi+=

(a) x 2 " 1
b & £ = = 0-47698.
kgo * 1+ pz’ P
ay — b 1
a, 0-428 50 b, —0-579 53
Gy 0-569 65 b, 0-579 53
i g* 4 1 1-0
_ a. &, r=1-56x10- (0<———~< . ),
1—e* -
b, E* = = 0-3606032.
kgo k 3 1+ p s D
a, 0-367 162 6 b —1-356 271 0
a, —0-227 223 2 b, 1-614. 808 7
as 0-860 199 6 b, —0-258 537 7
4
a, E* r=12x10-5{0< < 1-0}),
1 —e~ ; k ’ ( = S )
(c) . ~ K 41 . ]/1 +x
b &* &= ) = (-28989933.
kgo * 1+ px P
@y — by 1
a, 0:289 053 86 b, —2-217 814 31
ay —0-332 404 94 b, 3:331 319 12
as 0-455 484 98 by —1-627 814 95
@y 0-587 854 66 b, 0-514 310 14
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5°. The formulae (a) to (¢) are a series of rational approxi-
mations to

—1 2
—1__— [ 2%
]/27t
(of. [49], pp. 151-153).
~1 2 1
(8 —=—e?® x5—— (2l<ow), r=3x10"3
V2n szkx 0 <z <5).
by 2-490 895 b, —0-024 393
b, 1-466 003 be 0-178 257
~Llx2 1
b) —e?*® &~ -—F—— (2/<o), r=8x10"*
Vn 3 by at 0 <z <5).
k=0
by 2-511 261 be —0-063 417
b, 1-172 801 bg 0-029 461
b, 0-494 618
1 —1ax 1
(C) = 2 = T (lxl << w), =22 X 10_4
V2 3 byat* 0 <z <5)
by 2-505 236 7 be 0130 646 9
by 1-283 120 4 by | —0-0202490
b, 0-226 471 8 byo 0-003 913 2

1.7. Hterative processes.
1°. Modified Briggs’ method for computing 2¥ (where 0 < z < 1). Let

cx =log,(L+2-F) (k=1,2, ..., n, ...).
Putting 2y = z, we construct successively zy, ag, (for k = 1, 2, ....), where
Zip = @i and aiyy = 0, if 2 < 644y,

Tiyy = Ti—c; and Gy = 1, if 27 > ¢4
Then

(2]
2x = [ (1 + 2-k)ak.
k=1

n
9% py H (1+2-kyak, g, =2-"_1aIn2 x 2" 55(116)
k=1
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§ 2. The logarithmic function

2.1. General information. 1°. The logarithmic function
log,z, i.e. the logarithm of x to the base a (where ¢ >0 and
a # 1), is the inverse of the exponential function:

a8 =z, log,a® =y.
The natural logarithm of z is its logarithm to the base e:
Inz = log.z,
e =z, Ine=y.
The decimal logarithm of z is its logarithm to the base 10:
logz = log;ex.

The logarithmic function is defined everywhere in the interval
(0, +0), and is everywhere continuous. If ¢ > 1, then log,z
is a concave monotonically increasing function, withlog,x << 0if
z <landlog,z > 0ifz > 1;but if 0 < @ < 1thenlog,zis a con-
vex monotonically decreasing function, with log,z >0 if z <1
and log,z < 0 if x > 1.

2°. The connection between logarithms to different bases
is as follows:

1
(a) logya = Tou.5”

(b) log,xz = —1log, =.

a
The latter relation enables us to express a logarithm to base
1
a; | where a;, = " < 1) in terms of a logarithm to base a > 1.

In view of this, we shall hereafter always consider the base to
be a > 1.

logyx
1 = = .
(¢) logsx = log,xlog,b Tog,a
In particular,
Inz
log,z = Inzlog,e = T

For instance,

logx = MInz, Inz= %loga:,
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where
M = loge = 0-43429448190325182765...,

1

3= In10 = 2-30258509299404568402...

(here, M is called the modulus of the transformation from natural
to decimal logarithms),

1

log,z = MyInz, Inz =37 1087,

1
M, = log;e = 1-44269504088893407360...,

1

2= In2 = 0-69314718055994530942. ..
1

3°. The principal relations are the following:

lOg,, (xy) = logax + logay,
log,2*® = alog,=.
For any number xz > 0, there is a unique integer n > 0 such
that
a"<z < a"  (n= E(log,x)).
Then

1 1
z=a"y=a""y, l<y<e, —<y=_y<l

log,z = n +log, y = (n+ 1)+ log,y,.

The problem of evaluating a logarithm to base a for any
positive number has thus been reduced to that of finding the
logarithm of a number in the range (1, @) (or the range (1/a, 1)):

lim log,z = 4+ o0, limlog,x = — 0.

X— 400 x—++0
4°. For any « > 0,
lim((log,z).2~%) =0,

X400
ie. the logarithmic function increases more slowly than any
power of z:
lim ((log,x).2%) = 0.

x-++0
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Furthermore, if & > n > 0, then for any derivative of order k,
where kt < n,

lim ((log,).2*)® = 0.
0

X =>4

5°. The logarithmic function can be expressed as a limit:

Inz = lima(})/z —1) = lim—l—(x"—l).

n— o h—=0 h

Convergence to the limit is uniform over any interval [a, 8],
where 0 < a < b. Hence the derivative

e

converges to (Inz) = 1/z as k — 0, uniformly over the interval

(a,0).
6°. Logarithms in the complex plane. Let

z =z + 1y = p(cosgp |- ising),
Then
Inz =1ng +i¢p;
and since ¢ is determined apart from an additive term 2k (where
k is any integer), then Inz is determined apart from an additive

constant 2mki, i.e. the logarithmic function is multi-valued
in the complex plane. In particular,

Inl = k.2n7, In(—1) =n+k.2n,
1ni=;+k.2m', 1n(—~i)=—:’121°-+k.2ni.

2.2. Power series expansions.

@ k
1°, In(l+a) = Z (—1 - (—l<a<l). 2607)
k=1

(a) hw:Z (— 1)’°+1-(-””—_];—1)f— 0 <z <2).
k=1

1 x*
(b) In(l+42) = Tz [:v —]—;(— l)km] (—1<z<?).
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o = 1 z—1\¥*!
2. 1nx=2;2k_1 (m+1) 0<w).  26(58)
3°, lnx—Z (x—l) (x 2%) 26(58); 39(124)
1
4°. In 'EE =2, 2k 221 (|| <1). 26(58); 32(421)
5°. Z 1) = (12/>1). 26(58); 39(124)
6°. — Z — (> 1). 26(58); 52(25)
k=1

o 1 (?1)"”:0"“
r Liasap -3 ERL

(z] <1). 26(59); 52(23)

2.3. Expansions in polynomials, orthogonal and otherwise.
A. Expansions in Chebyshev polynomials.

1 2.1 9 2k+1
1. m%—etz% — Toen@ (sl <),

4p2k+1
2k +1)(1—p?) °

2k+1
(a) lnw—‘———I—ZZk—}—l Tzk+1((l/2 +1)2 ‘/2)

Ty <

19(10)

x4+ 12
1/2
1<z<?2), p= i/_ ~ 0-08642723372,
2k+1
Foy < oD 19(11, 12)

@k+1)(1—p%) °
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1 “y 4pi _ 1—)/2w
(b) lz=—=W2— Y ——u Ty, | Y2+ 12—+
2 - 2k 41 1_]_]/ % x
1 4p2n+l
—<r<l :
(2 ST ) S B — )
n 4pﬂ n 4p"
(2 n
1 0-345 708 934 90 7 0-000 000 020 58
3 0-000 860 776 94 9 0-000 000 000 12
5 0-000 003 857 93
18(105)
o0
1
2°. ln(l+x)=ZAka(1+4x) (———<x<0);
k=0 2
& —
In(l+2) = > ATil+(4+2)2)a]
=0
5
k Ay Aj
0 —0-316 694 367 64 —0-165 789 090 74
1 0-343 145 750 51 0-172 854 467 45
2 —0-029 437 251 52 —0-007 469 666 73
3 0-003 367 089 26 0-000 430 388 42
4 —0-000 433 275 89 —0-000 027 897 96
5 0-000 059 470 71 0-000 001 928 91
6 —0-000 008 502 97 —0-000 000 138 93
7 0-000 001 250 47 0-000 000 010 29
8 —0-000 000 187 73 —0-000 000 000 78
9 0-000 000 028 63 0-000 000 000 06
10 —0-000 000 004 42
11 0-000 000 000 69
12 —0-000 000 000 11
13 0-000 000 000 02

18(104)
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(o]

3°. log(l + ) = ZAka(Zx— 1) (0<z<1).

k=0

k Ay k A

0 0-376 452 813 6 —0-000 008 503
1 0-343 145 750 7 0-000 001 250
2 —0-029 437 252 8 —0-000 000 188
3 0-003 367 089 9 0-000 000 029
4 —0-000 433 276 10 -—0-000 000 004
b 0-000 059 471 11 0-000 000 001

47(146)

ot o (=1 [z
— —2log(1—g) 22 : Tk( : )

1
—2%+1-2@+a)? O<z<l),

_ g »
RS = e

1
This formula is valid for complex o with a # 0, arga <—é—'x.

B. Ezxpansions in Legendre polynomials.

[od

o x-+3
5°. ln3 — Aopy Poga () (2] < 1)
=1

k Agp—y k Aox—1

1 0-682 233 833 281 5 0-000 000 152 405
2 0-010 668 387 537 6 0-000 000 004 046
3 0-000 238 906 394 7 0-000 000 000.109
4 0-000 005 896 784
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2.4, Polynomial approximations. Approximations to In(l 4 z)
are given by the following formulae.

e

1°° m(l+2)~ Y g, r=53x10"* (O<Lz<L]).

k=0
Gy 0-000 49 ay —0-397 28 144
a, 0-982 48 O 0-107 84 470144)

2°. The formulae (a) to (e) are a series of best approximations
to In(1 4+ x) over the range (0,1) (cf. [49], pp. 176-180):

4

(a) 1n(1+x)z;:akxk, r="T5x10"5 (0 <z <1).
=1

0-097 444 2
—0-471 283 9

a
Qs

a; | 02256685
a, | —0-058 7527

5

(b) ln(l—{—x)zZ:akx", r=10" (0<z<1).

=1

a 099949556 | a, | —0-136 06275
a, | —049190896 || a5 | 003215845
a5 0-289 474 78

8
(c) ln(l+x)zZakx", r=15x10"% (0<z<1).

k=1
a, 0-099 901 67 || @, | —0-193 761 49
@y | —049787544 | a5 |  0-085 569 27
ay 0-317650 05 || @ | —0-01833831

(d) mI4+2)r Y ga*, r=22x1077 (O<z<]l).

M-

k=1

a 0-099 981 028 || a5 | 0-134 639 267
a; | —0-499470150 | a; | —0-055 119 959
as 0-328233122 || @, | 0-010 757 369
a, | —0-225 873 284
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8

(e) In(l+z)r~ Z gk, r=32x10-° (O<z<1).
k=1
a, 0-099 996 4239 | as 0-167 654 071 1
gy | —04908741238 | a, | —0-095 3293897
g 0-3317990258 | a, 0-036 088 493 7
a, | —02407338084 || ag | —0-006 453 544 2
12 1
° ~ L <0
3 ln(l—{-x)NI;akx" ( 5 < )
@, | —0-000 00000001 | {ag | —0-276 111 962 93
a, | 099999999026 | a; | —0-459 239 902 41
a | —0-500 001 06585 || ag | —2-352 660 611 07
a; | 033328773565 | a, | —539765317304 18(118)
@, | —0-25100790211 | a,, | —8-894 125 650 74
@ | 018683171799 || a, | —8211 97746995
a, | —3-724 595 639 09
5
4°. In(l—2)~ > g2*, r=411x10"7
(O <<l ——-‘/2).
2
a, | —10000294| a, | —0-1514104
ay | —0-4988501| a5 | —0-455 8775
4y | —0-349443 8
5
5°. In(l—=x)~ ) a2, r=411x10"7
2 1
(1 —l/é: SES "2‘)-
@ | 00080020 ay | —2:4917755
@, | —11182494 | o, | 31718732
a | 02072366 a5 | —2:5793170
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9
1
o _— ~ = -6 —_
6°. In(l —2) NI‘Zla,,xk, r=10 (o<x< 2).
a, | —1.000002 || ag | 0-623 373
@y | —0499919 || a; | —2-122103
g, | —0-335428 || a5 |  2-649 698
a, | —0-223585 || ag | —1-877585
@ | —0-387 483
a-tx
7° In—" ~ 04483470z + 0-05105182%,
10t 11
a=C T2 6012107 (R|<1).  67(189)
10° —1
a-tx 2
8% In—T-x Z Gy 2™, r=337x107% (jz|<1).
=0

a, | 0-8690285
a; | 02773864 67(190)
a, | 02543195

9°. In(l+e )= (i akx")_zln2,

k=0
r=26x10"% (0<z< o).

a, 1 ag 0-0094
a, 0-3581 ay, 0-0052 50(46)
a | 0-1151

10°. In(l4e )~ (i %) 2,

k=0
r=45X10"% (0<<z<®).

!

@, 1 as 0-024 11
a, | 036123 ag | —0-00055 50(46)
a, | 010204 as 0-000 69
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11°. In(l+e¥) » (}iakzk)”zm,

k=0
r=8x10"% (0<<z<0).

ay 1 a 0-002 654
a, 0-360 571 as | —0-000100

g, | 0105546 | @ |  0-000066 50(46)
ay 0-018 760
2.5. Continued fraction expansions.
o z x x 2z
P hmto=yrr 5 3079 -2
22 nT nx
= : 34(109
—5(14+2)—w.— 2 — 204+ +2) —... (109)
o x x x 22 2
R QI W ST TR T
"z ne 34(109)

4+ 2 +2mF1 +...
This fraction converges in the plane of the complex variable z,
cut on the real axis from # = —o0 to 2= —1.
x z(l+z) 4dx(l=x)
42— 243 — 3+5x —..

3. In(l42z)= 1

n2x(1l + x)
woe—n+14+@2n+1)z—... S
[ z d 4=
4°, ]11(1+x)=’1_+ 2—2x 4 3—2r +...
" 34(110)

et 41 —nx +...
This is an equivalent fractiont for In(l + z).
t An equivalent fraction for a power series is defined to be a con-

tinued fraction, whose successive convergents are equal to the sequence
of partial sums of the series.
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o ) - 2:1; x2 4(172
5% In(l 4 «)= 242 —32+2) —bH2+2) —...
n2a?
34110

= TR —eee oHHO)
) Cz—1 Ba—1) Br—1) 22—1)
6°. Inzx= 1+ 2 + 3 + 4

22(x —1) 32(x—1) 77(128)

+ 5 A4+ 6 A+...

The following numbers of terms need to be taken for various

values of x, in order to compute In x with nine correct significant

figures: 16 terms for z = 0-5108, 11 for « = 0-6931, 7 for
x = 09163 and 6 for = = 2-3026.

o 2x—1) (x — 1)2 4(x — 1)
Thr=—rT . 3eF) — 5@ 1)
0 2@—1) 6(x2 —1) (e — 1)(11a? + 38z + 11)
1 =z+1 222 4 8x 4 2 6(x -4 1)(z2+8x+1)
9(x —1)? n2(x — 1)2
— @+ —e— @+ D@+1) —....
20(z% — 1) (522 + 32z + 5)
24z + 162° - 3622 - 16z + 11) 34(110)
The following chain of inequalities holds for = > 1:
5(x2 — 1)(522 + 32z + 5)
Inz > ...> i 162° + 3622 + 160 + 1)
(x—1)(1122% + 38z + 11) - 3(z*—1) S 9%~ 1
3x+1)(22+8r+1) ~ a?t4x+17 2417
34(111)

8°. A series of rational approximation can be obtained by
means of Obreshkov’s formula:

m k
v R R\ v — 1)
Inz ~ 2 (=1t C:"' @—1) e E VO" @ v) .
) m+k v — Om+k v

In particular, for m =k,

k
Inz ~ E
v=1

% [(-1)”-1+—1;—] =D
2k T

v



§ 2. THE LOGARITHMIC FUNCTION 65

For instance, with t =1,

Inz ~ i(zz:—i),
2 X
and for t = 2,
xz

2.6. Rational approximations. 1°. The formulae (a) to (e)
are a set of rational approximations to y = log « over the interval

1 ) in these formulae by (t—'/l—?) R
1 x-+ ]/ 10

then we get formulae of the same accuracy for (logx —-% over

the interval (1, 10) (for the formula (e), cf. [48], p. 68; cf. [49],
pp. 125-128 for the remaining formulae).

-3 1 2 —
2
(10 °, 10%). If we replace (x T

2

\2k-1
(a) logz =~ Zaqu(:——}:i) (,/i_<x <]/10)

k=1

r="7x10"% (1<z<y10).

a | 086304 | a | 036415

x——l 2k—1 1
(b) logz~ Zazk ) m_a<aa<1/1o ,

r=4x10"% (1<z<y/10).

a, | 08690286 | g

02773839 | a; | 02543275

2k—1
(¢) 108‘”~Z“2k 1(2;_1) ( IT(_)<x<]/lO)

r=2x10"¢ (1<z<y10).

a, | 086855434 | a, | 0-153 61371
@ | 029115068 | a, | 0-21139497
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5
_p\t
(d) logxx a —(x ) ( __<x<]/10)
; 2k—1 :v—{—l l/

r=15x10"7 (1<z<y10).

a, | 0868591718 | a; | 0-094 376476
ay | 0289335524 | a, | 0-191337714
a; | 0177522071

2k—1
() logzw Y‘ Gogs (”“ 1) :

1
r=15%x1078,

a, | 08685888 a; | 01314381
a, | 02895497 a, | 00547562
as | 01731159 4y | 01832415

Next, we consider approximations to In .

1 2 "'”_1/2z

2°, Inz~ -——2—1n2 +Za2k LUkl gy — l/§
k=0 2tV

2

1
(2 <x<1) r=3x1078,

a, | 2-000 000 815 [ a; | 0-666 445 069 ’ as ] 0-415 054 254

11(170)
1/ 2
1 2 Ty
3°, Ihmzxy ——In2+ Y agy u?*, y=—-—
2 ;) 2k 41 2
-+ 5
(% L < 1).
oy 1-999 999 993 788 as 0-399 659 100 019 7(4,5)
a, 0-666 669 470 507 ar 0-300 974 506 336 ’
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1 M
4°, Inz~In2 [—— o + ) g u2k+1]’ U= _____]7:.‘_2__
k=0
7+g
1 -
(——<x<1), r = 2732,
2
a, | 2-885390072 74 as | 0-576 584 342 06
a; | 0-961 800 762 29 a; | 0434 259 751 29

.5 —_—
5°, Inz = ué ayu®*, u=3 i_}_; 2 B <x<l).

a, 0-666 666 666 | ag 0-000 130 642
G, 0-024 691 358 ag 0-000 011 290 3(286)
a, 0-001 616 092 Gy 0-000 001 132
? 2k—1
6°. Inlenw+Za2k_1(x_a.) , a= 10"+% with
) r-t+a

10°<e<<10™, =0, +1,.., r<3xl0-1,

20000000366 || @, | 02503410930

0-666 6617100 || a,, | 0-057 2283265 60(89)
04001930326 || a,3 | 0410597043 8

a; | 02824335712

fHP

]

-1 1
7°. lnzx E 22)k == —< .
x zk=0ak( ) pour (2\x<1)

[\

@ | 200000000000 | a, | 022320667654
a, | 066666665695 | a5 | 0-170 167 231 05
a, | 040000098683 | a; | 022137015423
a; | 0-285 670 543 63

8°. A number of rational approximations (or Padé approx-
imations) for
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In(1 +=) Np(x)

x ~ D, (x)

are listed in the following table, with p + ¢ <2, where p and g
are the degrees of the polynomials N, and D, respectively.

Y 0 1 2
q
1 1 1
S _ it
0 1 1 2:1; 1 2x—}—3x
1 1 1
el e 2
. 1 1+6x 14 4x 24:0
1 2 3
1 7 1,
2
1 1 1 6 3
Nl il e - 2 2
1—{-2:::—[—12:0 1+x+6x 1+5x—{—10x
81(169)

Binary logarithms

9°. The formulae (a) to (c) are a set of rational approximations

l/__, ]/2) If we replace (Z;i)
—V2

in these formulae by (:v _) then we get formulae of the same
x -+ ]/2

accuracy for (logzx—%) over the interval (1, 2) (cf. [49], pp.
164-166).

x—1 2k—-1 1 —_
(a) logyz =~ Z%k 1( ) (7:2:<x<]/2),

r=6x10"¢ (1<z<y2).

to. y = log, z for the interval

ay ] 2-885 22873 || @y [ 0-983 528 29
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3 2k—1
(b) log,z =~ 2“2"“1(21;) (1/2 <x<]/_)
k=1

r=3x10"% (1<e<}?2).

a, | 28853912908 | a; | 0-598 978 649 6
a; | 0-961 470 632 3

. 2k—1 1
(c) logzxzz%k 1(33 1) (—-.-:<x<]/§),

2

r=18x10"10 (1<2<y?2).

a, 2-885 390 072 738 a5 0-576 584 342 056
ag 0-961 800 762 286 aq 0-434 259 751 292

2
e Z +lec+1 ]
10°. In ~r 2= 0<e<<—], r=4x10"".
l+=z ok 3
szkx
k=0

o | —1800 | b, 945
s 1470 || b, | —1050
o | —128 | b, 225
0-238
°. logza — 0 281z —— 20 (01 <w<10),
11°. logzr — 0076 +028la—— === (01<z<10)
r = 0-005. 48(68)

135294048 2% — 8-6147976x -}- 0-0000108
0-422 -+ 3-1280130x + 3-5622914 ’

12°. In(l+2)~

r=5%X10"% (0<Lz<]l). 28(119)
1 1
13°. ln(1+:v)=—;—(1_|_ax+ 1+,8x)+r (l] <1),

_ 1
"=71s0 " 72 tase T (”"“”)x T
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1 1 1 1 1
a=—+—:_:‘, =D ey Ay = — a""1+ ""1’
2 Y12 =3 V12 2 ! )
1
Ay = Gy —_“6‘ /S

14°. Rational approximations (or Padé approximations) for

—In(l—2) _ N,
T ~ D,(x)
are listed in the following tables for p -}- ¢ <6, where p and ¢

are the degrees of the polynomials N, and D, respectively (cf.
[58]).

() p=0
g=01|1
g=1|—*
1——}—:1:
2
q=2 '
TR S
2% 12"
¢=3 1 ; 1
——r 2 _ T
l—ga—gg@— 5@
¢=4 1 1 1 1 19
A D . SRR, I 4
=521~ 22% ~ 720
7=9 1 - 3
1 1 19
—_— v R — 5
1= 52— 352"~ 5% — 750 % ~ 160"
7= 1 1 1 11 3 863
9
e AP e 2 A3 4 5 6
=% 2" ~720° " 160° 60480 °
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(b)y p=1
g=0]1 +—;—x
6—=x
q — ]. —6——427
6 — 3x

g=2 6 — 6z - 22

_3 90 — 57z
9= °1°90 —102z+ 212° + 2°

. 3420 — 24302
7= = 3420 — 4140 1 9302° + 602° 1 112*

. 102060 — 77 670z
771702060 — 128700z -+ 30 3302% - 22204° - 54324 + 13625

(c) p=2

1 1

—— — 2
g=20 1+ 3 x + 3 ¥

1 24 — Q6 — 22
1= 24 187

_ 30 — 21 & 4
7= 30 _ 36z + 927

_ 3 60 —60x -+ 1122
7= 60 — 00z + 3627 —32°

. 4620 — 5430z -+ 136022
9 4620 — 77407 — 369022 — 4202° — 9
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p=3

1 1 1
—— — 2 3
qg=>0 1+2x+3x+4x
1 60 — 182 — 422 — 23
1= 60 — 48z
_9 180 — 150x - 1222 |- 23
= 180 — 240z - 7227
_3 420 — 5102 4 1402 — 343
7= 420 — 7207 +3602? — 48%°
() p=4
1 1 1 1
— Rl Belip N B S Wl
g=0 1+2x+3x+4x+5x4
¢ =1 360 — 1202 — 3022 — 1023 — 324
7= 360 — 300z
_9 1260 — 1170z - 12022 4+ 152° + 224
9= 1260 — 1800z + 60022
) p=5
1 1 1 1 1
— o Bl S Sl adl il
g=20 1+2x+3x+4x3+5x4+6x5
—1 420 — 1502 — 4022 — 1523 — 62t — 228
7= 420 — 360z
() p=6
1 1 1 1 1 1
— — 2 - IR § b R 1
g=20 1+2x+3x+4x3+5x+6x—)—7a;
58(42)
15°. Rational approximations or Padé approximations for

(z—1)In(l—z) _ N,()
x ~ D,(x)
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are listed in the following tables for p 4 ¢<(5, where p and ¢
are the degrees of the polynomials N, and D, respectively (cf. [58]).

(@) p=0
q=0 1
g=1 11 -
1—|——2—x
g=2 :

1 5 ,

1

q=3
1+i +_5_ 2_,_3“;3
g YT % Ty
g=4 1 5 : 3 251
. A2 - —
l+g2tqga+ g2+ ?
4="5 1 5 31 251 95
—_ 22 a3 ’
1+ 52+ g5 2+ g2ty 2+ 5gg 2
(b) p=1
q=20 1——;—:::
6 — bz
—1
9 6 — 2z
_ 30 — 27z
1= 30 — 127 —
s 810 — 753z
1= 810 — 3487 — 3922 — 102°
. 45 180 — 42 750z
1= 45 180 — 20 1607 — 255022 — 8702° — 281a%
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() p=2

1 1
[ — — 2
¢=0 1 2:1: 6x
. 12 — 122+ 22
7= 12— 6z
. 30 — 392 - 1022
7= 30 _ 24z + 32°
_ 600 — 870z -+ 28122
7= 600 — 570z + 9622 + 32°
(d) p=
1 1 1
i e 2T
g=20 1 2x 6x 12x3
. 60 — 662 -+ 822 1 823
1= 60 — 362
9 60 — 90 + 3222 — 23
1= 60 — 60z 1+ 1227
() p=
1 1 1 1
— _— — A2 — . nt
¢=90 =5 e—g¥— 13" %"
., 180 — 2102 - 3022 - 523 + 24
= 180 — 1207
f) p=5
1 1 1 1 1
— — W . A St
g=0 == ¥~ 3% 3"

58(43)
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2.7. Tterative processes. 1°. There exists an iterative process
for computing the value of

z=logyy (1<y<2)
“digit by digit”’. The value of z is found in the binary scale:
T =0y 0 0gersllpe.. (0 =0, 1).
We evaluate successively the z,, y, and «, (n =0,1,...)
=0, Y=uy;
a, =0, if y2 < 2,
o =1, if y2 > 2.

Let o, oy, ..., 2;—; be computed already, and let y; have
been found.
If y¥ < 2, then o; = 0 and y;4; = y¢, but
if y} > 2, then a; = 1 and y;yy = $4f.
After n steps, we have found = digits of the binary representation
z = logey &~ 0-0,0,...0,... 19(65)

Another variant of this method is given in [18].

2°. Tterative process for expansion as a continued fraction.
Let @y >a; > 1. In order to compute log,a,, we construct
the two sequences

Gy, Gy, ,
Ny s Mg yenes
where the n; are positive integers, by means of the relations
ayi < oy < afitl,

ai_]

a; =
+1 ani
Then
1 1 1
logao al ——

My Ty g

The numerators 4; and the denominators D; of the conver-
gents may readily be computed by the recurrence relations

Ay = A;_y + ni4 45,
Diyy =D;; 4144 D;.
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NOTE TO APPENDIX I ADDED IN PROOF

During the printing of this English edition, Dr. O. A, Chervonen-
kis kindly supplied a list of the misprints in the Russian text. The
necessary corrections have now been inserted into the text, except for
the following table, which should have followed immediately after sec~
tion 10° on p, 174, (G, J. T.)

§ 4.5. 11°, Hermite polynomials k,(x).

ho(x) =1,
h]_((v) =T,
hy(z) = x2—1,

hg(x) = «°— 3z,

hy(x) = 2t —6221-3,

k() = 25— 1024 152,

hg() = 2% —152%+452% —15.

hofx) = 7 —212° 41052 — 1052,

hy() = °— 28254 2102 — 42022+ 105.



CHAPTER III

TRIGONOMETRIC, HYPERBOLIC, INVERSE
TRIGONOMETRIC AND INVERSE HYPERBOLIC
FUNCTIONS

§ 1. Trigonometric functions

1.1. General information. 1°. T'rigonometric functions. The
functions sinx and cosx are defined everywhere on the real
axis, and they are everywhere continuous and bounded. The
function tan x is defined and is continuous everywhere on the
real axis, except at the points

z=mMm+3rx w=0, +1, £+2,...).

The function cot z is defined and continuous everywhere on the
real axis, except at the points

z=nx(n=0,4+1,+2,..).

‘The function sec  and cosec = are the reciprocals of the functions
cos x and sin x respectively, i.e.

sec ¥ = 1/cos z, cosecx = 1/sin z.

Furthermore,
lim tanz= 4o, lim tanz= — o0,
x—>¥n—0 x->in4+0
limcot2 = 4+ 0, limcota = — o0.
x—4-0 x—>—0

The argument z of the trigonometric functions sin z, cos z,
etc., may be regarded as a measure in radians of an arc or an
angle.

The trigonometric functions are periodic: sinz and cosz
have a period of 27, but tan z and cot z have a period of =.

2°, The function cos z is an even function, but sinz, tanz
and cot x are odd functions.

77
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sinz = signz sin |z, cosx = cos|x],
tanz = signz tan 2|, cotz = signx cot |x|.
3°. Addition formulae and functional equations.
sin(x 4 y) = sinx cosy 4- coszsiny,

cos(x -+ y) = cosx cosy F sinzsiny,

tanx 4 tany
1 Ftanztany

tan(x 4-y) =

It follows from these formulae that
(@) A,cosz = cos(x + k) — 2 cosx + cos(x — h) = — 7, cosz,
Aysinz = sin(z 4 h) — 2sinz -+ sin(z — k) = — m,sinz,
where
1
Jp— inzZ___.p4-
T, = 4 sin 5 h;
and also that
(b) acosz 4 bsinx = gsin(z + ¢),

e=Va*+ b, ¢= arctan—z—.

The addition formulae are sufficient to define the trigonometric
functions.

Indeed, the functions f,(z) = sinz, f,(z) = cosz, are the
unique continuous solutions of the functional equations

Silx +9) = fi(@) f2(v) + 1, 9) fa(®),
Jo(@ 4+ y) = falx)foly) — fi(@)fi(y)

under the conditions that these functions are positive over the

1
range (O, 5 n), and that

fl(—;-n) =1, fz(% ‘n:) —o.

The function f(r) = tanz is the unique continuous solution
of the functional equation

@) +1(y)

Ie+9) =150
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1
under the conditions that f(x) is positive over the range (O T n) )

and that f(% 7:) = 1.
4°. The general formula for multiple angles are known as
de Moivre’s formulae.
(cosx + vsinx)" = cosnx - ¢sinnz,
cosnx = Re(cosz -+ isinz)* = H®(cosz, sinzx),
sinnz = Im(cosz 4 isinx)" = HP(cosz, sinx),

HP (1, tanx) cobne — H®(cotx, 1)

tann = H®(1, tanz) ’ H®P(cotz, 1)’

where H® and H{® are the harmonic polynomials (cf. Appendix
I, § 2.1).
Also we have

cosnx = T,(cosz), sinnx = sinzU,_,(cosz),
co82kx = (— 1)¥ Ty (sinz),
sin2kx = (— 1)*1cosxUy_,(sinx),
sin(2k 4 1)z = (— 1) Ty, (sinz),
cos(2k -+ 1)z = (— 1) coszU, (sinx).
5°, The formulae

1 1
= — tan® —
. 2tan 3 z 1 —tan ) z
smxz———————l—“, coS T == ]
1+ta,n2-2—x 1+tan2——2—a:

enable us to reduce simultaneously the computation of both

. 1
sin x and cosz to the computation of tan —z.

6°. Some reduction formulae.

(a) Reduction of sin—;—-m: to the interval (—1,1):

{‘”—1}14—2‘—1, bl <1,
4

2 =
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sin %z — sin = 2. 18(98)
2 2

The formula holds for arbitrary real =.
(b) If || <2, then z=z—1]|—2]-—1.
() If || <4, then 2z=1-—||z—1—2]—2|.

(d) Reduction of sinz to the interval (— %n, é—n). Let

o] =2noc+nﬁ+.2”f- y+—;56, 18(98)

where « i the (integer) number of periods, f =0 or 1, y =0
or 1, 0 <6 <1 Then
sinz = sin —l- Tt
2

where
t=(—1)f sign & [y 4 (—1y4],

It <1.
The formula holds for arbitrary real z.

so that

(e) F—9 [—’f’—] _2Z oy By,
7T 7
7T 4
where

1

2[_?_] = 2signz . (2a 4 4-p)

is twice the integer which is closest to Z.
7

1 1
(2) Reduction of tan x to the interval (— —;—n, e n). Let

x 1
Y={— — —\
A 4

1
U= |’U/'——-,
2
1 xz 1 1 1 1
z=!vl——— —— = —— <,
4 T 4 2 4 4
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Then
tanmz, if ww>=0,
tan & = 1 , if ww<O0. 18(99)
tan mz

1 1
(h) Reduction of tan x to the interval (—-—-2— 7, Py n). Let

T 2 2

Then
tan x = tan z. 18(99)

7°. Connection with the exponential function. Euler’s formulae
are:
eix e_ix . ex e—ix
cos x =-———+——-, sy = ———
2 24

The trigonometric functions of complex argument are defined
on the basis of Euler’s formulae.

8°. Connection between the trigonometric and hyperbolic func-
tions.

(a) sin = —1 sinh 5z.

(b) cosx = cosh zz.
1
(c) tanz = Ttanh 1.

(d) cot x = ¢ coth .
1.2. Power series expansions.

2k+1
1° — k
. smx——Z( (2k+1)'

2k

(2k)!"

2°. cosw = Z (— 1)
=0

The formulae 1° and 2° may be written in the form

o [+ 8] ,
sinax = Z Uk, COST = Z Uk
k=0 k=0
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where

Upyy = —

3°.

4°,

6°.

8°,

9°.

10°,

11°,

12°,

CH. III. TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS

’

Uy =T, Uy =1,

2 ’ x® ’

@2k F 32k +2) * T T )@k + 1) ¢

20(237)
0
sinmtr = Z f;—ng [(1 — 2)]%,

k=1
dF=1(1 — a:)'rtcosm:]
— 24(362
A [ —o R (362)
2%k (22 — 1) 0 26 (48);
tanx = Z (2k)' lek!xzk—l (]:cl < ‘—2“) . 32((523)
k=1 \
2y 9ok B!
- il i |3 Y Y 26 (48);
cotx @0 @ (Jo| < m). 32(523)
T
secx = Z (2k)!1 w2k (lxl <—2") . 26(49)
k=0
2(2%—1— 1)|By |22k—1
cosecy = —i— + ( (2’:)" k| (lz] < w). 26(49)
k=1 )
. x? 32t 8% 3z8 5627
ST — 1 ff o~ o — o e e 26(36);339
eoonx =e(1_%"_ %m%%"), 26(36); 39
x? 32® Yt 372
3tanx=1+x+-§;+ 31 + v, + B +-.. 26(36); 39
x2 ! a8

Insinz = lnz — —/— — - — —5=— —...

= (— 1)k22k—1szw2k

Inz + T2h)] (l=] < m) (59)
1 x? at 8 1728 _
ncosx_——————————4—5——2520

22k—1(22k — 1)By
— — 1)k 2k
1 2y sintk
sSm&*x ™ .
=~ Z - (lwl < ?), 26(59); 32(524)
k=1
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z? 7 62 127
° — fhadll 8 8
13°. Intanz = lnx -+ 3 + zt - 2335 % - 18900x T

o0
(2%%—1 — 1) 22K B, pok ( 7::)
— — 1} ) .
= Inz 4 _E (— 1)k41 @)1 2] < 5 26(59); 39

1.3. Infinite products.

1°. sm:v—xH( k2n2) 26(51); 36(149)
k=1 \
© 422
2°, cosx = H(l — W) 26(51); 36(149)
k=
3°. cos—2 —gin T2 — H 1+( DI 26(51); 43(189)
' 4 ¢ 1l B ’
4°, 1--sinz
n+2x 22
= —(n+2x)21’] -3 . 26(51); 66(216)
=y 1
. sinz(z + a)
5% sinza
_zteryf, = x _
= g(l k_a)(1+ k+a). 26(51); 66(216)
o sinfnx 2 z |\ )
6. 1———s— _kgw [1 — (k_a) ] 26(51); 66(216)

7°. sinz = xncos% (x| < 1). 26(51); 39(130); 66(216)
k=1

[e]

8°.

sinz = 4 x
— I I — a2l ) -
o k=1‘[1 3 sin (3" )] 26(51); 66(216)

1.4. Expansions in elementary rational functions.

o«

42: 26(50); 43(191);

L 21c—-1)2—x2 39(129)
=1

1°.
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p. otma— L 2NN
. €O nx—;c—;—k - Z_IR
k=1
1
=+ Z . k) 26(50); 39(129); 52(137)

k=—o0

3°. tan? -

= N 2(2k — 1)2 — 22 '
- sz (T — P @ — .. [k 1) — - 2000); 52(135)

0

. ~ —~ 26(50);
4% sec_ = —Z (=) = (2k 39(129)

k=1

. 177 4 1 !
5. secz“?—';{kz_l{ (2k_1_x)2+ (2k—1+x)2}'

26(50); 52(137)

0 1 (—1)"
6°. cosecmtr = ;; + - ’Cz
k=1
— Z (— 1)k (x 1 —-). 26(50); 39(129); 52(137)
7°. coseciwxr = L i —
’ T n? £ (x —k)?

2 k2
_ w%z +o Z (z +k2)2 26(50); 52(134)

1.5. Expansions in polynomials, orthogonal and otherwise.
A. Expansions in Chebyshev polynomaials.

1, sm—x—22<-1) Jml( )sz(x) (12l < 1),

2m+1
() (- v5s)
o <~ T

19(13)
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k 2= DMJakes (—}) e
0 0-726 375 676 693 734 663 591 187
1 —0:019 420 029 053 201 506 305 923 16 10-5
2 0-000,151 692 922 851 073 994 812 6x 107
3 —0-000 000 560 580 468 412 001 104 13 1010
4 0-000 000 001 205 324 167 854 356 17x 1013
5 —0-000 000 000 001 694 139 308 710 17 1016
6 0-000 000 000 000 001 677 809 317 13x 1018
7 —0-000 000 000 000 000 001 233 791 8x10-22
8 0-000 000 000 000 000 000 000 700 <102
78(79)
sm T
2. ———= Zau Tu(@ (ol <1).
k 73 3k
0 0-745 947 960 457 275 642 099 900
1 —0-039 144 567 527 081 957 017 426 31x10-8
2 0-000 304 509 420 678 944 405 580 12107
3 —0-000 001 123 574 976 796 415 956 25x 1010
4 0-000 000 002 414 039 972 413 748 34x 1013
53 —0-000 000 000 003 391 636 705 036 3410716
6 0-000 000 000 000 003 358 087 616 25%10-1°
7 —0-000 000 000 000 000 002 468 982 15 1022
8 0-000 000 000 000 000 000 001 400 1x10-24
78(83)
3. cosw= ( ) +2 Z( 1)"J2k( ) Ty ()
(l#] < 1),

T

(@] < e

Jo (Z) = (-851 631 913 704 808 012 700 406...,

- 2(m+1)
('s‘) ( +1—em‘)
< . 19(13); 78(85)
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k 2(— 1)*Jp (i) rok
4
1 —0-146 436 144 390 836 863 320 797 20 10-4
2 0-001 921 449 311 814 646 796 907 10 10-¢
3 —0-000 009 964 968 489 829 300 069 28% 10-?
4 0-000 000 027 576 595 607 187 395 48 10-12
5 —0+000 000 000 047 399 498 081 648 56 10-15
6 0-000 000 000 000 055 495 485 415 48 10-18
7 —0+000 000 000 000 000 047 097 049 31 102
8 0-000 000 000 000 000 000 030 298 16 X 1024
9 —0-000 000 000 000 000 000 000 015 10-24
78(85)
4°. s1n—:v—* 22(— J2k+1( )Tzkﬂ( )
(Jz] <1). 18(97); 42(22); 5(251)
5. cos oz = ( ) +2Z(—1 "Jzk( )Tzk(x)
(Jz] < 1). 18(97); 42(22); 5(251)
J “) k T | =
k k (—2—1 : k (—2—)
0 0-47200 121 577 7 0-00003 385 064
1 0-56682 408 891 8 0-00000 335 220
2 0-24970 162 914 9 0-00000 029 457
3 0-06903 588 829 10 0-00000 002 327
4 0-01399 603 981 11 0-00000 000 167
5 0-00224 535 712 12 0-00000 000 011
6 0-00029 834 760
o0
6°. sm——x = o Th(222—1) (] <1).
@ 1-276 278 962 || a3 | —0-000 136 587
a, | —0-285261569 || a, 0-000 001 185 47(145)
a, 0009 118 016 || @, | —0-000 000 007
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0
7°. cosg—x — Za,ch@xz— 1) (| <1).
=0

)
a4y
1423

0-472 001 216
—0-499 403 258
0-027 992 080

as
ay
as

—0-000 596 695

0-000 006 704

—0-000 000 047

o
° T
8°. tanzx=;azk+ﬂ2k+1<w) (j¢| < 1).

a; | 093845 067 562 || a;; | 0-00000 150 310
ag | 005717 001 507 || a,3 | 0-00000 010 792
as | 0-00406 513 598 || a,; | 0-00000 000 775
a, | 0-00029 161838 || @, | 000000 000 056
a, | 0-00002 093 559 || a4 | 0-00000 000 004

P o

9°. xcot-ll—m = Y anTu(r) (2] <)
=

oy 1-13809 362 221 ag —0-00000 035 763
a, | —0-13659733195 || a,, | —0-00000 000 575
ay | —0-00147 349 212 a;3 | —0-00000 000 009
ag | —0-00002 243 466

B. Expansions in Legendre polynomials.

10°.

11°.

. T i
sm?x = 3.J%(—2—)

cos—%—x:l.Jl
2

+11.J, (1)P5(x)—...

Pyx)— 1.7, (F—)Pa(x)
212

5\ 2

(—g-)Po(x) —5 .Ji(—;c—) Py(x)

+ 9.J£(-’2“—)P4(x) —_.
2

2

87

47(145)

18(100)

18(100)

42(22)

42(22)
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k Jk(—;i) k Jk(‘g‘)

05 0-63661 977 237 75 0-00001 082 285
15 0-40528 473 457 8:5 0-00000 100 778
25 0-13741 705 403 95 0-00000 008 384
35 0-03212 733 371 10-5 0-00000 000 630
4-5 0-00575 321 708 11-5 0-00000 000 043
55 0-00083 617 200 12-5 0-00000 000 003
6-5 0-00010 234 280

00

12°. sinz = szk_lek_l(x) (Jz| < 1).

k=1
a, 0-903 506 036 819 aq —0-000 007 185 201 298
0y —0-063 046 067 820 @y 0-000 000 028 336 153
ag 0-001 018 172 750 a,; | —0-000 000 000 071 236

o

13°. cosx = Zang2k(x) (lz] < 1).

k=0
a, 0-841 470 984 808 ag | —0-000 093 040 172
a, —0-310 175 260 057 g 0-000 000 480 504 796
a, 0-009 099 142 276 @ | —0-000 000 001 494 193

C. Expansions in Hermite polynomials.

. ® 1
14°. esin2z — 2 (— VF gy B 26(412); 30
Py

[oe)

15°. ecos2x = Z (— 1)F EzlcTH”‘(”)' 26(412); 30

k=0

1.6. Polynomial approximations. 1°. The formulae (a)-(g) are
a set of best approximations for sinimz, with || <1 (cf.
[78], p. 81).
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89

(a) sin-zr Y Guna®tl, = 15x10-5,
4 k=0
I
Gy | 0-78464 a; | —0-07768
2
LT Y
(b) sinrz~ ) Ao 2, r=5x10"".
o
{
a, | 0785394 2)| a, —0-080 714 0 as 0-002 4271
1
- 3
(c) sinz-x ~ Za2k+1x2"+1, r = 12x107%,

x
Il

[}

ay 0-785 398 152 5 as 0-002 489 871 8
a —0-080 745 367 2 ay —0-000 035 877 1
- 4
(d) sin—ax ) ay 2, r=17x10-18
)
. |
ay 0-785 398 163 378 8 ap —0-000 036 571 416 7
ag —0-080 745 511 8150 ay 0-000 000 308 563 0
as 0-002 490 392478 1
. 5
(e) sin—zx =~ Y ay 2, r=16xX10"18
)
oy 0-785 398 163 397 426 5| @, |—0-000 036 576 187 395 3
a; |—0-080 745 512 187 669 4|| a, 0-000 000 313 333 683 3
as 0-002 490 394 565 299 5| a;; |—0-000 000 001 734 798 7
. 6
(f) sin—zx Y a2, r=12x10-°
Y
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a,| 0-7853981633974482911 |lay| 0-0000003133616020111
ay | —0-0807455121882800902 || @;,| —0-0000000017571336497
as| 0-0024903945701852502 |l a,5f 0-0000000000068723070
a; | —0-000036576204 1465937

7
(2) sm—— x x Z Qo1 251, r=T7x 10722

k=0
a, 0-785 398 163 397 448 309 603 7
a; | —0-080 745 512 188 280 781 135 0
as 0-002 490 394 570 192 712 152 2
a; | —0-000036 576 204 182 126 908 8
ay 0-000 000 313 361 688 869 963 8
a; | —0-000 000 001 757 247 355 925 5
Oy 0-000 000 000 006 948 111 081 5
ais | —0-000 000 000 000 020 214 431 7

2°. The formulae (a)-(d) are a set of best approximations
to sin iz for |z | <1 (cf. [49] pp. 138—140).

2
(®) singz~ Zazkﬂxz"“ (2] <1),
=0

=11x10° (0 <=z <10).

a, | 15706268 || 0 | —0-6432202 | a5 | 00727102

3
(b) singz Y auna®t (o] <),
k=0

e=11x10"7 (0 <=z <10)

a, | 1570794 852
ag | —0-645 920 978

0-079 487 663
—0-004 362 476

Qs
Oy

4
R 'y
(0 singam Y awna® (2 <1),
k=0

e=55x10"10 (0 <z <10).
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ay 1-570 796 318 47 a, | —0-004 673 765 57
ag | —0:645 963 711 06 Gy 0-000 151 484 19
g 0-079 689 679 28

5
LT
(d) sin 5@ & E Qg 0251

k=o
ay 1-570 796 326 621 43 e —0-004 681 620 239 10
a; | —0-645 964 092 644 01 g 0-000 160 217 134 30

a 0-079 699 587 286 30 a,; | —0-000 003 418 172 25

3°. The formulae (a)-(c) are a set of approximations to
sinz, for |z | <irx.

(8) sinzx Y a2, r =105,

e

=
I
=

0-008 313 2
—0-000 185 2

a
ag

a5
ay

0-999 999 2
—0-166 656 7

a2k+1x2k+l, r = 6 X 10_9.

N

(b) sinz =

Eal
It
©

oy 1-000 000 002 O —0-000 198 107
a3 | —0-166 666 589 g 0-000 002 608
o 0-008 333 075 ||

5
(€) sinxx Y appqq a2t
=0
ay 1-000 000 000 000 | Qq —0-000 198 407 018 014
a; | —0-166 666 665 811 g 0-000 002 752 239 414 7
as 0-008 333 320401 || ay, —0-000 000 023 840 800 41

4°. The formulae (a)-(g) are a set of best approximations
to
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sin }mw
X
for|z| <1 (cf. [78], p. 84).
. ™
s z—* x 1
@) ——— = Zagkzz", r = 31X 10-5.

x

=0

a | 078509 || a, | —0-078 29

. T
sin—ux
4

(b) —m=x

x

agx®*, r=12x10"".

[N

a
I
©

a | 07853970 || a, | —00807252 || 4, | 00024361

sul E‘ x 3
(c) Z a2, 7= 24% 1070,
k=0
@, | 07853981610| a, | 0-002 4900070
a, | —0080 7454348 || a, | —0-000035 954 4

ayx®, r=34x10"1,

~
~

&
S N
[]e

=
1
@

a 0-785 398 163 394 1
a, | —0-080 7455120185
o 0-002 490 393 210 7

ag | —0-000 036 572 393 5
g 0-000 000 308 997 1

T
sin—x
Ay, r=34Xx10-16,

—
[¢2]
o

Mm

k=0
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a, 0-785 398 163 3974449 || a; | —0-000 036 576 192 123 5
a, | —0-080 745512188038 8 || a4 0-000 000 313 338 411 5
oy 0-002 490 394 567 3681 || a,q | —0-000 000 001 736 518 0

4 (]
6 —— =~ Zazkxz", r = 25X 10~

(-]

ag| 0-7853981633974483071 |a8 0-000000313 361 6225530
a, 1 —0-0807455121882805396 || a,,|—0-000000001 7571500833
ay| 0-0024903945701888450 |/ a;5; 0-0000000000068773634
ag |—0-000036 5762041589189

'S

sin%x 7
—_— Ak =15x10-22,
(2 - 'Z;azkx , r=15%10

@ 0-785 398 163 397 448 309 614 2
a, | —0-080 745 512 188 280 781 527 0
a, 0-002 490 394 570 192 716 385 8
g —0-000 036 576 204 182 147 068 8
Og 0-000 000 313 361 688 919 243 8
a,o | —0-000 000 001 757 247 420 437 5
(1 29 0-000 000 000 006 948 154 089 5
a,4 | —0-000 000 000 000 020 225 900 5

sin—-rzi ]/; 2
SN Z @t (0<z<l), r,— 0-000 137 808.

]/x k=0

5°.

a |1-570643 5 at | —0-643 38257 a2 |0-072866729  75(34)

. T —
sin ? ]/x 4
6. — Z @t (0<zr<1), r,=10"
]/x k=0
@ | 15707963 @ | —00046752627
@ | —064596400 || @ | 0000152 015 09 75(34)

a | 0079690 922




94 CH. III. TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS

7°. The formulae (a)-(h) are a set of best approximations to
cos 3z for || < 1. For formula (a) cf. [67], p. 192; and for the
formulae (b)-(h) cf. [78], p. 86.
1
(a) oS~z & agx®*, r=19215x10-3.
¢ k=0

a | 00080785 || 4, | —0-2028932

2
(b) eos—g-x X Zazkxz", r = 99%10-7.
k=0

g | 00999900 |ay | —03082451 || o, | 00153718

(c) cos—‘;i X Y anr®, r=27x107°.

=o
@ 0-999 999 972 ay 0-015 849 910
ay | —0-308 424 251 g —0-000 318 877

4
(d) cos—Z—x ~ Z a2, r— 47x10-12,
k=0

o 0:999 999999953 | a; | —0-000 325 938 600
ay | —0-308 425135160 | ag 0-000 003 529 804
Gy 0-015 854 325 237

5
(e cos%x x Zazkxz", r = 57X 10715,
k=0

o 0-999 999 999 999 944 || a, —0-000 325 991 687 588
a, | —0-308 425 137 530 042 || a, 0-000 003 590 475 595
a, 0-015 854 344 197 125 || a9 | —0-000 000 024 268 543

(f) cos{—x ~4 anr®*, r=48x10-18,

(]
k=0



§ 1. TRIGONOMETRIC FUNCTIONS 95

ag | 0-999 999 999 999 999 953 |! as 0-000 003 590 859 180 060
@, | —0-308 425 137 534 037 837 || a4 |—0-000 000 024 609 507 280

a,| 0-015 854 344 243 741 571 || a4, | 0-000 000 000 113 6564 754
ag | —0-000 325 991 886 483 649

7

08— & ax2®, r=31x10-%,
g 4
=0

ay | 0:999999999999999999970} as 0-000003590860446028362
a, | —0-308425137534042452958| a;, | —0-000000024611364034253
a, | 0-015854344243815419342! @;, |  0-000000000115005120719

a | —0-000325991886926737786|| ay, | —0-000000000000385819025

8
(h) cos%—x ~ Zazkxzk, r = 16% 102,

k=0
G 0-999 999 999 999 999 999 999 983
Oy —0-308 425 137 534 042 456 835 958
a, 0-015 854 344 243 815 500 783 469
O —0-000 325 991 886 927 389 313 737
g 0-000 003 5930 860 448 587 936 703
Gy —0-000 000 024 611 369 494 680 064
Gy 0-000 000 000 115 011 573 950 464
(N — 0-000 000 000 000 389 790 244 864
Ay 0-000 000 000 000 000 992 804 864

8°. The formulae (a)-(c) are a set of best approximations for
cos 4.

2
(a) cos 5w Xazkxz", r=5968x10~4 (jz] <1).
=0

ao| 0099 4032 | ay| 12227967 || a,| 02239903  67(193)

4
(b) cosit—xz Xagkxz" O0<a<<l), r=5%x10-"%
=0
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a, 0-999 999 95 ¢ —0-020 810 46
ay —1-233 698 19 ag 0-000 858 11  11(154)
@, 0-253 650 64
- 5

(¢) cos—zx > aya®, r=17x10"" (x| <)
a 09999999998 || @ | —0-020 862 656 4
a, | —12337005336 | ag 0-000 917 6703  60(88)
a, 02536693147 || a, | —0-0000237888

9°, The formulae (a) and (b) are approximations for cos z.

4
(a) coszm Zﬁkxk (lz]| 1), r=4295X10-5.
=0

G, 0-999 958 87 Gy 1-159 X 10~
a, —2:5% 10~ a, 0-039 632 11 75(33)
@, | —0-499 24663

5

(b) cosz % Za%x’"‘ (lg| <1), r=2x107".
=0

%y 1-000 000 000 000 || a, —0-001 388 885 683
a; | —0-499 999 999 942 || ag 0-000 024 795 132
o, 0-041 666 665 950 || a,, | —0-000 000 269 591

10°. The formulae (a)-(d) are approximations for tan }wz and

tan x.

T

(a) tan 1

8
2R Y Oyt (2l < 1), r=2x107%.
k=0

a, 0-785 398 164 100 Oy 0-000 564 878 935
ag 0-161 490 982 898 Gy3 0-000 273 110 441
s 0-039 847 028 543 Oy 0-000 027 981 368
aq 0-009 943 148 779 Gyq 0-000 036 452 696
ag 0-002 510 214 922
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9
T
(b) tan e

k=0

TR g @ ([2] < 1).

a, | 078539816334 || a,
a; | 0-161491 02848 || a
a, | 003984622868 | a
a, | 000994956298 | a,
a, ’ 0-002 482 421 62 || ay,

0-000 635 623 83
0-000 128 272 67
0-000 071 528 28
0-000 013 303 15
0-000 010 475 27

5

(¢) tanz =X Za2k+1x2"+1, r = 22x10"7
=0

a, | 09999998 | a,
a; | 03333591 | a,

a, | 01328541 || ay

0-057 164 8
0-012 559 5
0-020 373 2

7
(d) tanz x Za,k“x”‘“, r=2x10-% (le <z)-

k=0

a, | 100000002 || a,

ag | 033333082 || a,
a; | 013339762 || ay,

a; | 0059 358 36

0-024 570 96
0-002 940 45
0-009 473 24

T

11°,
cot )

=0

97

18(117)

(ixl <—})

4
2R L Gy, = 2X 1090 (o< 1),

a, 1-273 239 544 735 || a;
a, —0-261 799 389 768 || a,
(i —0-010 766 029 173 || a,

—0-000 632 697 788
—0-000 038 528 582
—0-000 002 899 234

2
1 Z
12°, _; —cotxr ~ a2k+1x2"+1,
=0

r = 10-6 (lx[ <—%)

a | 0333335 || a, | 0022173

| o | 0002327
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1 3
13°. — —cotwr x E Qg 41 T2 HL,
z k=0

r = 2:8% 103 (Qx} < -;i)

0-333 333 22
| 0-022 224 45

a,
Qg

as | 000210283
a; | 0-000 242 24

14°. The formulae (a)-(d) are a set of best polynomial
approximations to xcot z for |z | < }m, with y = (4z/x)®. They
may be used for finding

tanzx. =

xcotx

with an error not exceeding 1-3r (cf. [73], p. 113).
(a) zcotx ~ 1-0012 — 0-2146y, r = 1-2x10-3,

2,
(b) zcotr ~ Zaky", r = 1-8X 1073,
k=0

]
g | 0999983 I a, | —0-205308 l 4, | —0-009 258
3
(€) weotz = Y ayf, r=29x10-".
@, 1-000 000 28 ay —0-008 412 46
a, | —020562553 | a, | —0-000 563 84

4
(d) zcotz~ Y ay*, r=6x10""°

o, 0-999 999 994 ay | —0-000 491 943
a, | —0-205 616 537 a, | —0-000 035 949
a, | —0-008 457 395
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1.7. Continued fraction expansions.

1° sing = & x? Ta? 1122
CBEET L 6 — 100+ 98
_0_ T 6x 60z — 723 5880x — 62023
1 1 6422 60 - 322 5880 - 36022 + 1124
5512
— 198 —..
34(165)
o s P 3 11
. sing =z & L 10 — 1
z 6x —a® 60x—T723 25202 — 36023 - 1125
1 6 60 - 322 2520 4 60x2
2522
-+ 66 —... 34(165)
1663202 — 2226022 + 55125
166320 - 546022 4 752%
o x2 x? 322
3°, cosz =1— 5 L 5 — o
l 2—a2 12—5z%2 120 — 522 3zt
1 2 12+« 120 - 422
1322
I 196 —_—. 34(168)
15120 — 690022 4 31324
15120 4 66022 4 132
4:0 COSZ = i _af. Eﬁ _giz
' T 14+ 2 — 6 - 50

0 1 2 12 — 522 600 — 24422
1 1 2422 12422 600+ 5622 4 3%

3132

o6 4. 34(167, 168)



100 cH. III. TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS

o x 2 2 22
PLtmr=7_ 3 5 - K

0 z 3x 150 — =8 1052 — 1023
1 1 3 — 22 16 — 622 105 — 4522 J- 2
x? 2
—_ 4
— 9 R g W (120)
945x — 10523 +- 25
945 — 42022 - 1522
For |z} <im we have [r(z) <1072, 34(120); 11
1523 x? Qa2 B2
° % — sttt
6% tanw = o4 S LT 4+ 35— 288 + 1
1322 (4n 4 1)22
41287 — dda? 4 ...+ (dn—3)(@dn—1)(dn + 1) — 4(dn — 1)2?
(4n — 3)a?
—_— 34(122
+ 1 +... (122)

1.8. Rational approximations.

e ey
ST ST

(lo] <), r=6X 10“9

The values of a, and by, are given in Ch. II, § 1.6, 1°.
The expressions

3 2k 3 2k
X X
—?;kz (—1)'=bzk(~3—) and kz (— 1) (g)

are very good approximations to sin fx and cos iz respectively.

3 vlaf T-[5mli] ]
[ vanlz) T [5mnls)

(ol <7), r=10""%

1° sinx =~

2°, cosz =~
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The values of ay and by, are given in Ch. II, § 1.6, 1°. 60(83)

6
3 gt
3°. cosx ~ "=; & (lg] <1), r==2-58486x10-3,

g(x) = 14 2-82842192922% — 22%-{-2-82842192928 -} 28.

a,| 1002584 8 a,| 14276355

_a-l 3X 10—7 ?15 3‘2X 10_7 75 33
@ | 22012635 G| 0610635 04 (33)
a;| 2x1077

7 —1—dx+ 5a?
1+x% ~ 14824622 ’

r=0003 (0<z<1). 48(68)

Comment. It follows from 4° that z{z~!) = —z(x), so that the formula
may be used also for finding the values of the function for 1 <z < ©.

. —1— 4828y + 7-86612 — 20387°

7
5°, = ~
z(x) = cos - x% 1 + 5-5607 — 4-985%2 + 0-3857°

X
=016 + 084z

[yl |15 er=(i]]

r=000017 (0<z<1). 50(47)

6°. tanz ~ [ 0 ST T4 L= 2\
EE) RESEN e
kZO “\'3 3 ; “13

(Il <m), r=7x10"%,
The values of ay, and by, are given in Ch. 11, § 1.6, 1°. 60(83, 84)

945z — 10523 -4~ 25 :
945 — 42022 - 152

7°. tanx & r=2x10-8 (lwi <£)'

4
34(162)
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2
x ) ap
8°. tan mx x~ —=° (2| < 1)
z bk x2"
k=0
a 0-318 309 886 184 by 0-101 321 183 642
a —0-380 799 109 526 b, ~—0-454 545 454 545
as 0-062 638 942 788 b, 0-199 385 947 497
by —0-009 370 763 928
x
Tt JT
9°. 2 tan 5 = 3¢ (O <”<Z‘)' 7(7)
A
(3)
a, | 1-273 239 544 731 as | 0-000 009 877 325
a, | 0065449846718 || a, | 0-000000158336 7(8)
a, | 0-000 672 881 123
o G + (8 -+ ap2®)2® 4
. = < —_
10°, tanz xao+ [0 T (@, F aza?) et a? 0z < 1
a 0-500 000 000 as | —0-227 272 727
a, | —0-060 606 060 a, 0-010101 010  3(290)
@y 0-001 010 101 as | —0-000 048 100

1.9. Formulae for combinations of trigonometric functions with hyper-
bolic and exponential functions,

— 4Ye 8k
1°, yl-—coshxcosx—z( i .

=T
Y~ Z aypzik (la:] < —é—) ’ r = 1030,
k=0
@y 0-999 999 999 9 as 0-014 708 143 4 60(95)
ay —1-014 678 027 4 e | —0-000030 116 0
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R . . . _ 2 (__,4)kx4k+1
2°, y, = cosh xsinx + sinhxcose = 2 -_—

(4% - 1)!
3
Y R Qg 2tk +1 (Ix] < %) ’ r =2 X 10—,

k=0

a, 3-141 592 653 6 Oy 0-005 134114 0

as —0-637 541 009 2 | Gyg 0-000 007 279 8

R . . = {— d)kotk+2
3°. Yg = sinhasinz = 2 ;‘—(4—]‘;_}_—2)!—.

2
Ys~ Z Qyfpptht? (I“’I < —g—) » <107t
k=0

2-467 401 010 8
—0-166 907 130 8

Qs
Qg

o 0-000 805 034 8

2N (— d)kgtk+s
(4% + 3)1.

4°, y, = coshzsinz — sinhzcosz = 4

2
A ak+3 il = -9,
Ya k;) Qafe+ 3% <|$| < ?) , r=23x10

2-5683 856 371 2
—0-074 907 916 4

a3
ay

0-000 230 026 4

@y

x
o 2% 1 1
5% e SmEm=—2—(y2+y4)+y3-

The values of y,, y;, ¥, are given in 2°, 3° and 4°.

k: 4
6° e?xcosw __1( —y)+y
. ?m——? Yo Ya 1°

The values of y;, ¥;, ¥, are given in 1°, 2° and 4°.

103

60(95)

60(95)

60(95)

60(96)

60(96)
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§ 2. Inverse trigonometric functions

2.1. General information. 1°. Definition of the inverse irigono-
metric functions.

If x = siny, theny = Arcsinz;
if x = cosy, theny = Arccosz;
if x = tany, theny = Arctanz; and
if x = coty, theny = Arccotx.

The functions Arcsin # and Arccos x have real values if
—1 <2 <+ 1. The functions Arctan z and Arccot x have real
values for any real z. The inverse trigonometric functions are
multivalued functions.

The principal values of the inverse trigonometric functions
are denoted by arcsin z, arccosz, arctan z and arccot z. They
are related to all other values of the corresponding functions
by the relations:

Arcsin x = nr 4 (—1)"arcsin z,
Arccos x = 2nm + arccos xz,
Arctan x = arctan « + nm,

Arccot x = arecot x - nx.

The domain of definition of the function arcsin z is the interval
[—1, 1], and its range of values is the interval [—}x, in].

The domain of definition of the function arccos x is the interval
[—1, 1], and its range of values is the interval [0, n].

The domain of definition of the function arctan z is the
interval (— oo, 4 c0), and its range of values is the interval
b—%ﬂ,lﬂ)

The %omain of definition of the function arccot z is the interval
(— o, 4+ o), and its range of values is the interval (0, 7).

lim arctan z = %z, limarctanz = —im;
x>+ 0 X —00

Iim arccot z = 0, lim arccot z = 7.
X+t X——w

2°. Functional relations.
Both arcsin z and arctan x are odd functions.

arcsin ¢ = sign . arcsin |x|.
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arctan z = sign z. arctan |z|.
arccos (—z) = @ — arccos .
arccot (—=z) = m — arccot z.

3°. Relations between the warious inverse trigonometric func-
tions.

(a) arcsinx -+ arccos x = —7;— 22(198)
(b) arctan 4 arccotx = —Z— 22(198)

(¢) arcsin z = sign x arccos ]/ 1— %

— sign x(% — aresin}/T — 22 ); 22(201)
where this latter formula holds over the interval (— % /2, } 1/2).

(d) arcsin x = arctan (J=] < 1). 22(200)

x
]/1—-:::E
2
(e) arcsin x = arccot —lélx—x—-n (—1 <2< 0);

Y1—a?

= arccot 0 <z<1) 22(203)

(f) arccos:z::yz—arcsin]/l—:v2 (—1 <z <0);

= arcsin ]/1 -z <2< 22(202)

1— 22
(g) arccosx:n—l—arctanKT?— (—1 <z < 0);

V1—2a2
= arctan——x——— 0 <x<1). 22(202)

(h) arccos z = arccot ————— (=1 <z <1). 22(200)

x
]/1—932
_r
]/1 —+ a2

(i) arctan z = arcsin (Jx] < 00). 22(200)
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(j) arctan x = — arccos (x <0);

]/1+x2

= are cos—l—— (x = 0). 22(202)

Y1422

1
(k) arctan x = arccot - T (x <0);

= arccot—;; (z > 0). 22(202)

. 7 1
(1) arctanz = signz (? — arctan I?l)

where this latter formula may be used for reduction of arctanx

to the interval (—1, 1). 18(110)
(m)arccot x = mw — arcsin——l——— (x < 0);
]/1 -+ 22
= aresin ! (x >0) 22(203
]/1 +x2 * ( )
(n) arccot # = arccos . — 26(61)
V1+a?

1
(o) arccot x = 7 - a,rctan;— (x < 0);

= arctan—clv— (x > 0). 22(203)
1 7
(p) arctanz + arcta,n—x— == (x < 0);
7
=3 (z > 0). 26(63); 9
l1—2 3
(q) arctan x 4 arctan 1T == (x < —1);

=_Z_ (x> —1); 26(63)
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and since
11—
el

for |#| > 1, this latter formula leads to the interval (—1,1).
(r) There is an additional relation

arcsin x = 3 aresin'x,
where X is the root of the equation
422 -3 +2 =0, (*)
0-966 <z <1,
0-4227 <z < 0'5.

This formula may be used for computing arcsinz when

is close to 1, solving the equation (*) by Newton’s method (cf.
[60], p. 92).

4°. Trigonometric operations upon inverse trigonomelric func-
tions.

sin(aresinz) = cos (arcsin x) = ]/ 1—a?
sin{arccos x) = ]/ 1— g2 cos(arccos x) =
x 1
sin(arctan z) = m cos(arctan z) = m
. 1 x
sin(arccot z) = —]—/_ﬁ cos(arccot ) = ]/1 - x;
= 22(195)
. x -
tan(arcsinz) = 71—‘;2“ cot(aresin z) = —————1/1 " d
2 z
tan(arc cos x) = _Kl_x_a_;__ cot(arc Ccos W) = —]7i.:x2
1
tan(arctanz) = cot(arctanx) = -
1
tan(arccot ) = =z cot(arccot ) = x
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5°, The principal values of the inverse trigonometric functions
of the corresponding trigonomelric functions. These are:

a) arcsin(sin x) = & — 2nx nn~£<x< nw -+ —|»
in(si 2 2 5 2+ - |3

=_x+(2n+1)n[(2n+1)n——’;—<x < (2n+1)7z+—”23]-

(b) arccos({cosx) = x —2nw [2nw <z < (2n+1)x];

=—24+20n+1xn [Con+1)n <Lz <<2n+1)a].

(c¢) arctan (tanx) = v —nmw [mr— % <z < m+_2”_]

(d) arccot(cotx) =z —nn [nmw < (n+1)z]. 26(60)

6°. Connection between the inverse itrigonometric functions,
the inverse hyperbolic functions and the logarithmic function.

(a) arcsinz = —:—ln(ix +Y1—2?) = i— Arcsinh (ix).

(b) arccos x = %—ln(x +yY2—1)= —:.—Arccosh:v.

1+
(c) arctan x = ~2— In T —in 7 Arctanh (iz).
(d) arcctg x = -21— In®® ; i — { Arccoth (5z). 26(60)

2.2. Power series expansions.

1°, aresing = i
. sinae = 5 = arc cosx

1.3 1.3.5
2.4.5 +2467

_ }: (2k)! R+
22 (L)E(2k + 1)

=wF(%—;——2—x2) (x| <1). 26(64); 32(479)

i 2’ ..
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R l1—2z 2k —1!!  1—2)F
2°, arccosx_—l/ —{—Z @ ]
2% k- 5

(_1)kx2k+1
2k+1

k=0

£ arot 2 N 2%k [ a2 |
- arctane = 1+x2; @k DI\ T 22

(7] < o).  26(64); 39(122)

[+o]
5.arctanm=— Z( 1) (2k+1):v2"+1

k=0

3°. arctanz = (| < 1). 26(64); 32(479)

(o] =1). 26(64); 39(122)

1 13
2.32° 2.4.50°

[ =

6°. arcsecz =

wla

I
ro| 8
l
Mg

(2k) 1z~ @+D
(kN)E.2% (2% 1 1)

x
It

0

1 1.3 1
F(E”‘z"a’;z“)

(Io] >1). 26(64); 39(122)

i

8|~

B _
2

22k (k !)2x2k+2
@+ DI+ )

(l#] < 1). 26(64); 39(122)

7°. (arcsinz)? =

!
8°. (arcsinz)® = 28 +%;— 32(1 —]—%);ﬁ

3! 1 1
—}—7‘!—.32.52(1 —{——3*2——[—35)2:7%—...

(7] <1). 26(65); 39(122); 43(188)
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22 223 5z1

Q°, earesinx ]__l_x__}__z_'__.l_T-{—-—F—{—
26(37); 39(126)
x?2  ad Tat
10°, epretanx | +x+_2T — 57 o

26(37); 39(126)

2.3. Expansions in polynomials, orthogonal and otherwise.

A. Ezpansions in Chebyshev polynomials.

o0
1°. aresinz = kZo o1 ok 11 (]/2:5) (]x] < sin %)

a, |076275976350 || a | 0-000000 31258
as | 0-020 869 237 57 || a,; | 0-000 000 043 09
as | 0-001 586 93163 || a,, | 0-000 000 006 11
a, |000016082275 || ay; | 0-000000 000 88
@, | 000001869107 | a5 | 0-000000 00013
as; | 0000 002 35406 || @, | 0-000 000 000 02

18(108)

2]

2°. arcsinx = ZazkHTzkH(xeosec —g—) ([a:[ < sm—g-).
k=0

a, |039010575122 || a, | 0:000 000028 59

a; | 000254704001 || @ | 0-000 000 000 83

a; | 000004519832 || @, | 0-000 000 000 03 18(108)
a, | 0-000 001 06270

8

3°. arcsinz = xZaka (4x2 — 1) (lxI < V2 ),

k=0 2
_—_— )
arccosx:—z———x;aka(éixz—l) 0L <—2— - 47(145)

a, | 1051231 959 as | 0-000 005 881
a, | 0-054 946 487 a; | 0-000000 777
as | 0-004 080 631 a, | 0-000000 107
a; | 0-000 407 890 as | 0-000000 015
a, | 0-000 046 985 a, | 0-000 000 002
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p2k+1
4°, arctany = 2 Z S ) LT —— Gy a1 ()
- }:aziﬂcﬂzm(x) (sl < 1),
k=0
1, p=yF—1n~041 19(14)
1— -pz 3 ~ veey
Qp2k+1
Ggesr = (=1 gy
ay 082842712475 || a,;; | 0000 001 625 56
ag —0-047 378 541 24 Oy —0-000 000 241 71
a; | 000487732353 | ay | 000000003659 o))
a, | —000059772602 || @y, | —0-000 000 005 61
a, 0-000 079 76389 || ay | 0-000 000 000 84
gy, | —000001119708 || a, | —0-000 000 000 12
[+ o]
7 7
5°. arctanz = Z Gox 11 ok 11 (a:cot ——8—) ( jz] < tan —8-)
k=0
a, 0-397 824 734 76 O 0-000 000 108 33
a; | —0-00524679504 || ay | —0-00000000351 18(111)
s 0-000 124 557 22 Oy 0-:000 000 000 12
a, —0-000 003 520 18 ||
w0
6°. arctans — xZ G T (@22 —1) (o] <1
k=0
When |2} > 1, the formula arctanz = iz — arctan(l/z)
should be used.
a 0-881 373587 | a, 0-000 003 821
ay —0-105 892 925 a, —0-000 000 570
Qs 0-011 135 843 ag 0-000 000 086 47(145)
Gg —0-001 381 195 O —0-000 000 013
a 0-000 185743 || ay 0-000 000 002
ay —0-000 026 215
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© —1¢(/2 —1 2k+1 .
7°. arctanx = —Z— +2 Z (=1 (]/2 ) Tor 41 (u)
k=0

2k +1 xz+1
(0 <z<oo). 63(16)
kR2k+1
8°. arctan— = 22 51 Top (),
B = (a®+ 1)E (] < 1). 63(16)

This series converges for all values of a in the right half of the complex
plane, except on the line connecting the points @ = 4 4.

. 2‘R2n+3l
T 2n+3)1—RY

(—1)*tan*+10

9°. arctan(ztan20) = 2 Z 1 okt ()
k=0
(ol <1), 0<0< —15, fny — tan®0.  56(44)

Consult the reference [56], pp. 44 ff., for computations by these
formulae.
Practical computational techniques, which are based on these

formulae with n =9 and tan 0 = tan % s

B. Expansion in Legendre polynomials.

100 ]/—

are givenin § 2.4, 10°.

. arcsin — 2 = V%MPMH () (=] < 1).

ay 0-750 000 000 000 Q5 0-000 000 933 713
as 0-031 941 517 568 @5 0-000 000 137 799
ag 0-003 042 677 300 Oy 0-000 000 020 740
a, 0-000 359 433 936 g 0-000 000 003 169
a, 0-000 046 941 925 oy 0-000 000 000 492
a; | 0-000 006 496 677

2.4. Approximations by means of polynomials (and square

roots).

1°.

aresinz x

2k+1
o1 %

e

k=0

(1] < 0-966),



§ 2. INVERSE TRIGONOMETRIC FUNCTIONS 113

1
if |2 < 5 = 3x10-8.

a, 0-999 999 971 1 O 0-045 938 779 8

g 0-166 669 833 7 aqg 0-022 316 969 3 60(91)

a5 0-074 901 4744 ayq 0-044 856 984 6

9 ]/§
2° arcsinz & Y Qg2 (Ix] < -———)
2 5

a | 1 ay; 0-034 242 560 0
a, | 0-166 666 844 a, | —0-033 161 216 0
as 0-074 992 448 0 ays 0-143 654 912
ap 0-044 792 576 0 Qyq —0-176 160 768
ag 0-028 669 952 0 19 0-134 217 728

N /2
3°. arcsinz x Z Aoge g 221 (]x] < —]—2——)
k=0

a, | 1000000000372 || a; | 0-060 563 816 911
a; | 0-166 666 600550 | a,; | —0-124 609 821 872
a; | 0075003446490 | ay, | 0-289 558 388 282
a; | 0044560 473 601 || @y, | —0-313 624 467 676
ay | 0031466212165 || ay | 0-182 869 189 956
a; | 0013758 605 250

4
7 A\
4°. arcsinzx — —Yl—z > a(l—a)
VY

0-966 <z<1:0), r=3%10""

a, | 1-414 213 562 5 a; | 0-007 848 558 3
a, | 01178510948 ay, | 0-003 044 958 4
a, | 0-026 518 600 7

60 (91)
5°. Let us put

1
arcsinx = 5 T ]/1 —xy(r).
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We shall give a set of polynomials of best approximation (the
formulae (a) to (e)) of degree k, where 3 <<k <7, for y(x) over
the interval (0, 1) (cf. [49], pp. 159-163).
3
(8) ()~ Zakx", r< Tx 105,

k=0
a 15707288 || 0074 261 0
a | —02121144 || o | —0-0187293
4
(b) w(z)~ oxk, r<8x10-S,
ay 1-570 78786 | a3 | —0-035 756 63
a, —0-214 124 53 a, 0-008 648 84
g, | 0-084 666 49

5

©) @)= Zakxk, r<1-2x10-5.
=0

Gy 1-570 795 207 || @, | —0-044 958 884
a, | —0-214512362 | a, 0-019 349 939
@ | 0087876311 | a; | —0-004 337 769

oz, r<1-5x1077%

M-

(d) yl)=

k=0

g 1-570 796 172 8| a, 0-026 899 948 2
a, | —02145852647| a; | —0-0111462294
ay 0-088 755 628 6| a, 0-002 295 964 8
as | —0-048 802 504 3 |

ax®, r<<2-3x10°8.

-

) pl)=~

k=0

a | 1-570796 3050 j a, | 00308918810
a, | —0-214 598 801 6| a; | —0-017 088 125 6
@, | 00889789874| a, | 0:006 670090 1
a; | —0-050 174 304 6| @, | —0-001 262 491 1




§ 2. INVERSE TRIGONOMETRIC FUNCTIONS 115

6°. We next give a set of polynomials of best approximation
(the formulae (a)-(f)) for the function y = arctanax over the
interval | | << 1, where r is specified for the interval 0 <<z << 1.
We remark that each approximate equation
m
arctanz =~ ok 1%
for |z | < 1, leads directly to an equation of the same accuracy
for z in the range 0 <z < c0:

2k+1
’

1 i z—1 2k+1
arctanz ~ va 7+ Z Gk i1 (m)
k=0

(cf. [49], pp. 132-137).
2
(a) arctanz = Z Qo1 2, r="TX 104

k=0
o 0-995 354
a; | —0-288 679
g 0079 331
3
(b) arctanz =z Z Qo1 @5, r=8X10-5,
k=0
ay 0-999 2150 as 0-146 276 6
ag —0-321 1819 aq —0-038 992 9

a2k+1m2k+1, r = 12X 10—6.

e

(¢) arctanz

E
It

0

a 0-9998660 || a, | —0-0851330
ag | —0-3302995 | a, 0-020 835 1
ag 0-180 141 0

b
(d) arctanz = Z Aop 10T, r=18%10"".

k=0
a, 099997726 | a; | —0-116432 87
a; | —0-33262347 | a, 0-052 653 32
as 019354346 | a;, | —0-011 72120
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6
(e) arctanz~ E Qg1 ¥+, 1= 25X 1078,
k=0

a, 0-999 996 115 || a, 0-079 626 318
a; | —0333173758 || a,; | —0-033 606 269
as | 0198078690 || a;; | 0-006 812 411
a; | —0-132 335 096

(f) arctanz Z Ao @+, r=4x10-5
k=0

a, 0-999 999 3329 | a, 0-096 420 044 1
as; |—0-3332985605| a,, |—0-055909 83861
as 0:199465 3599 || a3 0-021 861 228 8
a; |—013908533561} a5 |—0:004 0540580

. —
—1
7°. arctanz = Z Ao 41 T (l-’”l < _]LE___ ~ 0-268)’
r o= 2732

a4y 0-999 999 998 43 a; | —0-141 734 606 13

ay | —0-333 332 893 64 Qy 0-094 919 549 52 7(12)
as 0-199 965 347 80
8
8°. arctanz Z Qg T (J2] <1), r=5x10-5,
k=0
l

a, 1-000 000 00 ay | —0-074 869 25

a | —0-333 330 61 s 0-042 485 76

as 0-199 923 55 a5 —0-015 941 63

aq —0-142 015 62 Gy, 0-002 818 05

g 0-106 327 94

11 (166)

10
9°. arctanz Z Qo1 2L (J2] K1),
k=0
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a, 0-999 999 9953 || ay, 0-064 702 992 4
ag | —0-3333329248 | a; | —0-041172 074 5
a 0-199 989 2590 || ay 0-019 743 375 4
a; | —01427243942 | a, | —0-006 073 876 5
ag 01101791217 | a, 0-000 876 609 5
ay | —0-0861789 919 7

8
10°. arctanz =~ Z Qog 42+ (O Lz < tan—zj—;:), r < 8x1022,

k=0
ay 1-0
a; | —0-333 333 333 333 333 331 607
as 0-199 999 999 999 998 244 448
a; | —0-142 857 142 856 331 306 529
ay 0-111 111 110 907 793 967 393 69(271)

a;; | —0-090 909 060 963 367 763 707 3
O3 0-076 920 407 324 915 408 132 0
a5 | —0-066 524 822 941 310 827 790 5
Oz 0-054 672 100 939 593 880 694 1

Rule for computing arctanz for any 2 > 0. The interval
(0, 0) is to be subdivided into the seven intervals:

7 (2§ —3)x 2f—1)m .
O<u<tan-2z, tanT<u<tan o for j = 2,3,

4,5,6 and tan 1; n <% < 00. The series of 10° should be used

for |x| with the first interval. When |z| is within the (j-1)th
interval (j=1,2,3,4,5) the formula

arctan|z| = Ji% + arctani;

should be used, where
— FL2
jz] — tan 15

tj =
1

+ || tan 19

The series of 10° is to be used for computing arctan t;. When
the value of |z| lies in the seventh interval, then

_ 1
arctan|r| = — ——-arctanm (I o S <L tan — d )

1
2
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. Jr
J tan 24

0-131 652 497 587 395 853 472
0-267 949 192 431 122 706 473
0-414 213 562 373 095 048 S02
0-577 350 269 189 625 764 509
0-767 326 987 978 960 342 923
1-000 000 000 000 000 000 000 69(272)
1-303 225 372 841 205 755 868
1732 050 807 568 877 293 527
2414 213 562 373 095 048 802
3-732 050 807 568 877 293 527
7-595 754 112 725 150 440 526

=t OO 00T O W N

[y

121:-= 1-570 796 326 794 896 619 231

2.5. Continued fraction expansions.
2y 241 244
1°, ePveretot® — 1 L x—9y 4+ 32 + br ...
2 - n2
oot 241z 4 ..
x? 4a? 922

34(106)

2°, arctanzx =

z
14+ 3 + 5 + 7
0 z 3z 15z 4 443 105z -}- 5523
1 1 3422 15 - 922 105 4 9022 |- 924

1622 n2x?
+ 9 + e+ 2041 4.
9452 - 735236425 34(114)
945 -+ 105022 - 22524

The fraction converges everywhere in the complex plane of the

variable z, except on two semi-infinite intervals of the imaginary

axis (—t00,—1¢] and [4, ¢00). The following chain of inequalities
holds for real values of z:

3z 105z -+ 5522 <

3422 © 10649022+ 92t

9452 +- 73523 + 6428 15z -+ 423

U 045 4 105022 4- 2252% 15 - 92?

L arctanz < ...

<z 34(115)



§ 2. INVERSE TRIGONOMETRIC FUNCTIONS 119

3° rctanz = 2 9a? i
CoAenE =T o . s 4 7
z 3z— 22 15z 423 105z - 4023 — 425
1 3 15 4 92 105 - 7522
2522 (2n 4 1)2a2 4n’x?

+ 9 4.4 4w+l 44043 + ...

The fraction converges everywhere on the complex plane of
the variable z, except for the sem-infinite intervals of the
imaginary axis (—%00, —¢] and [7, 100).

g0, BTC sihz = Ea 422
’ ]/1_x2—1—w2+ 3 +51—=2%
o z 3z 152 — 1123
1 1—22 3—222 15—21a%-62%
92 4n2
-+ 7 + oo + (@n+1)(1 —2?)
1052 — 502
105 — 12022 - 244
(2n + 1)%22
n+3 ... 34(116)

This fraction converges everywhere on the complex plane of the
variable x, except for the semi-intervals on the real axis (— o,
—1] and [1, o0).

o . . 28 922 422
5°. Vl-——xza,rcsmx—-x—g(l_xz)_[_ 5 +7(1 —2?) +...
(2n + 1)2x2 4n2z®
ot W F T 4 @A —2) ...
arccosz 1 1—22 4(1—a2%) 9(1—2?)
Vi—2 w4 3 4+ b + Tz ..

3z 4 4 1122 b5z - 50z
14222 92+ 623 9 1+ 7222 - 2424

34(117)

6°.

0 1
1 x

n2(1 — a?)

T 34(117
oo+ Cr+4+ 1Dz 4-... (117)
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7o arcsinz =z 1.222 1.222
: V122 T 1—- 8 — 5 —..
— 2 —_ 2
(2n — 1)2nx (2n — 1)2nx 34(118)
ve—  4n—1 — 4n41 —..
g° otan s — x 1.222 1,242
. arcta x—1+x2_ 3 _5(1+x2)____“.
(2n — 1)2na?® (2% — 1) 2n2?
34(119
vee—  dn—1  — (1)1 422 —... (H9)
9°. arccos = 1.2(1 —2?) 1.2(1 —2?)
l/l_xz 1 — 3 — 5 — e
— — — — 22
@n—12n(l—a?)  (2n—1)2n(1 —2?) 34(119)

ve — 4n —1 — 4n +1 — e

10°. A series of rational approximations y, for y = arctanz
can be constructed for n =1,2,3,...

z ch
Yos = D (=1 Seala),
r,(- 2~ 1)
n xz
2 | (2?2 r (@
3y — —_— —_— .
where S, ;(22) =1 3 + 5 e S M

17(482)
and where the ¢ are the coefficients of the polynomials T'7 ().

The sequence {y,} converges to y everywhere in the complex plane,
except at points lying on the imaginary axis. In fact, the sequence also
converges on that part of the imaginary axis lying between —<¢ and +1.
The function arctanz has singularities at z = 14.

In particular, putting » = 4 we get

322z 420 4 70022 - 32924 - 3828

arctanz = 105 128 + 25622 - 160zt -+ 328 + x® )

17(489)
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2.6. Rational approximations.

_ w—04142135623
Y= 130414213 562 3z

1°. arctanz =~ isz— -+ arctan y,

0Lz <,
g ST 1—04142135623
arctanx X —g-—arclany, ¥ = 0414 213 562 3

(1< z<+ o),

4
arctany ~ E g Y21,
=0

ay 09999999031 a; | —0-1375164984
ag | —0-3333218453 | a, 0-077 264 202 0
a5 0-199 615 567 9

r < 4x10-°

where
_ _2—04142135623
Y= 130414213562 32

_ 1041421356232
T Tz 104142135623

3
Z azsz k

arctanz k=0

x ~ .
k
Z Qo +1-'l’2
k=0

if 0y,

if 1<z<+o0. 60(89— 90)

2°.

2
The upper bound for the absolute error is —I%— for small

values of |z |, and is 1-4X 105 for 2] =1.

k Qog Aok +1 k Aok Aok +1
19 1
0 1 1 3 30 | 4
5 1
1 3 2 4 128
47 5
2 ) 7

56(52)
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Comment. This same expansion can be written in the form 3°.

56(52)

32 Byt
go, retanz E=0 O<c<l), r=6x10-10,
’ 14 Z ba 122+
k=0
k box ber+1
0 14+19x 10710 1-453 567 134 6
1 1:120 234 014 3 0-565 030 979 6
2 0-280 504 540 7 0-049 017 591 2
3 0-008 561 188 9

A A
4°, arctanz — x{Do + 1 2 A }

224D, — a? + Dy — 2%+ Dy
o<z,

D, = 0174 655 438 8; A4, = 3-709 256 262;
D, = 6762139 240; A, = 7-106 760 045;
D, = 3-316 335 425; A, = 0-264 768 620 2.
D, — 1-448 631 538

A Af A

i 1
o T e e e * -_— 1
5°. arctang 2 p” (Do a? + Df — o* + Df — a? + D§

(@>1),
where
Df = 0-9999999981; Af = 0-3333331177;
Dy = 0-599 987268 9; A¥ = 0-068 475 358 2;
D} = 0505974 0184; A# = 0-054 510 242 0.
D¥ = (-347 605 847 3.

)

56(53)

56(53)

2.7. Iterative processes. 1°. We shall evaluate y by a ‘“digit-

by-digit” method, where

1
5 Y= arcsinz.

We seek the binary expansion

o0

Y == Olg 0y Oly.eellyoen =Zak2—" (e, = 0, 1).

=0
We construct a sequence of pairs of numbers:

(s, %} (r=0,1,2,...).
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ro=z(—1<aeL]); if >0, =0, then =z =2z3—1,
if g<0, og=1, then =z =1— 222

Let the numbers z,, x;, ..., 2; and the binary digits oy, «,, ...,
o1 be already determined. Then if z; > 0 and «x = 0 we have

Tpry = 203 — 13
if 2, <0 and oy =1 then we have

Tty = 1— 250% .

Having determined the binary number o0, ... 0, we then
find

. 7 7
aresing & — (0lg* 0y e Oy) = —- E o 27k
2 2 vz

18(105—107)
(within an accuracy of 2~("Ug).
2°, We shall now find y by a “digit-by-digit’’ method, where

1
5 Y= arctanz.

In fact, we shall find an expression for arctan # in a modified
binary system, with digits &, equal to 1 and — 1 (cf. [20]):

o0
T . o ~ T . ~
arctanx:?81gnx><0-ocloc2...oc,,... =——2—81gnx E G x 27k
k=

[—

We find the sequences z; and &, (where k=0,1,2, ...):

2xi
T =z, Fm=7—

where &, = 1, but if 2 > 1 then & = —sign =;_; (¢t =2, ...),
and

n
T, - e
arctanz ~ —-signa E % 2%
%=1

(Within an accuracy of 3—;2"’). 18(108).
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§ 3. Hyperbolic functions

3.1. General information. 1°. We shall use the following
notation:

sinhz coshz 1
1 £ = s = ’ = ’
sinh 2, cosh 2, tanh z woha cothz iha sechz P
1 .
cosechz = g
& —e %
(a) sinhz = — (the hyperbolic sine),
X —-X
(b) coshzx = ——e———_;—e— (the hyperbolic cosine),
e&— e~ %
(¢) tanhz = ponpe (the hyperbolic tangent),
X -
(d) cothz = f;if:; (the hyperbolic cotangent),
2 .
(e) sechz = Fanre (the hyperbolic secant), and

T—%:’T (the hyperbolic cosecant).

(f) cosechar = —;

2°. Domains of definition. The domains of definition of the
function sinh z and its range of values are each the interval
(— o0, + ).

The domain of definition of the function cosh 2 is the interval
(— o0, + o), and its range of values is the semi-infinite interval
[1, 4 o).

The domain of definition of the function tanh z is the interval
(— o, 4+ o), and its range of values is the interval (—1, 1),
ie. |tanhz | < 1.

The domain of definition of the function coth z is the pair
of open intervals (— 0, 0) and (0, + o0), and its range of values
is the pair of open intervals (— o0, —1) and (1, -+ oo). Thus,
|ecothz | > 1.

3°. The argument 2 of the hyperbolic functions sinh z, cosh z,
etc., may be interpreted as twice the area of a sector of an hyper-
bola.

4°, The function coshz is an even function, but sinhz,
tanh  and coth « are odd functions.



§ 3. HYPERBOLIC FUNCTIONS 125
sinh z = sign . sinh |z |, coshxz = cosh |z ]|,
tanh x = sign 2. tanh | 2|, cothx = signx.coth |z ].

5°. Expressions for an hyperbolic function in terms of another
hyperbolic function.

tanhzx 1
sinhz + Veosko =1 | e | T Yoot 1

coshz | Ysinh*z 41 1 L cotim
]/1 — tanh?z Y coth? — 1

tanhz sinha " ]/cosh’a:—-l 1

Vsinh2z 4- 1 coshz cothz
cotha ‘/m N coshz 1
sinhz YV cosh?z — 1 tanhz
6°. General formulae for multiple arguments.
(coshz 4 sinhz)" = coshna - sinhne (if n is an integer). 26(39)

n+l
E\7e- »
sinhnz = sinhz z sinh2*~1xcogh™ 2+l
£s \2k—1
)

= sinhz Z (=1 (n _;: B 1)2""2"‘lcosh""2"'1x.

k=0

26(41)

£(3)

coshnz = Z ( n) sinh2*z cosh® %z — 27-1cosh™

ko
(%
+-n i) (—1)F 1 (" — 2% 1) gn—2k-1gogh" 2y, 26(41)
= k k—1
7°. Relations between hyperbolic and trigonometric functions
cosh z = cos iz 38(38)
sinh ¥ = —¢ sin . 38(38)
tanh z = —1 tan ¢x. 38(38)

coth 2 = ¢ cot iz, 38(38)
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3.2. Various formulae.

10 z*tanhasinhe  2*coshz + z*lsinhz A
" ginh2zx+2x  sinh2 4 2 —sinh2x 422 ' 2coshaz’
44(163)
90 a*cothwzcoshz  afsinhz 2% lcoshz a*=1
" ginh2x4+2¢ = sinh2zx + 2z ' sinh2x 4+ 22~ 2sinhz’
44.(163)
g0 a*tanhz z* N1 —e~%) __ aFlem*
" ginh2x 4+ 2x sinh2x - 2¢ — 2(sinh22 + 2x) ' 2coshx
44(162)
40 d*cothe o* Y1 —e7)  atlem®
" ginh2z - 2% sinh2x 4 22 2(sinh2x --2x) ~ 2sinhz’
44(162)
5°. sinh%z — sinh?®y = sinh(z - y)sinh (x — y)
= cosh%r — cosh?y.  26(39)
6°. sinh2zx -} cosh?y = cosh(z + y) cosh(z — y)
= cosh?x -} sinh?y.  26(39)
3.3. Power series expansions.
i Y 26(48
1°. sinhz = kz '(-2—]'6—_;——1)! . ( )
N g2k
°. = 26(48
2°. coshz R (48)
k=0
o ¢ 225 1747
3°. ta,nhx——:v——g- '-I——lg"" —31—5 + e
2k (22k —1 ) 7T
= B, Ta?*-1 —}. 26048
Z @k)! i ("”l< 2) (45)

t B, are the Bernoulli numbers (cf. [1], p. 348).
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o 1 x 2 228
4°, cotha:——x— +—§“—'4—5+—925——

=—+Z2 Dot (1 <)

26(49); 32(522)

R xt 612t
5°, Sechx—l ‘—'+————7‘§6-+...
= E: ¢ Dol oa Z). 264
L+ ) (e (Ix]< 2). 6(49)
o z | Ta? 318
6%, °°se°h”_?*"6_+360‘ 15120 T

1 Z 2(2%-1 _ 1) By 21 (lo|<m).  26(49); 52(418)

!
x — (2k)!
kyy 2ttt 22k ak—2
°, — — 1)k . 26(49); 52
7°. sinhz = cosech( 1) @@= 49)
2 92k, 4k
8°. coshz = secx + secxz (— 1) = 26(49); 52
L (4F)!
o . 2kx2k+1
9°. sinhz = xsecx —secx . CErD!
2 E(‘kz“) Qk—1,2k~1
== — —_— 26(49); 52
3‘“’”2‘ L @y (49)
k=1
b pay 2t
(o] — _ + —_
10°. coshz = zcosecz -} cosec:vz1 (—1) T
0 k-1
B(C7) gk-152k-1
= — e, ; 52
cosecx?_;( 1) Sy 26049 5
> 2k
11°, tanhg — — (22) 44(164)

sinh2zx (2K)Y °
k=1

T K. are the Euler numbers (ef. [1], p. 359).
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3.4. Infinite products.

bt 2
1°. simhz=z]] (1 + %f—né) 26(51); 36(148)
k=1
2°. coshz = ﬁ 14— 2= ). 26(51); 36(149)
' 11 2k I 1)Ent ’

(o] 2
go, Coshz—cosa T [1 +( v ) ] 26(51); 66(216)
k=-—00

1 —cosa 2kn+a

3.5. Series of exponential functions.

o0
1°. tanhz =12 Z (— ke (z>0). 26(37)
k=1
o0
92°, seche — 2 Z (— ke @Dx (5 50), 26(37)
k=0
o0
3°. cosechz = 2 Z ¢~ (k1) (x> 0). 26(37)
k=0

3.6. Expansions in elementary rational functions.

o0
1 dx 1
°. —r=— — | 2
1°. tanh g &= kgl CE—IEfa 5(50)
. 1 2 1
2°. cothazx = 'n—x- -+ -;— m. 26(50)

k=1

3.7. Expansions in polynomials, orthogonal and otherwise.
A. Expansions in Legendre polynomials.

o0
1°. sinhz — zazk_lek_l(x) (=] < 1).

k=1

1-103 638 323 514 an 0-000 007 620 547 335
0-070 455 633 668 ay 0-000 000 029 718 090
0-001 099 586 127 a;; | 0-000 000 000 072 731

£ £ P
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2°. coshz = Zaszzk(x) (=] <1).
k=1

a, | 1:175 201 193 644 ag 0-000 099 454 339 113
a, | 0-357 814 350 647 as 0-000 000 506 471 975
a, | 0-009 965 128 149 a;,o | 0-000 000 001 560 966

B. Expansions in Hermite polynomials.

1 C 1
o L — E :___ , 26(412
3°. - sinh 2z @) Hoppr(2) (412)
k=0
4° 1 cosh2z = \ —I—H () 26(412)
T e - ;_; (k)1 B

3.8. Polynomial approximations.

0

1°. sinhz = Za2k+1x2"+1 (] < 1), r=10"1.

k=0

a; | 0-999 999 999 988 G 0-000 198 411 962
a; | 0-166 666 666 713 Gy 0-000 002 756 445
as | 0-008 333 333 485 ay 0-000 000 025 052

2°. coshz = Zazkxz" (l#] < 1), r=10"°.
=1

a, | 0-999 999 999 999 Qg 0-001 388 892 118
a; | 0-500 000 000 058 asg 0-000 024 795 048
ay, | 0-041 666 665 951 Gy 0-000 000 281 639

3.9. Continued fraction expansions.

-3 . x3 3272 11:52
1°. sinhz ~ 2z -+ % _ 10 + yE)
z 6z 28 60x+Tx® 2520x - 3603 - 1128
1 6 60 — 322 2520 — 6022
2522

. 34(164)
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z(1 + F)

9
xz

A+ Fp——-

2°, sinhz = 65(264)

where F is defined in Ch. II, § 1.5, 7°.
This expression converges more rapidly than any other ex-
pansion which is known for sinh x.

o 1 x? 5x? 32
3°. coshz = T . —2— + —6—' _ ﬁ)—'
0 1 2 12 - 522 600 - 24422

T 1 22 1222 600 — 5622+ 32t
31322
+ 126 — ...

75 600 4 34 50022 4 5.31324
75 600 — 330022 - 65x*

15 120 -+ 690022 + 3132*
15 120 — 66022 4- 132

34(166)

a2 22 32
o ~ —_— — _—
4°. coshzx~1-+ 3 8 » 10

1 2422 124522 120+ 5622 4 32t
2

1 12 — 22 120 — 422
1322
— 126 + . 34(167)
15 120 - 690022 - 31324
15 120 — 66022 + 1324
xz
5°. coshz =1+ 5
X
(1+F)2— <

where F is defined in Ch. II, § 1.5, 7°.
This expression converges more rapidly than any other expan-
sion which is known for cosh z.
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o x x> a2t x?
6 Wb = L L F .4l
34(121); 20(133)
This fraction converges everywhere in the complex plane, except
at points of inessential divergence. The following chain of ine-
qualities holds for real z:

3z < 105% 4 «3
3422 105 4 4522 -} 2t

9452 4+ 10523 - < 152 4+ a3

<... < tanhz < ...

S O 0E F B S TBpea <0 41z
) 5e® 2 9<%
7°. tanhzy =2 — m - 1 = m

z 15z +24% 152 4-2° 4725260023+ 102°
1 154722 154622 47254-2175224-10524

945120234225
9454435222124
_5_9_ci 1322
— 1 — 1287 — 4422 — ...
4725x - 52523 -+ 525
4725 + 210022 - 752%
945 -+ 10523 4 28
945% - 42022 4 15x4
4n + 1)22 (4n — 3)2?
veo. — (40— 3)(4n—1) (4n + 1) + 4 (4n — 1)a% — 1 —_.
34(122)
22 22 22
. x5 B B
Stanhw—-l—+1+1+1+,
where
22
al—-x, a”+1=—4:—m fOr n}l,
Ixzn—ll
|7n—q (x)| < 65(264)

D, D,[] 4 —1)

i=1



132 cH. OI. TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS

The following table gives the number of terms which are
needed in order to get 12 significant decimal digits correct:

tanhz in the
x form of 8°
0-1 4
1 8
10 19
z 22 a2 2
0° tanhz — 2 4.2 4.8 8.8 65(264)
1 3 + 5 + < +
E - . 3
. 0}‘(2k—1)(2k—2)...
10°. tanhz %k —1)...
. _ . 3
ekt Do — GRE—-3)@k—4)... (b + D4 +... g 550,

(1) + C2(2k — 2)(2k — 3)... (b + 1) 222 +-...

This is a general expression for all of the convergents of the
expansion in § 3.6.

§ 4. Inverse hyperbolic functions
4.1. General information. 1°. Definitions.

If x = sinh y, then y = Arcsinh z.
If 2 = cosh y, then y = Arccosh x.
If z = tanh y, then y = Arctanh z.
If z = coth y, then y = Arccoth z.

2°. The domain of definition of the function Arcsinh z and
its range of values are each the interval (— oo, 4 o).

The function Arccosh z is two-valued and consists of two
branches having a common domain of definition [1, -+ o).
The range of values on one branch of the function is [0, + o),
and the range of values for the other branch is (— o0, 0].

The domain of definition of the function Arctanh z is the
interval (—1, -+1), and its range of values is (— o0, -+ ).

The domain of definition of the function Arccoth = is the
pair of open intervals (— o0, —1) and (1, + o0). The correspond-
ing ranges of values are the open intervals (— c0,0) and
(0, + ). '
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3°, The function Arccoshz is even, but Arcsinha, Arctanhz

and Arccothz are all odd functions.

Arcsinh x = signz. Arcsinh ||,
Arctanh x = signz. Arctanh |z|,
Arccoth z = signz. Arccoth |z|.

4°, Functional relations. (a) Expressions for one inverse hyper-
bolic function in terms of another.

Arcsinhg = +Arccoshyz*+1 | Arctanh ;;__. Arc coth l/—m;i
+1
oty
Arccoshz =| Aresinhy/zZ—1 :!:A.rctanh—]i%-—l- £ Arcoth— 2 -
) —
Arctanhz =| Arc sinh z 4-Arccosh 1 Arccoth 1
Vi=a* Vi-2* z
1 z 1
Arccothz =] Are ginh FArecosh Arctanh —
Va@—1 Va—1 ©

88 (27); 37 (68

In the expressions containing Arccosh z, the plus sign should
be taken if x > 0, and the minus sign should be taken if x < 0.
However, both signs must be taken in the expressions for
Arccosh z itself.
(b) Relations between inverse hyperbolic functions, inverse
trigonometric functions and logarithms.

Arcsinhe =In(z + /22 + 1) = —11’— arcsin(iz).
Arccoshz = In(z 4 }/22 — 1) = sarccosz.

Arctanhz = —;—ln

Arccothzy = E—ln

142

1—=z

1 z-+1
rx—1

4.2. Power series expansions.

1°.

Arcsinhy = 2 —

1

1.3

x84

x5

2.4.5

1
= arctan(ix).

1 ,
= ~-arc cot(— wx).

38(28)
38(28)

38(28)

38(28)
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(2k)!
— k k+1
Z YV maper T ©

= xF(i 13 ;——x2) (Iz] < 1). 26(64); 32(480)

2’ 2’ 2
. : 1 1 1.3 1
2°. Arcsinhz = ]112:::—}-? "o 94 dst 4.
— In2 + Z e CRLETE 1), 26(64); 39
2 22"(Ic|)22k ’
o L (2k)! 2k
3°, Arccoshx =In2zx — 22"(10')2270

(2 >1). 26(64); 39
5 k+1
4°, Arctanhx=x+—”§+%+.. = ;I:+1
k=0

(z| < 1). 26(64); 39

. 1 N (DR gy
5°. Arcsmh-;— = Arccosechz = ; S TRk 1) z

(=] >1). 26(64); 39

@)

. 1 2 <
6°. Arccosh—x— = Arcsechx—ln—x— — Z mx

k=1
0 <z<1). 26(65); 39

(=11 (2!
22k (I 1)22%

7°. Arcsin %: Arccosecha = ]n% 4
k=1

0<z<1). 26(65);39

x—(2k+l)

8°, Arctanh-i— — Arccothz — Z

k=0

26(65); 39
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4.3. Continued fraction expansions.

o x x? 422 n2x?
1% Arctamhz =3 = 5 Zatl — ...

34(115)
This fraction converges everywhere in the plane of the complex

variable z, except for the two semi-intervals on the real axis
(— o0, —1] and [1, 4 o0).

o 23 92% 4a? 252®
2.Arctanhx-—x—]——§~_-5—__—7——__ 9 — ..

(2n1)222  4n2z?
o.— 4dn+4+1 —4n4+3 —...

34(115)

This fraction converges everywhere in the plane of the complex
variable x, except for the two semi-intervals on the real axis
(— o0, —1] and [1, + o0).

g0 Arcsihz  « x? 4z? 92
T VYitar 14a2— 3 —B(1ltad)— T — ..

4nx® (2n 4 1)%22
voo— (41D (1422 — 4n+3  —...

34(116)

3 Ox2 42

4°, ]/1+x2ArCSinhx=x+W_’—5-—m_“.

(2n + 1)222 An2e?

= Il —@mrai e ... D
2 __ (e __
go, Arccoshz 1 2?1 n?(z? — 1) s4(118)
Var—1 r— 3x —..— (2nt+lx —...
go, Arcsithz _ z 1.22% 1.2
"Y1+ 14+ 3 + 5 ..

(2n—1)2n2®  (2n — 1)2na? 34(119)

vii dn—1 +  4dn+1 ...
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z 1.222 1.2x2

7. Arctanhr = o e B — %+,

(2n — 1)2na? (2n — 1)2n2?
vt dn—1 +@ntDI—2 +...

34(119)

go Arccoshz = 1.2(22—1) 1.2(z2—1)
' 1

Va2 =1 + 3 + 5 +

Crn—1)2n@2—1) (2n—1)2n(22—1)
R 4n —1 - 4n 1 4.

34(119)

4.4. Rational approximations. 1°. We shall now give a set of
rational approximations (or Padé approximations) for Arcsinh z/2,

of the form
2 \2
w|(3)]
Arcsinh % n & L\4/ 1
2 2 2\
D, 1

with p = 0(1)4, ¢ = 0(1)4 (cf. [568], p. 43), where p and ¢ are
the degrees of NV, and D, respectively, as polynomials in (x/4)2.

(@) p=0

q=0 1
g=1
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(b) p=1
2 [z\?
17 [z \?
1+E(Z)
S Ry A
1*‘5‘(2)
734 [)\?
1+§3‘7‘(z)
q=2 2 n
324 (=), 366 (o
119 {4/ " 595 \4
27859 (= \*
5 1+11010(7{)
1= p o 11733(z ) 1709 (o)t 69049 ()"
3670 \4/ " 1835\4 192675 \ 4
(c)p=2
2 (x\* 62\
=0 | 1-5(e) +5(3)
12 (z\* 122 [«\*
1+ |3) -2 (=
7 \4 315 \ 4
g=1 3
1 50 (=
21 \4
1709 (z\* 69049 [ \*
(=2 1+ 54 (Z) +57645(Z)
1+2075 £2+1075 z \*
549 \ 4 427 \4
] 49274172 (2)* | 12022609 ()"
(=3 2278617 \ 4 3797695 \4
1 43897750 ()" 3801575( )" 9391090 (|’
759539 \ 4 759539 \4) ' 15950319\4
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(d) p=3
2 {2\ 6 [z\* 20 (z\®
7=0 I*E(z) +:r;(z) “T(z
37 {z\* 83 [2\* 43 [ z\"
“‘Tg(z) “'1‘33(1) +165‘(z)
g=1 2
1+4_9(_x_
18 \4
1+27218 1)2 73628599 (= * 888397114 z)*
_ 7095 \ 4 30203415 \ 4 3171358575 \ 4
7= L, 31048 [z}’ 54145(34
7005 |4 12771 \ 4
186989 305« 2 n 4289878962 («\* +17487984593 x 8
_a 36625 251 \4 671462935 \4 1410072635 \4
7= +70468713 _aiz 1213595250 (= 4+ 1287365485 (= 6
12208391 \4 134292587 \4 402877761 \4
(e) p=4
2 (x\* 6 [2\* 20 (z\* 170 [z\°
o=o | =37 5lE) - T )




CHAPTER IV

ALGORITHMS USED FOR COMPUTING
ELEMENTARY FUNCTIONS ON SOME
SOVIET COMPUTERS

Introductory remarks

In program-controlled machines, the values of elementary
functions are computed by means of “‘standard programs” based
on some one or other algorithm for computing these functions. St-
andard programs for the following functions are usually included:

= (in machines without automatic division), y/z (in machines

without automatic extraction of the square root), 2%, In z, trigo-
nometric functions, inverse trigonometric functions.

Heron’s iterative method is usually employed for finding
y =y (cf. Ch. I, § 3.6, 1°), but the algorithms differ in their
choice of the initial approximation y,. If

x = 2Pz
where
3 <z<1,
then

V3 =202 7,

so that the evaluation of }/z reduces to the evaluation of V.
(In machines without automatic division, this is replaced by the
iterative processes of 2° in Ch. I, § 3.6.)

When trigonometric functions are being computed, the argu-
ment is first reduced to the first quadrant or octant.

When 2% is computed, the exponent x is represented in the
form z =gp+z (where p = E(x), z = {z}), thereby reducing
the computation of 2* to that of computing 27 (where 0 <2z < 1),
and then 2% = 27 27,

139
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Similarly, if = 2Pz, where } <z<1,thenlnz=pIn2-+Inz,
and the computation of Inz reduces to computing Inz.

§ 1. “Strela”t

1.1. Computation of 2*(0 << = < 1).
8

1° 2 ) a2k,

The coefficients a, are given in Ch. II, § 1.4, 2°(b).

90, 9% — (2%‘)8 — {[(2%)2]2}2’

4
o~ Zakx".
=0

The coefficients @, are given in Ch. II, § 1.4, 2°(c).

The error of the computation of 2% does not exceed 0-88X 10719,
The relative error in the computation of 2* may be as large as
65X 10719, when |z] is close to 0-5.

o] #

2

1.2, Computation of Inz % <z < 1).
Inzg = —p;In2 + (((((262 + @5)2 + 84) 2 + a3) 2 + a5) 2 +a)z,
2 = Az,

l=li,if$i<x<27i+l ('l:=1,2,3,4:),

=W m=FD"

)N 3-659 646 860 780 U3 4-159 646 860 780
Ho 3-909 646 860 780 A 4-409 646 860780

a, 5500472 922511 || a, | —2-638 754 306 465
ay, | —6:299 229 808 534 || a; 0-772 171 339 086
g 5126 738196 584 || a; | —0-098 011 234 843

t Cf. [10].
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1.3. Computation of sines. Computation of sin—g—:v.

5

. w
(8) sin -z & ) g™ (2] <1).
=

The coefficients ay;,, are given in Ch. IIT, § 1.6, 2° (d). The
relative error may be as large as 0-5X10-°, when « is close to 1.

5
e 2k+1 T,
(b) sinz ~ k2=0“2k+1x (|‘”l < 2)
The coefficients ay,,; are given in Ch. III, § 1.6, 3°(c).

1.4. Computation of tangents.

8
tan—— Z Aoy 2 (J2] < 1).

The coefficients @y, are given in Ch. III, § 1.6, 10°(a). The error
is 0-2x107°.

1.5. Computation of cofangents.

7 a
cot-— =z & —x—l E Qg1 2L,

4
k=0
The coefficients ay;,; are given in Ch. III § 1.6, 11°. The error is

0-2x10-°.
1.6. Computation of arcsinz. If 22 << 0-5, then
9
arcsing & Y g 2%
but if 22 > 0-5, then
. T . —
arcsinz = — — aresin ]/1 — a2,

2
The coefficients ay,,; are given in Ch. ITI, § 2.4, 2°
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§ 2. BESM

1
2.1. Computation of y = ]/; (——2— <z<l] ) The initial approxi-

mation is taken as

Yo = k(z +b— 4) if—;—<x<k,

or as
Yo =k(x+Db) if k¥ <2 < 1; where
k= 0-57155, b= 075787, A = 0-013857.

Two iterations of Heron’s formula are then performed (cf.
Ch. I, § 3.6, 1°): these are combined into the single formula

1

y=z(yo+i)+—?———; 7(9, 10)
Yo z

?/o—l-':'q;

which produces an error of 2733,

2.2. Computation of 2* (0 < z < 1).

7
1°. 2~ ) a2,
The coefficients a; are given in Ch. II, § 1.4, 2°(a).
2°. The following formula is used for computing the resulting

polynomial, in order to reduce the number of multiplications
to be performed:

2* = ay+z{c; +F[co +{[(x +B)2+ C +w][(x + B)*+ D] — E}1},

where 7 = Ax.

A 0-215 596 346 446 B 0:105 963 619 947
c 3:215 022 885 576 c —1-277 917 410 482
c; | 5168 182 735 768 D 3-881 751 544 667

E [—10-469 925 626 182

Spot checks made by computing 2%, using these coefficients, give
11 correct significant figures. 7(6, 7).
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2.3. Computation of In 2 (—1— <z < 1)

2
1 3
lnz = — '—2~1n 2 + "Z;aﬂﬂuz"ﬂ, ‘
x ]/_2-
2
U = ———-———l/—§-‘.
Tty

The coefficients a,,,; are given in Ch. II, § 2.6, 3°.

2.4. Computation of sinz and coszx {0 <z < —Z—) The func-
tions sin # and cos z are found in terms of the tangent of half
the argument.

oan — = > z=—. 7(7)

2 4
> apat
k=0

The coefficients a; are given in Ch. III, § 1.8, 9°.
In order to reduce the number of multiplications required,
the following formula is used for evaluating the expression above:

z z
2tan — &

27 E—[@+Br+C+=[+BR+D]’
where z = Az.

A 0-106 785 251 669 D 0-705 279 988 224
B | —0-072 162 649 192 E 0-111 522 419 569
¢ | —0-039 607 473 057

Spot checks, in which sin # and cos z have been computed by means
of the above coefficients, give 11 correct decimal places.

2.5. Computation of arcsinz.

[ arctan

7
T |m<—4’
1 — z2 ( 2
arcssin:z::l l/ ® _

|2 (o5 23)
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2.6. Computation of arctanz (0 <z <1).

(x <z, 2=2, ¢=0
1
x——-{/g
arct = arctanz 4 ¢
anx + % > m, r=t,
14+ —
V3

1
¢ = arctan — =

V3
V3—1

/31
=4, < wp =L~ 0:268,  7(11
o /311 2l < /311 (11)

’

o8

4
arctanz ~ E G 11221
i=o

The coefficients ay;,; are given in Ch. III, § 2.4, 7°.

In order to reduce the time involved in computing the poly-
nomial approximating to arctanz, we may use the following
economical scheme:

arctan z = z{[(42® + B)? + O 1 2?][(4%% + B)* + D] — E};

0-555 058 703 74 D 0-175 045 006 22

A
B | —0-657 607 298 52 E | —0-586 132 618 27 7(13)
C 0-248 824 379 98

Spot checks, in which values of arctanz is computed in the above
manner, give ten correct decimal places.

§ 3. M-2
3.1. Computation of }/z (} < < 1) (floating point). Heron’s

iterative process (cf. Ch. I, § 3.6, 1°) is used for computing y = _]/x,
with the initial approximation

1.1
Yho=5 + 5% 11(163)

On the average, two iterations are required to compute ]/;
within an error of 10-8.
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3.2. Computation of e*. 1°. Computation of ¢* in floating

point arithmetic.

x _olmglime ,_J %), In2 In2
& =2 ()2, z= o 5 [z|<2,

11(159)

. 12(2% 4-10) +2(2* 4 60) e )
N @ 10— 60 o 09107 11(160)

2°. Computation of e* in fixed point arithmetic.

e* = 27 (¢%)2,
M x In2{ z 2
‘f{m}<° Z”T{H}’ P—[Tn'z‘]’
Wz In2 T x
‘f{m}>° z——z—'({m}‘l)’ P—[T.E]“-

11(192)
If the power series
o= Z "
k=0
is truncated at that term for which
k
2
—28
2l < 2%,
then the error of the computation is less than 2-32, 11(193)

3.3. Computation of Inz (I <z <1). 1°

. Computation in
floating point arithmetic.

1 2 2
Inzx ~ — —2—-1112 + ’; Qo W, U= ————,

The coefficients @y, are given in Ch. II, § 2-6, 2°. The error-
is less than 0-3Xx10-7.

2°. Computation of In = in fixed point arithmetic.

Ing = — %ln2 +In()/2.2).
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The computation proceeds according to the formula

_ 3 xr — ]/—;*
1n('/2x) ~ I'Z a2k+1u2k+1, U=2 ——- ,
= 1

1 11(189)

3.4. Computation of sin # and cos z. The problem is reduced
to the computation of the cosine of an angle lying in the first

quadrant:
4
T 2k
Cos —2— T Qo ™.
=0

k

The coefficients ay, are given in Ch. III, § 1.6, 8°(b). The error
is less than 5x10-8, for 0 <« < 1.

3.5. Computation of arc tan » (floating point). For [z] <1,

8

arctan r ~ Z G 41 2L, 11(166)
=

The coefficients ay,,; are given in Ch. III, § 2.4, 8°. The error
is less than 5X10-8,
If |z| > 1, then

arctan x = I _ arctan (—1—) .
2 x

CommEuNT. The following formulae were formerly used for computing
the trigonometric functions:

ta,nx @ z? 2 a2
2 2 -6 — 10 — 14°
T T
2 — — 2 7
. tan 2 1 — tan' 3
SN g = ——— cosx:———-———w—,
x
ol 14 tan? —
14-tan? 3 + tan 3

together with the formulae for double angles:

cos 2z = 2cos?r — 1, sin2r = 2sinz.cosz.
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The following formulae were used for computing ¢* and e—X:

) 1
e* = coshz + sinhz, e~¥=—,
e

Here, cosh o and sinh # were computed by formulae analogous to those
used for cosz and sin .

§ 4. M-3

4.1. Computation of ]/ x. Heron’s iterative process (cf. Ch.
I, § 3.6, 1°) is used for computing }/z, with the initial approxi-
mation
Yo = 0-5903z + 0-4173.

Two iterations are required for computing ]/ x within an
error of 2732,

4.2. Computation of ¢*.

s _olmel ey, .= [ 21102 n2
€ = 2l m2d (¢7)8, 2 {ln2}4’ |z]<4,
2 2
ot — 12(22% 4 10) -} 2(22 + 60) , 7 =100,
12(2% 4 10) — z (2% + 60)
4.3. Computation of Inz (3 <z < 1).
VT
1 : T
Inz =1n2 [— -+ P(t)], P(t) = Za2k+1u2"+1, 6=
= k=0 1/2
T

The coefficients ay,,, are given in Ch. II, § 2-6, 4°. The error
is less than 2-%2,

4.4. Computation of tangent and cotangent.

o (i z .
1°. tan—;x:——T (le| < 1), if wv >0,

f——
2¢o ) 2
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2, tant-g=— (¥ <1) if uw<O.

The coefficients a,, may be taken from Ch. III, § 1.6, 11°.

4.5. Computation of arctanz (0 <z < 1).
if |z] <2—]/§, then z2 =2, ¢=20,

x——_.__
if |2 >2—)/3, then z =—-"" Vg
14+ ——
+]/3

arctanz = arctanz + ¢

1 e
¢ = arctan —— = —,
ys 6
4
arctanz = E Qop 41251,
k=0

The coefficients @y, may be taken from Ch. III, § 2.4, 7°. The
error is less than 2732,

§ 5. “Ural”

5.1. Computation of ]/ x 3 <z <1) (fixed point). Heron’s
iterative formula (cf. Ch. I, § 3.6, 1°) is used, with the initial
approximation

Yo = 057422 - 0-42578. 3(282)

5.2. Computation of }e* (| #| < 1) (fixed point). The compu-
tation is based on the polynomial

1 10

By P k

46 ~ apx”.
k

=0

The coefficients @, are given in Ch. II, § 1.4, 1°(d).
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5.3. Computation of ?15—1n z(2-% < x < 1) (fixed point).

T a4l
The coefficients a,; are given in Ch. II, § 2.6, 5°.

]
x—1
lnxzxg ayuw?*, wu=3
=0

5.4. Computation of sinx([x] < %) (fixed point).

b
sinz ~ 2 E Qg1 2 FL,

The coefficients ay,; are half the values of the corresponding
coefficients given in Ch. III, § 1.6, 3°(c).

5.5. Computation of cosz (lz[ < —g—)(ﬁxed point).

5
cosz & 2'}: 2. 3(289)
=0
The error is less than 5 10-1°,
The coefficients a,, are half the values of the corresponding
coefficients of the expansion given in Ch. III, § 1.6, 9°(b).

5.6. Computation of sinz and cosz | |z| < —g- (fixed point).

The computation of sin x and of cos z is reduced to the compu-
0

tation of sin 5

y, where |y] < 1:

5
- :
: ~ 2k+1
sin -y = y+ E Cok 1Y -
2 k=0

The values of the coefficients @y, are as given in Ch. ITIL, § 1.6,

2°(d), except for the coefficient @, (k = 0), which is to be reduced
by 1 from the value given there.

5.7. Computation of tanz (0 <z < %—) . 1°. Computation

of tanwx tn fixed point arithmetic:
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ay + (@, + a,2?)2?
@ + [a3 + (@ + az2?) a?]2?

The coefficients a; are given in Ch. III, § 1.8, 10°.
2°, Computation of tan x in floating point arithmetic. If

tanz ~ x

2] < %, tanz = tanmy, <%
2
Z ay%*
then tanny ~ y—'fi—o——. 3(337)
Z bk y2k
k=0

The coefficients a; and b; are given in Ch. III, § 1.8, 8°.

5.8. Computation of 1 arcsinz ([m] < -—1/2—2) (fixed point).

10
% arcsinz X Z Qo1 2L, 3(295)
k=0

The coefficients a,,, are half the values of the corresponding
coefficients of the expansion given in Ch. III, § 2.4, 3°.

If——2—<x< 1, then

2
1 ) o 1 .
5 arcsinxy = 79 arcsin}/1 — a2

f-l<a< ——-—;ﬂ then

1 . T 1 . —_—
Earcsmx = — (—4— — —2~arcsm]/1 —_— x2>

where } arcsin J/1—a2? is computed by the series given above.

5.9. Computation of } arccosz (fixed point).

1 arccosx = -‘;— — —i—arcsinx 3(299)

where } arcsinz is computed by using the subroutine for 1 arcsin «.



APPENDICES

I. SPECTAL POLYNOMIALS
AND OTHER FUNCTIONS

§ 1. Gudermannian (or Hyperbolic Amplitude)

1.1. It is possible to establish relations between the hyperbolic and
the trigonometric functions without employing any funections of imaginary
argument, by means of a special angle y called the Gudermannian or the
hyperbolic amplitude, such that sinh x = tan . This leads to the following
relations between the hyperbolic functions of argument x and the corre-
sponding trigonometric functions of argument .

1° sinh z = tan y.
2°. cosh = = sec y.
3°. tanh z = sin y.
4°. coth ¢ = cosec y.
5° sech ¢ = cos y.
6°. cosech z = cot y.

The following relation holds between functions of half the arguments:

7°. tanh 4z = tan }y.

The following notation is used for the Gudermannian y corresponding
to the argument x of a hyperbolic function:

8°. vy =gdz = amh .
Using the Gudermannian notation, the formulae above may be written
as:
9°. sinh z = tan(gd z).
10°. cosh z == sec (gd z).
11°, tanh 2 = sin (gd z).
12°, coth z = cosec (gd z).
13°. sech z = cos (gd =).
14°, cosech z = cot (gd z).
15°. tanh iz = tan (}gd z).
In view of the formula
¢* = cosh ¢ 4sinh @,
we get the following relations:

o - m  y\_1l+siny 1+tandy
16.ex-sec7+tan7—tan( + )“ cosy ~ l—tangy "

4 2
4(57)

151
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We may introduce the function which is inverse to the Gudermannian.
If y = gde, then the inverse function (inverse Gudermannian) of z is
denoted by the symbol

17°, 2 = arg gd y.

If the argument z is known, then the Gudermannian can be found
and conversely, by means of the formulae:

x
™ dt
18°. y = gdx = 2 arctane* — 5 = 2arctan (ta.nh 2) Sm
12(73)
T vy p do
° == = -_— — = —_—
19°. ¢ = arggdy = Intan (4 + 2) § cosg * 12(73)

The concept of the Gudermannian may be generalized to the case of
imaginary argument. Proceeding from the equation y = gdz, we get
the relation:

20°. iz = gd iy. 12(74)
If y =" +'i‘y2, T =T +7:x2, we get:

sinhx siny sina sinh y
t b 1 t = 1 = 2 = 2_
VT " osa, %17 Coshy, ? tanhy, coshz, ’ %= coshyy *
12(74)
1.2. Representation in series form.
£ 1 1 1.3
1° 9 = — —
L (coshx + 2.3cosh’» + 2.4 .5cosh%z

1.3.5
+ 2.4.6.7cosh™z +) 11(37)

2°, y = t 2k+1 (=1 skt1 2
y = 22 2k+1 anh 22 Sp et 46T
k=0

z° o8 6127 (—=1)k By

¥ov=e—+t3or ~ S0 Tt @y

5 a2kt +...t

(]:cl < ’;) . 12(74)

4 z 4 z
4°. y=x— — 0o — — T —...
y==z 3 tanh 7 tanh 3 (

&
5 tanh-?’ < 1). 11(37)

t The Ei are the Euler numbers (cf. [I], p. 359).
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= 1 ¥ > 1 x

o o= s ¥ o NV L panpeker 2

5. @ 22:2k+1t’m ) sz+1 . PR
k=0 =0

o . AT AT L
6. 2=y+-5+ 2T 5000

+...

By 2k + X
o--+m7 14... |'}’l<2 .

<1)'

For small « and y, we have the following expressions:

tan —y—

2

4 Yy 4 v
° = — 3. _— 7'—“ “ae
7°. y+3ta,n2+7tan2+ (

8° cal
e
6]/coshx
3
.z~ y + ——Z——'
6]/cosy

The following expressions hold for large = and y:

1-5706 if 900 <=z < 9-52,
10° y = gdo A~ 115707 if 9-52 < x < 10-67,
1:5708 if 1067 <z < + 0.

11°, ¢ = arggdy ~ 5-298 —In100 (% — 'y)

~ 5298 —In100(1-570796 —y) if «> 1-554.

1.3. Derivatives and integrals.

dy d

°, 4. == e———— =

1°. T o (gdz) = sechz,
dx

d
. == _d—y_ (arggdy) = secy.

coshz

3°. S o = gda + C = 2arctan ¥ -+ C; = arctan(sinhzx) 4 O

= arcsin(tanhz) -+ C.

o (%Y __ = A
4°, Scosy —-arggdy+0—-lntan_(2 + 4)+(J.

153

4(5T)

12(74)

11(37)

11(39)

11(39)

3(207)

3(208)

4(104)
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1.4. Values of the function —72; gd (—Z— :c) 12 (74)

z 01 0-2 0-3 0-4 05 0-6 0-7

2 14

—gd -—é—x 0:09959/0-19679|0-2895 [0-3760 [0-4553 [0-5269/0-5907
z 0-8 0-9 1-0 1-1 1-2 13 | 14

2 A

—gd -é—x 0-6470 {0-6898 |0-7390 |0-7761 [0-8081 [0-8357]0-8594
x 1-5 1-6 1-7 1-8 1-9 2-0

2 T

—gd 7‘” 0-8797 {0-8971 |0-9120 |0-9248 10-9357 |0-9450

§ 2. Harmonic polynomials

2.1. Functions which satisfy Laplace’s equationt

o*u

ox?

*u
oy?

=0

are said to be harmonic. Polynomials which are harmonic functions are
called harmonic polynomials. Any harmonic polynomial is a linear com-

bination of the homogeneous harmonic polynomials H ,(.o) (z,y) and H 5.1) (z, y),
which are defined as the real and imaginary parts of the function 2? , where

z=x +%.

]

1°. B (2, y) = Re[ (@il = > |

=a — Ciz

D (=1

k=0

n
n—2k 2k
() e

n—zys + C’;‘,:c"_"y‘— O;)lxn—ﬁys + ogwﬂ—ﬂys_ Vs

t Thus the functions are taken as having continuous partial deri-
vatives of the first and second orders.
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n—1
2

2°. B (2, y) = Im{(z + &y)"] = Z (— 1) (270:7'_ l)xn—zk—lyzkﬂ
k=

=na" Yy = CRa" PP + O T — O Y + L

2.2. Some harmonie polynomials.

1° HO(z,y) = 1.

2°. H&”(w, Y) = =z.

3°. Hgo)(x, Y) = 2% — y2

4. HO (2, y) = v(z? — 3y*).

5°. Hi‘"(x, y) = z* — 6z%y* 4 yt.

6°. Héo) (®, y) = «® — 102%2 - 5zyt.

70, HOz, y) = o8 — 150ty + 1502t — yS.
8°. Hgo)(m, Y) = 2° — 21aby? 4 8Bx3yt — Tayt.
9. H(@,y) = y.

10°. H(x, y) = 2.

11°. HD(z, y) = y(32® — y?).

12°. Hﬁl)(x, y) = dxy(x? — y?).

13°. HV (2, y) = Baty — 1022y + 4.

14°. Hgl)(a:, y) = 6%y — 20x%y® -+ 6ayS.

15°. H.(,l)(w, y) = Taby — 35z2%% 4- 21225 — 7.

2.3. After transformation to the polar coordinates

z = reosp, Y = rsing,
get:

1°. HO(z, y) = Hf,o)(rcoszp,'rsinq)) = rtcosng.
2°. H (2, y) = HY(r cos @, rsin @) = rsin ng.
Then if » = 1 we have:
n
]
3°. cosng = Hf.'”(cosq), sing) = Z (—l)kC,z,kcos"—qu)sinquv.
k=0
4°, sinng = HY i
. @ = Hp’(cos ¢, sin @)
['1:1
2
— Z (_ l)koik+100s”—2k’—ltp sm2k+1(p.
k=9
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=]

(— DfCFtantg

o Hg,l) (1, tang) =0
5° tanng = © = n
HY (1, tan ¢) [?
(— D¥c¥tan*p
k=0

5]

(— et * o

6°. cotngp = H’('O)(c(’t‘}”l) k=0
C M= T ED (ot 1) [t

(— 1)k0§k+lcot"_2k_1fp
k=0
In particular,
7°. cos2¢ = 2cos’p — 1.
8°. cos3p = 4cos’p — 3cos@.
9°. cosdp = 8cosip — 8cos?p + 1.
10°. cos5¢p = 16cos’p — 20cos?y + Scosgp.
11°. cos6p = 32cose — 48costyp 4 18cos?p — 1.
12°, cosTp = 64cos’p — 112cosbgp - 66cos’p — Tcosg.
13° sin2¢p = 2singcosg.
14°. sin3p = 3singp — 4sin’p.
15°, sin4g = cosp(4singp — 8sin®p).
16°. sinbp = Ssing — 20sin?p 4 16sin’p.
17°. sin6gp = cos@(B6sing — 32sin’p 4 32sin’p).
18°. sinTp = Tsinp — 56sin3p 4 112sin®p — 64sin’g.

21t
19°, tall2¢ =z 'I_—::-;Tr;; .
3t — tan?®

20°. tan3p = :Ii ¢3 ta,na;; 4 .

o 4tang@ — 4tandp
21 tandp = 71— 6tan?p -+ tantp °

20 —

22°, cot2¢ = f—;ﬁ}&—(p}-.

cotdp — 3cot g
3cot?’p —1

23°. cot3¢p =

cotip — Gecot?p + 1

° =
24 cotde = dcotdp — 4cotp *
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§ 3. The hypergeometric function

3.1. The hypergeometric series (or hypergeometric fumction) is defined
by the power series:

z a(x+ 1B +1) a2

oy 1 2B o
Pl poysm) =1+ y 1T y(y +1) 21
a(e+ (e + DB+ DB+2) 2
y(y + Dy + 2) 3r

The origin of the name is due to the fact that, in the particular case
o =1, =y, this series reduces to the geometric series

l4z-t+a24a4...42"+ ...

The hypergeometric series converges absolutely if | # | < 1, and diverges
if Jz|> 1. If x = 41, the convergence of the hypergeometric series de-
pends upon the number ¥ — a — f, in the following manner: for = 1 the
series converges absolutely if y — & — > 0, but diverges if y —a — f < 0;
for z = — 1 the series converges absolutely if ¥ — o — > 0, converges
conditionally if — 1 <y — & — f < 0 and diverges if y —a —f< — 1.

If either o or f§ equals a negative integer or zero, then the hypergeo-
metric series terminates at some term and it becomes a finite series, i.e.
a polynomial. If 9 is a negative integer or zero (y == —mn), then the hyper-
geometric series is undefined unless either & = —m or f = —m, where
m is a positive integer with m < n.

3.2. The general solution of the hypergeometric differential equation

d*y dy _
g Ty —(@+ 4+ 1zl —afy =0,

z(l — )
(where 4 is not an integer) is given in terms of hypergeometric functions:
y=CF(,B,y;0) + Qe "Fla—y+1,—y+1,2—y;2). 4(421)

3.3. Some particular values of the hypergeometric function and their
notation.

o 3 1\ =
1.F(-1,1,-2—;E)_ s 4(418)
2. F(x,B,y;1) = Ty —a—f) _ , 6(57)

Ty — Iy —p)
(for y —a — B> 0, where y is neither zero nor a negative integer).

T'(»r -
8. Fly—a,y—B,7;1) = (y)I‘(SIT(fg 2

TMIB—a) _
Ty —a

= B. 6(57)

4°, Fla,y—B,7;1) = 6(59)
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T Te—F _

5° F(y—«,B,y;1) = TT(y—p)

6(59)
3.4. Bolza’s formulae.
Fa, f, y; x) = A.F(a, B, et+p—py+1;1—2)
+B.(1—a)-oBF(y—0, y—f, y—a—f+1; L—2); 6(59)

=(1—x)—aF(oc, »—>5 ¥; :c:v-l)

= (1 —x)~BF ('y —a, B, ¥; —m—:”_—i-), 6(59)

1
=0(1_w)—uF(“’ y—B a—pf+1; T:_:I;_)

+D(l—m)—ﬁF(7—a,ﬂ,ﬁ—-tx+1; ! \’; 6(59)

l—2a

=Aw'“F(oc, e—y+lLatfey+1; x—l)
x

+ B.x%=7(1 —x)y—%—F x

xF(y—oc, l—o, y—a—f+1; ‘”;1); 6(59)

=C(—x)—°‘F(oc, e—y+1,a—f4+1; —:7)

+D(—:c)"31"(13—'y+1, B B—o+1; 1) 6(59)

=

3.5. Some relations.

1°. F(e, B, ps D=F(—a, —f, y—a—F; 1)  (y>0. 4(418)
1

F(—a, B, y—oa; 1)

1
F(“, —ﬁ’ ‘}’-‘ﬂ; 1)

2. F(a, f, ¥; 1) = (v — B> 0). 4(418)

3°. F(o, B, 73 1) = (p—a>0.  4(418)

3.6. Recurrence relations.
1° (x— B)F (o B, y; @) —aF(a+1, B, y; #) + pF(e, B+ 1, ; @)
=0. 6(53)
2°, (1 - ‘)))F(d, 13: Y — 1; x)" (“"“ 7+1)F(°‘, 18’ Y m)
+af(e41, B, y; ) = 0. 6(53)
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3 B—a)(l—2)F(x, B, y; 2) F (a— ) F(a—1, B, ¥; =)
+@—BF(@ -1, y; 2)=0. 6(53)
4° (y—a)Fla—1, f, v; )+ 20—y — (& — f)z] F(e, B, y; x)
+a@—1)F(@+1, B, y; ) =0. 6(53)
5 y(y — D@ —1F(x, g, y—1;2) + 9y — 1 -2y — a— f — 1)z]X
XF(x, B, y; 2) + (v —a)(y — Plz.Fla, , y+1; ) = 0. 6(53)

3.7. Integral representations.

1° F(a, B, y; 2) = T'(y) St«—l(l — tyr—a=1(1—zt)—Bds

T(@)T(y — )
’ (0 <a<y). 6(53)

ry) S B=v(t — 1)r—a=1(t — 2)—Bdt.

2°, F(oc, ﬁ, Vs x)= Wd_)l

6(55)

3.8. Representation of elementary functions in terms of hypergeometric
functions.

n

1°, ka= F(—n, 1, —n; ). 2(615)

k=¢

z* = Fla, —n, —n; x)

9. Z": (@ +1)...(@+k—1)

k!
k=0

= F(—mn, a, —n; z). 2(614)
3. (l4+ap=F(—n B, f; —2)y=F(—n, 1, 1; —2). 2(614)
4°, (1 —a)=" = F(n, B, B; ). 6(61)

5°. (1—a)t=F(Q1,1, 1; 2)=F(1, B, B; z) = Fa, 1, ; ).
2(614)
6°. M =F1—n, 1, 2; z). 2(614)

nx
o (L+ay+(d-—am n n-—-1 1 2(6

7°. t _F(—?, - ,2,x2). (615)

o (I+a)t—(1—a n—1 n 3. .2 20615
8°. T _F(—- 5 2+1,2,a:. (615)

In(l+ax)
—=

9°. F(l, 1, 2; —a). 2(615)
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In(l — )

10°. = —F(1, 1, 2; ). 6(61)
) 1 3
11°. —2%111 i+: - F(?, 1, 5 xz). 2(615)
T 1 1 3
° —rllt L 3. gnea) 4(417
12°, v F(2,2,2,smx) (417)
13, 2 _rpl1, 1, 2, sinzx). 4(417)
sin 22 2
o % _wlr 1 3. _iame 4(417
14.tanx_1«*(2,1,2, tan2zx ). (417)
o aresing (1 1 3 ., 2(615
15°. ~ _F(2,2,2,w. (615)
16°. M = F i, 1, i; — z2). 2(615)
x 2 2
Arcsinhx 1 1 3
o, Aresinha (11 3. o 4(417)
17 p Flo 5 3 m) (
g0, SBn2 _ p(ntl  m—1 3 sinzx). 14(8)
nsinx 2 2 2
2sinnx n -+ 2 n—2 3 .
190, - _ 3 sin®z). 4(417
nsin 2z F( 2 2 2 smx) (#17)
20°, cosnx = F(%, — %, —?1&—; sinzm). 14(8)
21°. cosnz coshz = F idn 1, 2, —-1—; —-ta,nzw). 4(417)
2 2° 2
1 1 . 4(417
22°, = F{—, 1, 1; sin®x|{. (417)
cosST 2
23°. cosnE F ntl , — n—1 . —1—; sin?z}. 14(8)
cosx 2 2 2
940 cosnT 7 n n—1 1 . tan?z 14(8)
" costr T2’ 2 2’ ’
. sinnw n—2 n—1 3
25% i sinw cos" 1z =F(_ 3 T2 '2’ -—tanza:). il

26°. sm(n&:::smx) _ F(n+ 1 , - 1 , _3_; xz)_ 14(8)



27°.

28°.

29°,

3.9.

1°.

2°.

3°,

4°,

5°.
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sin(rnarcsinz) n n 3
—_—— = P14y 1 — —, —; 2%). 14(8
ne ]/1 — 2zt ( 2 2" 2 ) ®)
n n 1

1 o e ——— 2 . 14 8
cos(narcsing) = F ( 50 — 5 5 @ ) (8)

cos(narcsinz) n+1 n—1 1
‘l/l — a;z - ( 2 2 2 ’ 2 5 X )- 14(8)

Elementary functions as limits of hypergeometric functions.

ex=lim17’(1, k. 1; %) - 1+a:limF(1, k, 2; 1)

k- k= k

x? | @
= 1+x+——2—hmF(1, L, 3 ) 4(417)

k- o0 ’ 79—
. , 1 z?
cosST =£1_1£)F k, B, —; — 7 ) 4(417)
k'— o
coshz = lim [k, &’ ! : Gl
= lm (&, K, 55— |- 4(417)
k’~»
sina 3 z?
=1. ey — —— .
p klinooF (k, K, E T ) 4(417)
k’'—o00
sinhx . { 3 z?
— — }clf.an (k ¥, 5 W) 4(417)
k’—»00

3.10. Derivatives of the hypergeometric function.

1°,

d
—d?F(a, B v %) =f;ﬁl7’(oc—{— L, g+1, y4+1; 2) 6(52)

unless y is a non-positive integer.

2°.

3°.

4°.

& Loy @+ 1)BBF1) .
dz? F(o, B, y; x) = 7+ 1) Fe+2, 42, y+2; 2).

14(8)
gd; [z F(a, B, v; )] = ax®~ 1 F (e + 1, B, y; ). 6(52)
dix [xﬂF(oc, B, y; x)] = ﬂxﬁ-lF(a, g+1, v; z). 6(52)

dix [@¥=1F(x, B, y; @)] = (y — De?=2F(a, f, y—1; x).  6(52)

2 a1 —2)t8-1F(, B, 75 o))

=(y — a)a?=%" 41 —2)*+F-7-1F(a —1, B, y; 2). 6(52)
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§ 4. Orthogonal polynomials

We give below the formulae for some of the polynomials of Legendre,
Chebyshev, Laguerre and Hermite, expressed in terms of powers of the
argument z, together with the zeros of these polynomials. To start with,
we cite briefly some facts about them. For more detailed properties of these
polynomials, consult [I], pp. 239-262.

4.1. Definitions. 1°. Legendre polynomials Pylx):

1 w_ L (2n — 2k)! _
Pl) = 2nnv515r7( @t —1) Z (=1F Bl — )T n— %) © 2k
_ (2n)! [a:"— nin — 1) o2 1 n(n — 1) (n — 2)(n — 3) x""‘—...]
o1 (n1)? 2(2n — 1) 2.4(2n — 1)(2n — 3) .
In particular,
(2n)!

Py(l) =1, Py(—1)=(=1" Pu(0)=(-1)"
Pons1(0) = 0.
The relation between P,(— z) and Py(x) is:
Pp(—a) = (— 1)" Pp().

The Legendre polynomials are connected with the hypergeometric
function by the relation

Pa(e) = (— 1)"—=F(— 0 n+1, 13 -‘—%i) .

22n(p1)2

2°. The modified Legendre polynomials Py(x):
P}@) = (— *=1P,(22 — 1).

As the argument of the polynomial P, varies from — 1 to < 1, the argument
of the modified polynomial P} varies from 0 to 4 1.

The modified Legendre polynomials P}(x) are connected with the
hypergeometric function by the relation

Piax)=(—1p"F(—n,n+l, 1; 1—2x)
3°. Chebyshev polynomials of the first type Tp(z):

Tp(x) = cos(narc cosx) = " — (Z) 2t -2(1 —2?)

+ (n) 41 — a2)® — (n) =81 — 2?)® —
4 6

—1 for odd n, and

t The sum is taken over integers k from 0 to e

from 0 to-’—;—for even n.
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In particular,

Ta() =1, Tp(=1)=(=1" Ton(0) =(—1)", Tens;(0) =0.

The Chebyshev polynomials of the first type are connected with the
hypergeometric function by the relation

1 1 —=x
T = F n, -_Nn, —; .
n{x) ( n 2 2 )

4°. The modified Chebyshev polynomials of the first type Thiz):
T¥(z) = Th(220 —1).

5°. The polynomials Cu(x):
z
Cp(x) = 2cos (narc cos?) .

6°. Chebyshev polynomials of the second type Uplx):

Uplz) = sinf(n +1)arccosa] = ("'Il_ 1) xh — ("'*3‘ 1) ah—2(1 — x?)

]/1—-a:2

1 d
+ (n: 1) an=i(l—at) — ... = PP

n+1 de
In particular,

UZH(O) = (_ 1)”: U2n+1(0) = 0.

The Chebyshev polynomials of the second type are connected with
the hypergeometric function by the relation

Un(z) = (n+ I)F(——n, n+ 2, -3—; 1—:1;).
2 2
7°. Modified Chebyshev polynomials of the second type U¥(x):
U*(2) = Up(2z — 1).
8°. The polynomials Sp(x):
2sin [(n + l)are cos%]

]/4-— x? :

9°. Relations between the Chebyshev polynomials:

Sp(®) =

; 2
O (%) = 2T (%) = 2T;;( 1’””

_ Y o 242 . o 14w
sute) = U(5) = U3(2E2), o) = st = 03 (152,

) y Thle) = % Cp(4x — 2),

Tp(z) = —;—0,,(29:) - T;';( I;x ) ,  Ul(a) = Sy(da — 2).
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10°. Laguerre polynomials L,(x):

n
Ly(z) = e* ;" (@he~%) = Z (— 1)"( n ) n! o

xh =5 n—k) &
nr—1) . nnr—-1)n-—-2) . . "
= n! [l—nx+ 1) z% — 31 234 ...+ (—1) i B
In particular L,(0) = n!
11°. Hermite polynomials H,(x):
n1t

]

Hyo) = (— e L (oot = Y (m i 20
e dzn - El(n— 2k)!

k=0

—rar () s e (P) s

- (2x)"—-—————n(an D (ggye 4 202 1)(”; 20 =3) opp-a_ ...,
where the last term is
n
- n!
—_ 2,
(-1* . —
—1
)
for even n, and
nt !
(—1) & —2 2

for odd n.
In particular,

Hyn(0) = (— 10 &
n:

Hzn+1(0) =0
12°. Hermite polynomials hy(x):

2 2
X n X

() = (— 1)%7_(%; € 1)

S (") a2+ 1.3 (n)x"—4— 1.3.5(”) Zn—6 |- ...
2 T \4 6 ’

n—1

T The sum is taken over integer % from 0 to if n is odd and

from 0 to % if n is even.
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where the last term is

z 1
(-1 =
2 (ﬁ)z
2
for even n, and
n—1 n!
(=1 * —= x

for odd n.
13°. Relations between the functions Hy(x) and h,(x):

P —-—H —
(@) ( e ).
Hy(x) = 2° hy(xV/2).

4.2. Generaiing functions.

1 o0
1° e = ZtnP"(x) (lti < 1)‘
]/1 — 2t 12
n=0
1 t N
P el A NP ‘
S g S Zt Tule) (<D
n=g
1 [oe]
° n
g0, e TE Zt Uplw)  (Jt] < 1),
n=g
P xt o0
1—t
o 8 “N'"Z Ly (< D).
1—¢ n!
n=o
o
tn
5°. e_tz+2xt=z_n_'H,,(x) (¢ < 00).
n=gq )
_th+xt o "
B0 T = Y ) (< o)
n=0

4.3. Recurrence relations.

1. Paa(e) = (20 + DaPa(e) — nPas(@)] 7

2°. Tyyy(%) = 20T (@) — Tyy(®).
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8% Una(®) = 20Up(2) — Un—y ().
4°. Lpyy(w) = (2n + 1 — 2)Ly(2) — n*Lp—y (2).
5°, Hyyy(z) = 2uH,(x) — 2nHy_4(x).
6°. hpyq (2) = zhy(x) — nhp_y(x).
7°. Opiq(z) = 2Cy(2) — Cu—y(x).
8. Spia(@) = oSy (®) — Su_(®).

4.4. Differential equations, satisfied by the polynomials.
1°. (22 — 1)Py () + 22Pp(z) — n{n + 1)Py(z) = O.

2°. (1 — 28Ty (z) — xTh(z) + n*Ty(x) = 0.

3° (1 — 22Uy (%) — 2Up(zx) 4+ n2U,(z) = 0.

4°, 2Ly (z) + (1 — x) Lp(x) 4 nL,(x) = 0.

5° Hp(x) — 2zxHp(x) + 2nH,(x) = 0.

6°. hy (z) — why(x) + nhy(x) = 0.

4.5. Certain polynomials, expanded in powers of x.
1°. Legendre polynomials Pp(x).

Py (x) = 1.
P, (x) = x.

1
Py () = — (322 — 1).

2

1
P, (z)= ?(5w3 — 3z).

1
Py (x) = 5 (352 — 30xz2 + 3).

1
Py (x) = " (632° — 702? 4 15z).
P (z) = —i% (231x% — 3152* + 10522 — 5).
P, (x) = 1—16(429907 — 693a° + 3152% — 35x).

1

Pg () = —12—8 (64352° — 12 0122% 4- 6930x% — 1260x2 - 35).
P, (z) = —i;—8(12 1552 — 25 74027 + 18 0182° — 462023 4 315z).

1
P (z) = EYry (46 189x1% — 109 3952® + 90 090x® — 30 030x* +- 346542 — 63).
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P, (x) = —2%6(88 1792 — 230 9452° 4 218 79027 — 90 09025 4 15 01523
— 693z).
P(x) = —1&- (676 039212 — 1 939 938x'° 4- 2 078 5052° — 1 021 020z°
+ 225 225x% — 18 01822 4 231).
Piy(x) = —1@— (1 300 07521 — 4 056 23421 1~ 4 849 8452° — 2 771 34027
-+ 765 7652% — 90 090z® + 3003zx).

Pra(@) = —— (5 014 57521 — 16 900 975212 + 22 309 28710
2048

— 14 549 5352 -+ 4 849 845z° — 765 T65w% 4 45 04522 — 429).

1
Pyg(o) = (9 694 845215 — 35 102 025%™ - 50 702 925z

— 37 182 1452° - 14 549 535x7 — 2 909 907x° 4 255 2550 — 6435x).
Pylx) = 32{1’68 (300 540 1952 — 1 163 381 4002** + 1 825 305 300x12
— 1 487 285 8002 4- 669 278 6102° — 162 954 7922% 19 399 380x*

— 875 16022 + 6435).

Py,(x) = 35763 (583 401 555217 — 2 404 321-5602'° - 4 071 834 900x'*
— 3 650.610 6002 4 1 859107 2502° — 535 422 88827
+81 477 3962° — 5 542 680x° 4 109 395z).
Pig(z) = (2 268 783 8252'% — 9 917 826 43521¢ + 18 032 411 700z1*

65 536
— 17 644617 90022 + 10 039 179:1502'° — 3 346 393 0502° + 624 660 0362°
— 58 198 1402 - 2 078 5052 — 12 155).
1
Poo(x) = 55536 (4 418 157 975z — 20 419 055 425217 -+ 39 671 305 740x°
— 42 075 627 3002 4- 26 466-926 85021 — 10 039 179 1502°
-+ 2 230 928 7002" — 267 T11 444a° 4 14 549 53522 — 230 945x).
1
Pyy(xr) = ———— (34 461 632 2052%° — 167 890 003 05028
262 144
-+ 347 123 905 2255 — 3 967 130 574 007 4002 -+ 273 491 577 450212
— 116 454 478 1402'° 4 30 117 537 4502% — 4 461 857 400x°
+ 334 639 30524 — 9 699 69022 4 46 189).
2°. Modified Legendre polynomials Py (x).
Py (x) = 1.
P¥ (z) = 2z — 1.
P} (x) = — 622 4 6z — 1.
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P¥ (x) = 20z® — 3022 4 122 — 1.

P¥(x) = — 70zt + 1402® — 90x% 4 20z — 1.
P¥ (z) = 25225 — 630* 4 560a3 — 21022 - 30z — 1.
PF (x) = — 9248 + 27722% — 3150z* + 1680z% — 42022 4- 422 — 1.

P} (x) = 8432z" — 12 0122° 4 16 6322° — 11 550x* |- 42002°
— 7562% + 56z — 1.
P} (z) = — 12 8702° 4 51 4802 — 84 084x° + 72 072x° — 34 6502*
+ 924023 — 1260x% 4+ 722 — 1.
P} (x) = 48 6202° — 218 7902° 4 411 8407 — 420 4202° 4 252 2522°
— 90 090z* -+ 18 4802° — 19802% |- 90z — 1.,
Pl(x) = —184 7562 + 923 7802° — 1 969 11028 4 2 333 760z"
— 1 681 6802°% + 756 756x° — 210 2102* + 34 3202° — 2970x* + 110z — 1.
P} (x) = 705 43221 — 3 879 8762 -+ 9 237 800x° — 12 471 0302°
4+ 10 501 92027 — 5 717 712x% ++ 2 018 0162° — 450 45024
+ 60 0602% — 429022 4- 132¢ — 1.
P(zx) = —2 704 156212 + 16 224 936211 — 42 678 63621 | 64 664 6002°
— 62 355 1502® 4 39 907 29627 — 17 153 1362% 4-4 900 8962°
— 900 900x* 4+ 100 10023 — 6006z* 4 1562 ~ 1.
P}(z) = 10 400 6002 — 97 603 90022 + 194 699 232zt — 327 202 876210
4 355 655 3002 — 261 891 6302® 1 133 024 32027 — 46 558 51228
+ 11 027 0162® — 1 701 700z* 4 160 1602% — 819022 + 182z — 1.
P¥(x) = — 40 116 60024 - 280 816 200z'% — 878 850 70012
-+ 1 622 493 600z — 1 963 217 2562'° - 1 636 014 380z°
— 960 269 3102® 4+ 399 072 960" — 116 396 2802 |- 23 279 2562°
— 3 063 0602* + 247 5202% — 10 92022 4- 2102 — 1,
Ph(x) = 155 117 5202 — 1 163 381 4002 4 3 931 426 80023
— 7909 656 300212 4 10 546 208 400! — 9 816 086 280x1°
-+ 6 544 057 5202® — 3 155 170 5902° 4- 1 097 450 64027 — 271 591 320x°
-+ 46 558 5122° — 5 290 7402*% -+ 371 28023 — 14 280z 4- 240z — 1.
3°. Chebyshev polynomials of the first type Th(z).
Ty (z) = 1 (however, we take Ty = 3).
T, () = =.
T, () = 22 — 1.
T, (z) = 423 — 3z.
Ty (x) = 8zt — 822 4 1.
Ts (x) = 16a® — 2022 4 5x.
Te (x) = 322°% — 482% - 1822 — 1.
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T, (x) = 642" — 11225 -+ 56a® — Ta.
Ty () = 1282 — 2562° -+ 160zt — 322 + 1.
T, (x) = 2562° — 57627 -+ 432¢° — 1202® - 9z.
Tyo(x) = 5121 — 12802° 4 11202 — 4002* + 5022 — 1.
T,y (x) = 10242" — 28162° + 281627 — 123225 + 2202 — 11z
Tpo(x) = 20482'% — 614421 4 69122° — 35842 4 8402* — 7222 4 1.
T4 (%) = 4096218 — 13 31221 + 16 6402° — 998427 4 291225 — 364a° + 13x.
To4(x) = 829221 — 28 67222 4 39 4245 — 26 8802 + 9408x°
— 1568z 4 9822 — 1.
Tys(x) = 16 384215 — 61 4402 4 92 160z — 70 4002° + 28 8007
— 60482° J- 560x% — 152.
Te(x) = 32 76821 — 131 072 - 212 99222 — 180 22421° |- 84 4802°
— 21 5042% 4 2688z — 12822 + 1.
Tyo(x) = 65 536a'7 — 278 5281 4 487 4242 — 452 6082 + 239 360x°
— 71 808«" + 11 42425 — 81623 + 17.
Te(x) = 131-072x' — 589 8248 4- 1 105 92014 — 1 118 208212
+ 658 944210 — 228 09628 4 44 3522° — 43202* + 1622 — 1.
Tyo(x) = 262 14441 — 1 245 184217 4 2 490 36825 — 2 723 840213
4+ 1770 496211 — 695 552° -+ 160 51227 — 20 0642® 4- 11402® — 19.
Tyo(x) = 524 2882%° — 2 621 4402 4 5 570 5602 — 6 553 600224
+ 4 659 2002 — 2 050 0482'° + 549 1202° — 84 480a°
+ 6600z* — 20022 4 1.
T, (&) = 1 048 576221 — 550 5022 4 12 386 3042 — 15 597 56821°
+ 12 042 2405 — 5 870 5922 - 1 793 7922° — 329 47227
+ 33 26425 — 15402° + 21z,
Tyo(x) = 2 097 1522% — 11 534 33622 + 27 394 0482 — 36 765 69621°
+ 30 638 080x* — 16 400 38442 4 5 637 6322'° — 1 208 0642®
+ 151 0082°% — 96802* 4 2422 — 1,

4°, Modified Chebyshev polynomials of the first type Ty (z).
1
T4 (x) =1 (however, we take T§ = _2_) .

T* () = 2z — 1.

T} (x) = 8% — 8z + 1.

T* (z) = 324% — 4842 + 182 — 1.

TF () = 128x% — 25623 + 1602% — 322 4+ 1.

T¥ (x) = 5122° — 1280x* 4 11202% — 4002% 4 502 — 1.

T¥ (x) = 204825 — 61442° + 69122* — 3584° - 84022 — 722 - L.
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T¥ (x) = 819227 — 28 672x% -+ 39 424x® — 26 880x* 4 94082 — 156822
+ 98z — 1.
T¥ (x) = 32 7682° — 131 0722 + 212 99225 — 180 2444° | 84 480z*
— 21 50423 - 268822 — 128z 4 1.
T¥ (x) = 131 0722 — 589 8242® - 1 105 92027 — 1 118 2082° -+ 658 94425
— 228 096x? - 44 3522 — 432022 4 162 — 1.
T¥(x) = 524 28821° — 2 621 440x° + 5 570 5602 — 6 553 600"
4+ 4 659 20028 — 2 050 0482 + 549 1202* — 84 480xz® 4 66002
— 2002 + 1.
T¥ (x) = 2097 15221 — 11 534 3362'° + 27 394 0482° — 36 765 6962°
4+ 30 638 08027 — 16 400 384x% I 5 637 63225 — 1 208 06424
-4 151 0082® — 968022 -+ 2422 — 1.
Tl*z(x) = 8 388 608x'2 — 50 331 648t - 132 120 5762'° — 199 229 4402°
+ 190 513 15228 — 120 324 09627 4 50 692 0962 — 14 057 472%°
4+ 2471 040x* — 256 2562° - 13 72822 — 288z - 1.
TE(x) = 33 554 4322 — 218 103 80822 - 627 048 44811
— 1049624 57621° + 1 133 117 4402° — 825 556 992°
4+ 412778 49627 — 141 213 6962% 1- 32 361 472x% — 4 759 040x*
4416 4162% — 18 92822 |- 338x — 1.
T¥ (x) = 134 217 7282 — 939 524 09621® 4- 2 936 012 80022
— 5402 263 55221 - 6 499 598 33621 — 5 369 233 4082°
43111714 8162% — 1 270 087 680x" -+ 361 181 184x®
— 69 701 6322° 4 8 712 7042* — 652 288x° - 25 480x% — 3922 + 1.
Tk (x) = 53687091225 — 4 026 531 8402 + 13 589 544 9602
— 27 262 976 00024 36 175 872 00021 — 33 426 505 72821°
-+ 22 052 208 6402* — 10 478 223 360x® - 3 572 121 60027 — 859 955 200x°
-+ 141 892 6082® — 15 275 520x* + 990 08023 — 33 60022 + 450z — 1.
T¥ (x) = 2 147 483 6482 — 17 179.869 1842 + 62 277 025 792z
— 135 291 469 824« J- 196 293 427 200212 — 200 655 503 360z
- 148 562 247 680x1° — 80 648 077 312z° -+ 32 133 218 304x®
— 9313 976 32027 + 1 926 299 64825 — 275 185 66445
4 25 798 656x* — 1 462 2722 -+ 43 5202% — 512z + 1.
T¥%(x) = 8 589 934 592217 — 73 014 444 0322 -+ 282 930 970 624215
— 661 693 399 04041° - 1 042 167 103 48823 — 1 167 945 891 840z12
+ 959 384 125 440211 — 586 290 298 880x'® - 267 776 819 200z
— 91 044 118 5282 4 22 761 029 63227 — 4 093 386 7528
L 511 673 34425 — 42 170 880x* - 2 108 54443 — 55 48822 + 578z — 1.
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Ti(x) = 34 359 738 368z — 309 237 645 31227 + 1 275 605 286 91216
— 8195 455 668 22425 - 5 429 778 186 2402'* — 6 620 826 304 51212
4 5977 134 858 240x'2 — 4 063 273 943 040z -1- 2 095 125 626 88020
— 819 082 035 200x® 4- 240 999 137 2802 — 52 581 629 95227
-+ 8 307 167 232x% — 916 844 54425 + 66 977 280x* — 2 976 76823
+ 68 76822 — 648z | 1.
T (x) = 137 438 953 4722° — 1 305 670 057 984x'® 1 5 712 306 503 680x17
— 15 260 018 802 6882® - 27 827 093 110 784x'° — 36 681 168 191 488z
-4 86 108 024 938 49621 — 27 039 419 596 80022 4 15 547 666 268 060x*
— 6 880 289 095 680x1° 4- 2 334 383 800 3202® — 601 280 675 8403
4 115 630 899 20027 — 16 188 325 888x5 - 1 589 924 86445
— 103 690 7522% - 4 124 064a® — 86 640x% 1 722z — 1.
T} (x) = 549 755 813 88822 — 5 497 558 138 880x'® |- 25 426 206 392 32028
— 72 155 450 572 80027 - 140 552 804 761 600z — 199 183 403 319 29618
+ 212 364 657 950 7202 — 173 752 901 959 680 - 110 292 369 408 0002
— 54 553 214 976 000z 4~ 21 002 987 765 760x'° — 6 254 808 268 800z°
+ 1424 085 811 20028 — 243 433 472 00027 - 30 429 184 000«
— 2677768 1922° + 156 900 4802t — 5 617 92022 - 106 40022 — 800z + 1.
5°. The polynomials Cu(z).

Cy () = 2.
Cy () = 2.
O (x) = 2% — 2.

C; (x) = 2® — 3z.

Cy () = o — 4a® + 2.

Cs (x) = 2® — 52° 4 5z,

Ce (%) = o® — 62t 4 92* — 2.

C,; () = 27 — T2° 4+ 142® — Tz,

Cg (x) = 2* — 8% 4+ 202* — 162% + 2.

O, (x) = ® — 927 4 2725 — 302 - 9x.

Cro{x) = 1% — 102® 4 352° — 50z* - 2522 — 2.

Op(x) = 2zt — 112° + 4427 — T7x% 4 550° — 11z,

Cia() = 212 — 1220 4~ 542% — 1122° 4 1052* — 3622 + 2.
6°. Chebyshev polynomials of the second type Un(x).

U, (x) = 1.

U, (x) = 2.

Us (x) = 4a® — 1.

U, () = 82° — 4.
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U, (x) = 162* — 1222 4- 1,
Us (x) = 322% — 322% + 6.
Us (v) = 64a® — 80x* 4 242% — 1.
U, (x) = 12827 — 1922° 4 802® — 8z.
Usg () = 256a® — 4482° 4 2402* — 402% 4- 1.
Uy (z) = 5122® — 10242 + 6722° — 1602® - 10x.
Up(x) = 1024210 — 230428 - 17922° — 560z 4~ 6022 — 1.
Un(z) = 204821 — 5122° |- 460827 — 179225 + 2802® — 12z,
U (z) = 4096212 — 11 26419 + 11 5202° — 53764° - 11202 — 84«2 + 1,
7°. Modified Chebyshev polynomials of the second type Up(x).
Uk (x) = 1.
U¥ () = 42 — 2.
U? (z) = 1622 — 16x + 3.
U? (x) = 642 — 9622 -+ 40w — 4.
Uf (x) = 2562 — 5122° 1 33622 — 80z -+ 5.
U (x) = 10242° — 2560z + 2304x® — 89622 + 140z — 6.
Ug (x) = 40962° — 12 28825 |- 14 080z* — 76802 + 2016x% — 2242 -+ 7.
U¥ (x) = 16 3842”7 — 57 3442 + 79 87245 — 56 3202 + 21 1202% — 403222
-+ 3362 — 8.
U? (z) = 65 53628 — 262 14427 - 430 0802° — 372 73625 -+ 183 04024
— 50 688x% 4+ 739222 — 480z 4- 9.
Us (x) = 262 1442° — 1 179 64828 + 2 228 22427 — 2 293 7605
+ 1397 76025 — 512 512x* + 109 824x% — 12 672x2 - 660x — 10,
U¥(z) = 1048 5760 — 5 242 880x° + 11 206 6562® — 13 369 34447
+ 9 748 4802% — 4 472 832x° 4~ 1 281 280zt — 219 64823
+ 20 59222 — 880z 4 11.
Ul (zx) = 4 194 30411 — 23 068 672x1° + 55 050 240a® — 74 711 0402°
-+ 63 504 384" — 35 094 528x¢ 4 12 673 024x% — 2 928 640z
+ 411 8402°% — 32 03222 4 11442 — 12.
Ut (x) = 16 T77 216222 — 100 663 29621 - 265 289 728z1° — 403 701 760z°
+ 392 232 960x® — 254 017 536" - 111 132 67228 — 32 587 7765
-+ 6 223 3602 — 732 1602°® + 48 048x2 — 14562+ 13,
Ui(z) = 67 108 864x® — 436 207 616212 + 1 258 201 20021
— 2122 317 824219 2 321 285 1202° — 1 725 825 024x8
-+ 889 061 3762 — 317 521 9202 4 77 395 9682° — 12 446 720x*

+ 1 244 6722 — 69 888«2 -I- 1820x — 14.
8°. The polynomials Sy(x).

So (:L’) = 1.
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S (x) = .
S, (z) = o« — 1.
Sy (@) = x® — 2.
8, (&) = ozt — 322 - 1.
S; (x) = 2% — 4a? - 3a.
S () = 28 — 5t + 622 — 1.
Sy (x) = 27 — 6% - 1023 — 4.
S (@) = x® — Tx® + 152* — 1022 4- 1.
Sp (&) = a® — 827 4 21x® — 2023 + 5z.
Sio(#) = 21° — 928 + 2828 — 354 + 1522 — 1.
Sp1(x) = a¥ — 102° + 362" — 56a® - 352° — 6.

S (@) = 212 — 11210 - 4528 — 842° 70z — 2122 + 1.
9°. Laguerre polynomials L,(z).

Ly () = 1.

Ly(®)=—o+ 1.

L, () = 2 — 42 + 2.

Ly () = — x® + 922 — 18z | 6.

Ly (x) = x* — 1628 - T2x% — 96x 4 24.

Ly (x) = — a5 4+ 252* — 20028 + 60022 — 600x 4 120.

Lg (x) = 2% — 362° 4 4502 — 24002° + 540022 — 4320z 4 720.

L; () = —a" + 492% — 8822% + 73502 — 29 4002 4- 52 92022 — 35 280z

-+ 5040.
Lg (x) = 28 — 6427 4 15682° — 18 81645 4- 117 600z — 376 3203

+ 564 480x% — 322 560x 4- 40 320.
Ly () = — a® + 81a8 — 259227 - 42 3362% — 381 024a° - 1 905 120x*
— 5080 32023 4- 6 531 840x% — 3 265 920« -+ 362 880.
Ly (x) = 21 — 1002° 4 405028 — 86 40027 -+ 1 058 4002% — 7 620 4802°
-+ 31 752 0002* — 72 576 0002® - 81 648 000x% —. 36 288 000z -+ 3 628 800.
Ly (%) = — o™ 4 12121° — 60502° -~ 163 3502® — 2 613 60027
-+ 25 613 2802° — 153 679 680z° 4548 856 000z — 1 097 712 000x®
+ 1097712 00022 — 439 084 800z | 39 916 800.
10°. Hermite polynomials Hp(x).
Hy(z) =1,
H, () = 2x.
H, (z) = 42 — 2.
H; (x) = 82 — 12x.
H, (z) = 16a* — 4822 12,
Hy () = 3225 — 1602® + 120x.
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Hg (z) = 64a% — 480z* + 7202 — 120.

H, (x) = 12827 — 13442° 4 336023 — 1680x.

Hg (z) = 25628 — 3584x% + 13 4402t — 13 44022 - 1680.
Hy (x) = 5122° — 921627 + 48 38425 — 80 640x° - 30 240z.

Hyy(z) = 1024210 — 23.040z8 + 161 280z¢ — 403 200z* + 302 400x% — 30 240.
[For § 4.5, 11°, see page 76.]

4.6. Zeros of polynomials. 1°. Zeros of Chebyshev polynomials. It fol-
lows from the definition of Chebyshev polynomials of the first type T'y(z)
that their zeros are given by the formula

2% — 1
2n T

Similarly, the zeros of the Chebyshev polynomials of the second type
U,(zx) are given by the formula

(n)

X = cos (k=1,2,..,n).

2 = cos

ST k=12 m,

2°. Zeros of the Legendre polynomials Py,(z).

n=1 n =2 n=3 n=4 n=2=5

0-000000 0-577350 0-000000 0-339981 0-000000
0-774597 0-861136 0-538469
0-906180

n =0 n="17 n =28 n

I
©

n =10

0-238619 0-000000 0-183435 0-000000 0-148874
0-661209 0-405845 0-525533 0-324253 0-433395
0932470 | 0-741531 0-796666 0-613371 0-679410
0-949108 0-960290 0-836031 0-865063
0-968160 0-973907

n =11 n = 12 n =13 n = 14 n =15

0-000000 0-125233 0-000000 0-108055 0-000000
0-269543 0-367832 0-230458 0-319112 0-201194
0-5619095 0-587318 0-448493 0-515249 0-394151
0-730152 0-769903 0-642349 0-697293 0-570972
0-887063 0-904117 0-801578 0-827202 0-724418
0-978229 0-981561 0-917598 0-928435 0-848207
0-984183 0-986284 0-937273
0-987993
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n = 16 ' n = 17 n =18 n =19 n = 20
0-095012 0-000000 0-084775 0-000000 0-076527
0-281605 0-178484 0-251886 0-160359 0-227786
0-458017 0-351232 0-411751 0-316564 0-373706
0-617876 0-512691 0-559771 0-464571 0-510867
0-755404 0-657671 0-691687 0-600545 0-636054
0-865631 0-781514 0-803705 0-720966 0-746332
0-944575 0-880239 0-892603 0-822715 0-839117
0-989401 0-950676 0-955824 0-903156 0-912235
0-990575 0-991565 0-960208 0-963972
0-992407 0-993129
n =21 n = 22 n =23 n = 24 n = 25
0-000000 0-069739 0-000000 0-064057 0-000000
0-145562 0-207860 0-133257 0-191119 0-122865
0-288021 0-341936 0-264136 0-315043 0-243867
0-424342 0-469356 0-390301 0-433794 0-361172
0-551619 0-587640 0-509502 0-545421 0-473003
0-667139 0-694487 0-619610 0-648094 0-577663
0-768440 0-787817 0-718661 0-740124 0-673566
0-853363 0-865812 0-804888 0-820002 0-759259
0-920100 0:926957 0-876752 0-886415 0-833443
0-967227 0-970061 0-932971 0-938275 0-894992
0-993752 0-994295 0-972542 0-974729 0-942975
0-994769 0-995187 0-976664
0-995557
n = 26 n = 27 n = 28 n = 29 n = 30
0-059230 0-000000 0-055079 0-000000 0-051472
0-176859 0-113973 0-164569 0-106278 0-153870
0-292005 0-226459 0-272062 0-211352 0-254637
0-403052 0-335994 0-376252 0-314032 0-352705
0-508441 0-441148 0-475874 0-413153 0-447034
0-606692 0-540552 0-569720 0-507593 0-536624
0-696427 0-632908 0-656651 0-596282 0-620526
0-776386 0-717013 0-735611 0-678215 0-697850
0-845446 0-791772 0-805641 0-752463 0-767777
0-902638 0-856208 0-865892 0-818185 0-829566
0-947159 0-909482 0-915633 0-874638 0-882560
0-978385 0-950901 0-954259 0-921180 0-926200
0-995886 0-979923 0-981303 0-957286 0-960022
0-996179 0-996442 0-982545 0-983668
| 0996679 0-996893
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n = 31 n = 32 n = 33 n=34 n = 35
0-000000 0-048308 0-600000 0-045510 0-000000
0-099555 0-144472 0-093631 0-136152 0-088371
0-198121 0-239287 0-186439 0:225667 0-176051
0-204718 0-331869 0-277609 0-313311 0-262353
0-388386 0-421351 0-366339 0-398359 0-346602
0478194 0-506900 0-451850 0-480106 0-428138
0-563249 0-587716 0-533390 0-557876 0-506323
0-642707 0-663044. 0-610242 0-631022 0-580545
0715777 0-732182 0-681732 0-698939 0-650224
0-781733 0-794484 0747231 0-761065 0-714814
0-839920 0-849368 0-806162 0-816884 0-773810
0-889760 0-896321 0-858010 0-865935 0-826750
0-930757 0-934906 0-902317 0-907810 0-873219
0-962504 0-064762 0-938694 0-942162 0-012854
0-984686 0-985612 0-966823 0-968708 0-945345
0-997087 0-997264 0-986456 0-987228 0-970438
0-997425 0-997572 0-987936
0-997707

n = 36 n = 37 n = 38 n = 39 n = 40
0-043018 0-000000 0-040785 0-000000 0-038772
0-128736 0-083670 0-122084 0-079444 0-116084
0-213501 0-166754 0-202570 0-158385 0-192698
0-296685 0-248668 0-281709 0-236326 0-268152
0-377673 0-328837 0-358972 0-312772 0-34199%4
0-455864 0-406701 0-433848 0-387240 0-413779
0-530680 0-481711 0-505835 0-459261 0-483076
0-601568 0-553341 0-574456 0-528377 0-549467
0-668001 0-621093 0-639255 0-594153 0-612554
0-729489 0-684486 0-699799 0-656173 0-671957
0-785576 0-743079 0-755686 0-714044 0-727318
0-835847 0-796459 0-806544 0-767401 0-778306
0-879930 0-844253 0-852035 0-815906 0-824612
0 917498 0-886125 0-891856 0-859253 0-865960
0-948273 0-921781 0-925741 0-897167 0-902099
0-972028 0-950972 0-953466 0-929409 0-932813
0-988586 0-973493 0-974846 0-955775 0-957917
0-997830 0-989186 0-989739 0-976099 0-977260
0-997945 0-998050 0-890252 0-990726
0-998147 0-998238
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8°. Zeros of the Laguerre polynomials Ly,(x).
n=1 n=232 n=3 n=4 n =35
1-000000 0-585786 0-415775 0-322548 0-263560
3-414214 2-294280 1-745761 1-413403
6-289945 4-536620 3-596426
9-395071 7-085810
12-640801
n=2~6 n=71 n=_§ n=9 n =10
0-222847 0-193044 0-170280 0-152322 0-137793
1-188932 1-026665 0-903702 0-807220 0-729455
2-992736 2-567877 2-251087 2-005135 1-808343
5-775144 4-900353 4-266700 3-783474 3-401434
9-837467 8-182153 7-045905 6-204957 5:552496
15-982874 12-734180 | 10-758516 9-372985 8-330153
19-395728 | 15-740679 | 13-466237 | 11-843786
22-863132 | 18-833598 | 16-279258
26-374072 | 21-996586
29-920697
7 =11 n =12 n =13 n = 14 n =15
0-125796 0-115722 0-107142 0-099748 0-093308
0-665418 0-611757 0-566132 0-526858 0-492692
1-647151 1-512610 1-398564 1-300629 1-215595
3-091138 2-833751 2-616597 2-430801 2-269950
5-029284 4-599228 4-238846 3-932103 3-667623
7-509888 6-844525 6-292256 5-825536 5-425337
10-605951 9-621317 8-815002 8-140240 7-565916
14-431614 13-006055 | 11-861404 | 10-916500 | 10-120229
19-178857 17-116855 | 15-510762 | 14-210805 | 13-130282
25217709 22-151090 | 19-884636 | 18-104892 | 16-654408
33-497193 28-487967 | 25-182564 | 22-723382 | 20-776479
37-099121 | 31-800386 | 28-272982 | 25-623894
40-723009 | 35-149444 | 31-407519
44-366082 | 38-530683

48-026086




178 APPENDIX I

4°, Zeros of the Hermite polynomials H,(x).

0-000000 0-707107 0-000000 0-524648 0-000000
1-224745 1-:650680 0-958572
2-020183

n==0 n =" n==8 n =29 n = 10

0-436077 0-000000 0-381187 0-000000 0-322901
1:335849 0-816288 1-157194 0-723551 1-036611
2-350605 1-673552 1-981657 1-468553 1-756684
2:651961 2-930637 2266581 2-532732
3-190993 3-436159

n =11 n =12 n =13 n = 14 7w =15

0-000000 0-314240 0-000000 0-291746 0-000000
0-656810 0-947788 0-605764 0-878714 0565070
1-326557 1-697683 1-220055 1-476683 1-136116
2-025948 2:279507 1-853108 2-095183 1719993
2783290 3-:020637 2-519736 2-748471 2-325732
3668471 3-889725 3246609 3-462657 2-967167
4-101338 4-304449 3-669950
4-499991

n =16 n =17 n =18 n=19 n = 20

0-273481 0-000000 0-258268 0-000000 0-245341
0-822951 0-531633 0-776683 0-503520 0-737474
1-380259 1-067649 1-300921 1-010368 1-234076
1-951788 1-612924 1-835532 1-524171 1-738538
2-546202 2-173503 2-386299 2049232 2-254974
3-176999 2-757763 2-961378 2:591134 2788806
3-869448 3-378932 3-573769 3-157849 3-347855
4-688739 4-061947 4-248118 3-762187 3-944764
4-871345 5-048364 4-428533 4-603682
5-220272 5-387481
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5°. Zeros of the Hermite polynomials hy(x).
n =1 n=2 n =3 n=4 ‘ n=25 n==6
0-000000 | 1-000000 | 0-000000 | 0741964 ' 0-000000 | 0-616707
1732051 | 2:334414 | 1-355626 | 1-889176
2:856970 | 3-324257
=" n==8 n=9 n =10 ‘ n = Il n =12
0-00000 | 0-539080 | 0-000000 | 0-484936 0-000000 | 0-444403
1-154405 | 1-636519 | 1-023256 | 1-465989 0-928869 | 1-340375
2-366759 | 2-802486 | 2-076848 | 2484326 1-876035 | 2-259464
3-750440 | 4-144547 | 3-205429 | 3-581823 2-865123 | 3-223710
4-512746 | 4-839463 3-936166 | 4-271826
5-188001 | 5-500902
n =13 n =14 n = 15 n = 16 n =17
0-000000 0-412590 0-000000 0-386761 0-000000
0-856680 1-242689 0-799129 1-163829 0-751843
1-725418 2-088345 1-606710 1-951980 1-509883
2-620690 2-963037 2-432437 2760245 2-281020
3-563444 3-886925 3-289082 3-600874 3-073797
4-591398 4896936 4-196208 4-492955 3-900066
5-800167 6-087409 5-190094 5472226 4-778532
6-363948 6-630878 5-744460
6-889122
n =18 n=19 n = 20 n = 21 n = 22
0-365246 0-000000 0-346964 0-000000 0-331179
1-098395 0-712085 1042945 0-678046 0-995162
1-839780 1-428877 1-745246 1-359765 1-664125
2-595834 2:155503 2458664 2-049102 2-341760
3-374737 2-898051 3-189015 2-750593 3-032404
4-188020 3:664417 3-943967 3-469847 3:741496
5-054073 4-465873 4734581 4-214344 4-476362
6-007746 5-320536 5-578739 4994964 5-247725
7-139465 6:262891 6-510590 5-829382 6-073075
7-382579 7-619049 6-751445 6-985981
7-849383 8-:074030



II. NUMERICAL TABLES

TABLE 1. COEFFICIENTS OF CERTAIN SERIES

1

n

n
L
E
k=1

10

|

EN T R S

o= o~

| = 3|

ST

1:00000

0-50000

0-33333

0-25000

0-20000

0-16667

0-14286

0-12500

0-11111

0-10000

+ o+
o= o= |

L

+ ¥
-J'r—l

L
©f =~

o] =~

+ o+ o+ o+ 4+
g = o= o

+
Sl ol |-

1-00000

1-50000

1-83333

2-08333

2-28333

2-45000

2-59286

271786

2-82897

2-92897

180
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Continuation of TABLE 1

n!

1

nl

10

1
1.2
1.2.3
1.2.3.4
1.2.3.4.5

1.2..5.6
1.2...6.7
1.2...7.8
1.2...8.9
1.2...9.10

24

120

720

5040

40 320

362 880

3 628 800

% 1-000 00
1 0-500 00
1.2
1 0-166 67
1.2.3
1 0-041 667
1.2.3.4
1 0-008 333 3
2.3.4.5
1 0-001 388 9
2...5.6
- 0-000 198 41
2...6.7
1 0-000 024 802
2...7.8
1 0-000 002 755 7
2...8.9
1 0-000 000 275 57
2...9.10 ‘
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Continuation of TaBLE 1

1

n (2n — 11! @ =N
1

1 1 1 £} 1-000 00

2 1.3 3 —1—— 0-333 33

) 1.3
3 1.3.5 15 1 0-066 667
T 1.3.5
1
1 ,
1
.3...9.11 10395 | ——MM——— | O-

611.3...9 03 13 9.1l 0-000 096 2

1
. 3...1101 .

711.3 3 135135 i3 1113 0-0000074
1

8(1.3...13.15 2 027 025 i3 1315 0-000 000 493

: 1 000

911.3...15.17 34459425 i3 1517 0-000 000 029
1

10 11.3...17.19] 654729075 i35 7719 0:000.000 002
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Continuation of TaABLE 1

183

1

n (2n) 11 Cmir
1
1 2 2 = 0-500 00
2 2.4 8 1 0-125 00
' 2.4
3| 2.4.6 48 1 10020883
2.4.6
1
2.4.6. 002 604 2
4 4.6.8 384 | 5—ag | 0002604
1
.4.6.8. : 2
512.4.6.8.10 3840 | oo | 0:000 260 4
1
2.4...10. 1000 021 701
6 0.12 46080 | ——( 0-000 021 70
1
2.4...12. : 1 550
702.4...12.14 645120 |z——>——| 0:0000015
1
8/2.4...14.16 : 097
10 321 920 |-————— 0:000 000
1
2.4...16. : 005
9 16.18 185794 560 |5— ——=—| 0:000 000 00
10 {2.4...18.20]3 715 891 200 1 0-000 000 000
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Continuation of TABLE 1,

n! 2nn !
1 -i— 1-00000 1—2—3- 0:66667
2 i—g 0-66667 I 2 :;’4 5 0-53333
3 i gz 0-40000 —1—2—3476,—7— 0-45714
4 izii 0-22857 1—23———456% 0-40635
S Ty O Tipgrr| 0w
o Ty | oo (B osis
e n I e L
e IICU s
diw st U e
0 000t T oo
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Continuation of TABLE 1

(2n — 1)1}

(2n — 11!
n 200 2%nl (20 + 1)
1 —1— 0-50000 —i— 0-166 667

2 2.3

2 —;—2 0-37500 —21. 43 5 0-075 000
3 ;i‘z 0-31250 % 0-044 643
4 ;:2:2:; 0-27344 ;f{fé?g 0-030 382
5|50 o Tl 024609 g2 0T 0] o0z
T W |reE T
v I e s L L
dx s BIC L Tt I
e s B e
0 O [y oS
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Constinuation of TABLE 1

@n — [ @n — 1)1

n +in + 1)1 FH (1)1 (2n T 3)

1] 0-125 00 1 0-025 000
2.4 2.4.5

2 2%4?6 0-062 500 2;:2’. 0-008 928 6

3 %—% 0-039 062 2_1:3(;:359 0-004 340 3

N RN P

5 213515 .'192 0-020 508 ; f_°.5i27,'193 0-001 577 5

6 ;2?2114 0-016 113 ;2?4115 0-001 074 2

7 ;iﬁiz 0-013 002 ;iiéig 0-000 770 12

8 ;iizig 0010 910 ;i;gig 0-000 574 21

9 ;i ig;g 0-009 273 5 ;i;g; 0-000 441 60

10| 0008000 | 00003822
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TABLE 3. BINOMIAL COEFFICIENTS (},)
(where » is negative or fractional)
m
\ 1 2 3 4 5 6
v
-1 —1 41 —1 +1 -1 +1
—2| —2 13 —4 45 —6 +7
—3| —3 16 —10 115 —21 428
—4 | —4| 410 —20 435 —56 484
5| —5| 415 —35 170 —126 1210
71 n 63 | 231 3003 | 9009 51 051
2 2 8 16 | T 128 256 1024
_5|_ 5 + 35 | 105 1155 | 3003 15015
2 2 8 16 | T 123 256 1024
3 3 15 35 315 693 3003
5 "2l T8 | 16 | Ti2s| T 256 + 1022
1 1 3 5 35 63 231
5|2t | 16|t 18| T 56 + 1024
1 1 1 1 5 7 21
2 2| T8 | T1e | " 12| T 256 T 1024
3 3 3 1 3 3 7
2| 2| Ts | "1 | T 256 + 1024
5 5 15 5 5 3 5
5| 2 T |t | T T 256 1024
7 7 35 35 35 7 7
7| 2| T8 |t |t T 256 + 1052
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Continuation of TABLE 3

’

5

6

4 4 n 14 | 140 N 455 | 1456 13 832
3 3 9 81 243 729 6561
p) 2 5 40 | 110 308 5236
—3173 T9| TE 33| T T + G561
1 1 2 14 35 91 728
—=l—%| *t5 | —= |*om| — e | T eser
3 3 9 81 243 729 6561
1 1 1 5 10 22 154
303 ~9| Tsr | 23 T 739 6561
2|2 1 N 4 7 14 !
3 3 9 81 243 729 6561
4 4 2 4 5 8 44
—_ —_— __ —_— i —— e
3 3 +3 81 | 243 729 + &561
5| B n 45 195 + 3315 | 13923 348 075
4 4 32 128 2048 8192 32 768
3 3| 21 77 1155 4389 100 947
— 7|77 T3z | T iz +2048 — g2 | T 32768
1 1 5 15 195 663 13 923
—2|7 2] T3 | T 128 | To0as| " si92 T 32768
101 3 7 77 231 | 4389
4 4 32 + 128 | 2048 8192 32 768
3 |31 38 N 5 45 4 117 | 1989
4 4 32 128 2048 8192 32 768
5 | 5 " 5 | 5 3 | T 1155
4 4 32 128 + 3048 8192 | ' 32768
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APPENDIX II

TaBLE 7. LEGENDRE POLYNOMIALS P,(x)

(cf. Appendix T, § 4.1, 1° and Appendix I, § 4.5, 1°)

2

3

4

5

6

0-00
01
02
03
04

05
06
07
08
09

10
11
12
13
14

15
16
17
18
19

20
21
22
23
24

25
26
27
28
29

30
31
32
33
0-34

—0-5000
4998
4994
4986
4976

4962
4946
4926
4904
4878

4850
4818
4784
4746
4706

4662
4616
4566
4514
4458

4400
4338
4274
4206
4136

4062
3986
3906
3824
3738

3650
3558
3464
3366
—0-3266

—+0-0000
—0-0150
0300
0449
0598

0747
0895
1041
1187
1332

1475
1617
1757
1895
2031

2166
2298
2427
2554
2679

2800
2918
3034
3146
3254

3359

3461
3558
3651
3740

3825
3905
3981
4052

—0-4117

+0-3750
3746
3735
3716
3690

3657

3567
3512
3449

3379
3303
3219
3129
3032

2028
2819
2703
2581
2453

2320
2181
2037
1889
1735

1415
1249
1079

0550
0369
0185
-+0-0000

3616

1577

0906
0729

-+0-0000
0187
0374
0560
0744

0927
1106
1283
1455
1624

1788
1947
2101
2248
2389

2523
2650
2769
2880
2982

3075
3159
3234
3299
3353

3397.

3431
3453

3465

3465

3454
3431
3397
3351
+0-:3294

—0-3125
3118
3099
3066
3021

2962
2891
2808
2713
2606

2488
2360
2220
2071
1913

1746
1572
1389
1201
1006

0806
0601
0394
—0-0183
-+0-0029

0243
0456
0669
0879
1087

1292
1492
1686
1873
+0-2053

—0-0000
0219
0436
0651
0862

1069
1270
1464
1651
1828

1995
2151
2295
2427
2545

2649
2738
2812
2870
2911

2935
2943
2933
2906
2861

2799
2720
2625
2512
2384

2241
2081
1910
1724
—0-1527
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Continuation of TaBLe 7

n

\ 2 t 3 4 5 6 7

x

0-35 |—0-3162 | —0-4178 | —0-0187 | 4-0-3225 | +-0-2225 { —0-1318
36 3056 4234 0375 3144 2388 1098
37 2046 4284 0564 3051 2540 0870
38 2834 4328 0753 2948 2681 0635
39 2718 4367 0942 2833 2810 0393
40 2600 4400 1130 2706 2926 | —0-0146
41 2478 4427 1317 2569 3029 | +0-0104
42 2354 4448 1504 2421 3118 0356
43 2226 4462 1688 2263 3191 0608
44 2096 4470 1870 2095 3249 0859
45 1962 4472 2050 1917 3290 1106
46 1826 4467 2226 1730 3314 1348
47 1686 4454 2399 1534 3321 1584
48 1644 4435 2568 1330 3310 1811
49 1398 4409 2732 1118 3280 2027
50 1250 4375 2891 0898 3232 2231
51 1098 4334 3044 0673 3166 2422
52 0944 4285 3191 0441 3080 2596
53 0786 4228 3332 | 4-0-0204 2975 2753
54 0626 4163 3465 | —0-0037 2851 2891
55 0462 4091 3590 0282 2708 3007
56 0296 4010 3707 0529 2546 3102
57 | —0-0126 3920 3815 0779 2366 3172
58 | 4+0-0046 3822 3914 1028 2168 3217
59 0222 3716 4002 1278 1953 3235
60 0400 3600 4080 1526 1721 3226
61 0582 3475 4146 1772 1473 3188
62 0766 3342 4200 2014 1211 3121
63 0954 3199 4242 2251 0935 3023
64 1144 3046 4270 2482 0646 2895
65 1338 2884 4284 2705 0347 2737
66 1534 2713 4284 2919 | 4-0-0038 2548
67 1734 2531 4268 3122 | —0-0278 2329
68 1936 2339 4236 3313 0601 2081

0-69 | +0-2142} —0-2137 | —0-4187 | —0-3490 | —0-0926 | +-0-1805
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Continuation. of TABLE 7

6

7

0-70
71
72
73
74

75
76
77
78
79

80
81
82
83
84

86
87
88
89

90
91
92
93
94

95
96
97
98
0-99

1-00

-+0-2350
2562
2776
2994
3214

3438
3664
3894
4126
4362

4600
4842
5086
5334
5584

5838
6094
6354
6616
6882

7150
7422
7696
7974
8254

8538
8824
9114
9406
0-9702

-+1-0000

—0-1925
1702
1469
1225
0969

0703
0426
—0-0137
+0-0164
0476

0800
1136
1484
1845
2218

2603
3001
3413
3837
4274

4725
5189
5667
6159
6665

7184
7718
8267
8830
0-9407

-+1-0000

—0-4121
4036
3933
3810
3666

3501
3314
3104
2871
2613

2330
2021
1685
1321
0928

0506
—0-0053
+0-0431

0947

1496

2079
2698
3352
4044
4773

5541
6349
7198
8089
0-9022

-+1-0000

—0-3652
3796
3922
4026
4107

4164
4193
4193
4162
4097

3995
3855
3674
3449
3177

2857
2484
2056
1570
1023

—0-0411
+0-0268
1017
1842
2744

3727
4796
5954
7204
0-8552

-+1-0000

—0-1253
1578
1899
2214
2518

2808
3081
3333
3559
3766

3918
4041
4119
4147
4120

4030
3872
3638
3322
2916

2412
1802
1077
—0-0229
+0-0751

1875
3151
4590
6204
0-8003

-+1-0000

—+0-1502
1173
0822
0450

-+0-0061

—0-0342
0754
1171
1588
1999

2397
2774
3124
3437
3703

3913
4055
4116
4083
3942

3678
3274
2713
1975
—0-1040

+0-0112
1506
3165
5115
0-7384

-+1-0000
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