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Preface

His monograph deals with the subject of best approximation in the sense
Tof Chebyshev as applied to the problem of making univariate functional
data available to the high-speed digital computing machine. Our investigation
is of a numerical and empirical nature.

Part T of this book serves as an introduction to the collection of approxi-
mations given in Part II. This exposition started its life as a film strip pre-
pared for presentation to a local meeting of the Digital Computers Association
in 1953. Much enlarged and considerably revised, the film strip is presented
here with a running commentary under each frame.

Part II contains the “‘Approximations for Digital Computers,” formerly
issued as a cumulative publication of loose sheets and made available to
numerical analysts upon request. Each sheet of the seventy-odd issued in this
series contains an approximation of a useful or illustrative nature presented
with a carefully drawn error curve.

The work presented in this volume was undertaken at The rRanD Cor-
poration in connection with its program of research for the United States
Air Force.

Many acknowledgments are in order. Mr. J. D. Williams and other col-
leagues at RAND encouraged me to undertake this project. My assistants,
Mrs. Jeanne T. Hayward and Mr. J. P. Wong, deserve special thanks for
their help. Many members of RAND’s Numerical Analysis Section assisted in
various portions of the over-all task. My secretary, Mrs. Vada M. Baldwin,
rendered constant and valuable service during the years in which the mono-
graph was in preparation. Dr. Richard Bellman read and criticized the final
manuscript. Special credit for the very accurate error-curve drawings in Part II
is owed to Mr. I. G. Margadonna and to Mrs. Theresa Halverson of RAND’s
Publications Division.

CeciL HASTINGS, JR.

SANTA MoNicA, CALIFORNIA
November, 1954
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CONCERNING BEST FIT
Chapter 1

=

(1) Minimum Absolute Error: In the above drawing, the two vertical devia-
tions from line to point have a common magnitude, 4. We shall say that the
dotted line represents a constant of best fit to the two points given.

=

=4

{2) We do so because any larger value of 4, would give a deviation of magni-
tude greater than 4 for the point on the left.
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}’* = dy

(3) And conversely. That is, we require our parameter values to be chosen
so as to make the magnitude of the greatest deviation as small as possible.
In the present instance, our one parameter is a,.

.‘._ - —B

* = a, + a,x

(4) How can we recognize a best fit in this sense when we see one? Consider
another example. In this frame there are three deviations of equal magnitude
and strictly alternating sign. We claim that the dotted line is a line of best
fit to the three points given.
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¥ = a, + ax

(5) Does this statement seem reasonable? Cleatly, shifting the line up parallel
to its old position will increase the middle deviation, and hence no improve-
ment can result from such a change.

i

{6) And conversely. Thus, if an improved position is to be found, it must
intersect the original position in some one of its points.

¥ =a, + ax
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."—-——-‘0

¥ =a, + ax

{(7) And so we test typical points of intersection, and in every case we find
that a rotation in either sense increases the magnitude of at least one of the
deviations. The dotted line is thus the line of best fit, as originally claimed.

P =ay + ax

(8) We now recognize the straight line above to be a best linear fit to the
segment of curve pictured. This is because no beiter fit can be made to the
three encircled points on the curve. An error curve for the above situation
appears in the next frame.
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Error = Approximation — Function

e(x) e(x) = y*(x) — (%)

N

¥ =a, + ayx

(9) In what we shall call the “normal” situation, a best fit is obtained with
a parametric form involving n parameters (two, in the case pictured) when
n + 1 equal greatest deviations (three, in the case pictured) are obtained that
alternate in sign.

e(x)

¥ = a, + ax

(10) In rare instances of the “normal” situation there may be extraneous
points at which the greatest error is achieved. In such a situation, the » + 1
points with the required property are not unique.
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- ——0

@~ — — ——

¥ = ax x

(11) In the situation pictured above, a best fit is obviously obtained with the
indicated form when there are two equal deviations of opposite sign. This is

the normal situation: there is one parameter, and there are two deviations
that alternate in sign.

"

e —-}o

¥ = ax

(12) It would simplify matters greatly if all best-fit situations were “normal,”
but such is not the case. Thus, in the present instance, a best fit is obviously

obtained with the indicated parametric form when the deviations are equal
and of like sign.
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¥ = ax

(13) And in the present instance any line falling in the shaded area is a line
of best fit. If this statement appears confusing, recall our definition of best
fit, which merely states that the greatest deviation is to be made a minimum.

7 = a,x

(14) Thus, in accordance with our definition, line A4 is no better a fit to the
two points indicated than is line B. In either case, the greatest deviation, the
one at x = 0, is exactly the same and can be made no smaller.
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- ~=0
Q= =

O - -

0 x
¥* = ay + ayx?

(15) Now, consider the situation pictured above. We obviously have a best
fit, as the change of variable £ = x? for x > 0 transforms our problem into
one of linear approximation to three points.

0 x
¥ = a, + a,x*

(16} If we now reflect the middle point in the y-axis, our curve of best fit
must remain unchanged, as each instance of the form considered is symmetric
about the y-axis. Our best-fit deviations no longer alternate in sign!
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flo ———

¥ = ax + ax®

(17) The use of parametric forms with improper limitations can thus lead to
“abnormal” situations of best fit. In particular, polynomial forms with
uncalled-for gaps (missing terms of lower order) may be expected to give
trouble if the interval of approximation includes the origin.

O =~ — =
O ~ = - —

¥ = ayx + axt

(18) However, the “normal” situation will always obtain in using a poly-
nomial form with gaps if the data to be fitted have x-coordinates that are
distinct and all of one sign. A proof of this statement and of several state-
ments to follow is indicated in the problem section at the end of this chapter.
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¥ = ay + ayx + axt

(19) And if we have a constant term, one of the points to be fitted may even
have a zero x-coordinate, and the “normal” situation will still obtain.

'
!
t
i
1
[0}

7* = ap + ayx + a,x?

(20) The “normal” situation will always obtain for the polynomial form
without gaps if the x-coordinates of the data to be fitted are distinct. The
x-coordinates of the data to be fitted need not be all of one sign.
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i
i
]
i
i
Q

0 x’
¥ = ay + ax’ + apx’?

(21) In this connection, notice that the polynomial form without gaps may be
subjected to the transformation x’ = x + # without undergoing a change of
form, in the sense that new types of terms in x* are added that do not appear
in terms of x in the original form,

day + ax

le-}—blx—}—bzx?

(22) Once we depart from the subject of simple polynomial approximation,
there appears to be very little friendly theory to guide us. Considerable experi-
ence, however, leads us to expect the “normal” situation of best fit to obtain
in all reasonable circumstances.
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a, + ax

Al N Ry g

(23) If the circumstances are unreasonable, trouble generally arises in attempt-
ing to carry out the fitting process. In the above instance, one could run into
considerable difficulty in attempting to find the continuous fit shown.

. ay + a.x
)’*—1 + byx + b,x?

{24) This is because a discontinuous instance of the same form actually passes
through the five points given.
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e(x)

. a, + ax
Y Tl T bix + bt

(25) Sometimes we give up when nothing we do will give us a continuous fit
of “normal” appearance; but when we do obtain the expected situation, we
feel quite certain that our fit is best.

1.0 () Approximation — Function
X) = -
T r Function ®
|
I
1
¥ |
t
'
©
[o]
i
0 J
' x 1.0
V= ay, + ax

(26) Minimum Relative Error: In a few instances we shall consider best fit in
the sense that the greatest relative error of approximation is made a minimum.
Such cases will be clearly marked.
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_ Y=
ep(x) =
r(X) 7
4
¢
ep(x) !
]
O T ' f’
: X ;1.0
] 1
I i
] |
[o] Q
—4
¥ = a, + ax

(27) In such instances we draw curves or plots of relative error and proceed
to level the greatest deviations just as we would in the case of absolute error.

d(a,) = wo(arxy — ¥o)? + wy(ax, — ¥1)?

x,d? + xod? < x,d3 + xd}

(28) We now indicate a bit of approximation theory which the reader may
work out for himself. While the statement of Frame (11) is obvious, employ
the above hints to yield an alternative proof of the fact.
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°~d

waO - w1x1 + waz = 0

woxg - wrxi + wzx‘; =0

(29) With the further hint given here and the experience gained in working

the previous problem, prove the statement of Frame (18) for the case illus-
trated there.

)

1 1 1
wo(x;) = | %1 Xz X3
xi X X3

w, (%)

wo(t) =m —m t + w1t

(30) And with the further hint given here, prove the statement of Frame (19)
for the case illustrated. If your work has been done as intended, it should be
a simple matter to generalize the result considerably. For aid and further
enlightenment, try the following references.
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LINEAR WEIGHTS
Chapter 2
1
¥ d
135 1
4131
274 2 dol
|
0 x 1
)/*:40

(1) Prologue to “Concerning Weights”: The deviations pictured above have
magnitudes 4; and signs appropriate to that of best fit. Is it clear that we can
determine 4 by taking a simple average of the two 4;?

1 —
d
7
274 1
274 1 d
274 2
]
0 X 1

(2) As this is in fact the case, we shall say that 4, + d; = 24 is the invariant
associated with the fitting of a constant to two points. With equivalent mean-
ing, we shall say that 1:1 weights level the deviations.

19
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1~
167 1 ¥ d2
135 2
413 1 Td°
212 4 l d,
i
0 X 1
¥ = ay, + ax

{3) Let us now demonstrate geometrically that 1:2:1 weights level the devia-
tions pertinent to a straight line and three equally spaced points.

1 -
290 1 y
JA35 2

.290 1

212 4

(4) Starting with the line in a horizontal position, we leave the middle devia-
tion fixed and rotate the line a bit. As the two triangles to be seen are
identical, it is obvious that 4, + 4, remains constant.
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1 —
.106 1 ¥
319 2
106 1
212 4

(5) If the line position now be altered keeping the two end deviations equated
in magnitude (parallel displacement), it is then clear that (d, + 4,) + 24,
remains constant. From these considerations, we deduce the invariant relation-
ship 4, + 2d, + d, = 44.

1 -
—.140 1 y
319 2
352 1
212 4

(6) Remember that our invariant only holds when the deviations have signs
appropriate to best fit. Should the law of signs be violated, however, the
invariant can still be made to hold by treating the offending deviation’s
magnitude as if it were negative,
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1 —
167 1 ¥y
135 3
413 2
3 6 |
1
0 X 1
Y= ay + ayx

(7) By a similar argument, we can also readily determine the weights asso-
ciated with the fitting of a straight line to three points that are not equally
spaced in the x-coordinate.

1~
331 1 ¥
135 3

331 2

233 6

(8) Thus, with the 2:1 spacing in x used here, it is quite obvious that the
value of d, + 2d, must remain fixed when the middle deviation is held

fixed, and again it is clear that the middle weight must be the sum of the
other two.
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subject of weights, which will be elaborated upon in a later chapter, let us
now consider the problem of best-fitting a straight line to the eight points
listed on the printed form, above.

/@ ) 1 ]
0

S x 1.0

(10) We plot the data. The urge to use that piece of string once more is
irresistible. And so, noting the intercepts at 0 and 1, we write y* = .3 + 3.7x
as a first approximation to the required line of best fit.
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3 3.7

x y* y €

1 67 7 —.03
2 1.04 1.1 —.06
3 1.41 1.4 01
4 1.78 1.7 08
S 2.15 2.2 —.05
6 2.52 2.5 02
7 2.89 2.9 —.01
-8 3.26 3.2 ' ‘06

(11) Then we compute error data and thus obtain a closer look at the devia-
tions. As we are fitting a linear form with two parameters, some three of
the eight points will determine the final fit.

.06 1
.08 3
.05 2
067 6

a4y + 24, = 1.1 — 067
dy + Sa, = 2.2 — 067
a4y = .300
a, = 3.667

(12) We mark the three points that appear to be the significant ones and use
the 1:3:2 weights of Frame (8) to determine &, as our x-spacing is 2:1. We
set up and solve equations which impose deviations of magnitude 4 with
proper signs at the two end points.
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{(13) Again we compute error data (we have quite a supply of these printed
forms), and this time it is apparent that we have the desired line of best fit.
We shall say that our error of approximation is ¢ = .067.

A
e(x) °
(o]
0 Fan L) 4|
X 1.0
(o] [0]
[ ] ®

(14) Notice that we have obtained our best fit by imposing all but one of the
equal greatest deviations in such a manner that the remaining equal greatest
deviation comes up with the right magnitude,



AN ITERATIVE PROCEDURE
Chapter 3

e(x)

x 1.0

(1) Likewise, in fitting a parametric form to a continuous curve over an
interval, we obtain our final fit by -imposing all but one of the greatest equal
deviations in such a manner that the remaining equal greatest deviation comes
up with the right magnitude.

e(x)

(2) But how do we get in position to take this final step? Imagine that we
are fitting a parametric form containing three parameters to a segment of
curve over (0,1). We might begin by guessing at the three root locations
of the final, leveled, but (alas!) unknown, error curve.

27
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(3} And then we might set up and solve “root equations” to yield an initial
approximation. Having such an initial approximation, we next compute error-
curve plotting data.

e=y—y

&(x)

(4) The error-curve points so obtained are then plotted and a smooth curve
is drawn through them. (Usually we plot about sixty or seventy points to
obtain a single error curve!) Natutrally the curve drawn has the roots imposed,
if our numerical work has been done properly.
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e(x)
ds
0 ¢ x4 l
1 X3 4622 1.0
dy

(5) We then measure the absolute extremal deviations and take some kind of
a weighted average of the 4; to obtain an estimate of 4. If we have an idea

as to what kind of weights to use, fine! If not, we may try taking a simple
average.

e(x)

/L\ / :
{ {
0 X, \xf/ 1.0

e,

(6) We impose deviations of the magnitude estimated, optimistically labeled
d, above, with proper sign at three of the observed extremal locations. We

say, also optimistically, that we are imposing extremals and call the resulting
equations “‘extremal equations.”
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(7) We say that the remaining extremal deviation is left free. Again the
equations are solved, and new error-curve data are computed.

e(x)

/ \/x 1.0

(8) A new error curve is drawn, and this time the curve passes through the

points decided upon in Frame (6), if our numerical work has been done
correctly.
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z(x)

’
d1 f

x 1.0

Nae
©w~

(9) New extremal deviations are measured. In obtaining an improved estimate
of 4, we use all extremal data available and improve upon our estimates of the
weights, if possible.

First Second
Cycle Cycle
dy, w, dy  w,
d, w, d; w,
d, 1w, d, w,
d;, w, dy w,
d w & w

(10) Roughly speaking, we try to find a set of positive weights that give
nearly identical estimates of 4 for both sets of deviations. Some theory and
advice on this subject are given in a later chapter on weights.
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e(x)

dl dl

(11) Again we decide upon what deviations to impose and where.

e(x) [drop-off
NS

d’ — drop-off
0 # \ J

/ %, \_/ 1.0

(12) Sometimes we save a little numerical labor by imposing reduced devia-
tions at previously used locations. We may thus avoid setting up and solving
equations entirely from scratch.
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(13) At any rate, we set up our equations in one manner or the other, solve
them, and again obtain plotting data. In accordance with the first alternative,
the leveled error curve of Frame (1) is obtained.

e(x)

(14} In accordance with the second alternative, the nearly level error curve,
above, is obtained. Generally, convergence is not quite as rapid as it might

otherwise be if we try imposing deviations at all far from the true extremal
locations.



SOLUTION OF EQUATIONS
Chapter 4

oz Thes

1+ a,Z; —
2 ¥ b, + b ¥ bm
<& <& < <&
1+ .4a, .
5T 4b, + 16b, + 064h, ~ 2772
1+ 1.84,

16155

Il

2 + 1.8b, + 3.24b, + 5.832b,

(V) Virtually all the parametric forms that we shall care to consider involve
only the solution of linear equations in the process of fitting. The only forms
considered in this monograph leading to nonlinear equations are those on

Sheets 43, 44, and 45.

But [lis

—a, + byw(z;) + bziw(z;) + by23w(z;) = 1- —____2w(zi)

Z;
< < * <
4y + 375526, + .1502085, + .0600832b, = .62240000
4y + 161555, + .2907906, + .5234220b; = .37605556
d, + .038035, + .197756b, + 1.0283312b, = .17768077
d; + .011225, 4 .10995654, + 1.0775688b, = .09975102

(4, = —a,)

(2) Of course, we have to write our type equation down properly or the
resulting systems of equations to be solved may appear to be nonlinear; but
this is a simple task for any case considered herein, save the three exceptions

mentioned above.

35
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ot Theis

1 =e% *xd
[1+4+ax, +ax2+ axd+ axt]
<& <& < L 4
1

= 9048374 + .00002

[1+ .1z + .0l4, + .0012; + .0001a,]*

1

[1+ 72+ 494, + 3434, + .2401a,]% 4965853 — .00002

1
[1 + 142, + 1.964, + 2.7444;, + 3.84164,]*

I

.2465970 + .00002

(3) This being the case, we are in business if we know a good method for
solving systems of linear equations. We can think of no better method for
everyday use than the procedure devised by Dr. Prescott D. Crout, of MIT.

But This

. )Y —
a, t ax, + axt+apxd = (e* i) !

L < < L 4

a4, + da, + .0lag + .001a, = .2530946
ay,+ TJay,+ 494, + 3432, = 2732260
a4 + 14a, + 1.96a; + 2.744a, = .2993134
a, + 3.5a, + 12.25a; + 42.8754, = .3997922

{4) Notice that in setting up an atbitrary type equation intelligently, we
assign unit coefficients to the leftmost unknown. To avoid treating such a
special case, however, we’ll not be as clever as usual in setting up an example
to work numerically.
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2 3 4
a,x; + ax; + ax? + a,x;

< < <

Sa, + .25a, + 1254, + .0625a,
8a, + .64a, + .5124;, + .4096a4,
1.04, + 1.004, + 1.0004; -+ 1.00004,

2a, + .04a, + .0084; + .00164, =

ln (1 + Xi)

<>

18232
= 40547
58779
69315

Example

43192
1.34297
2.94939
4.69315

(5) With this thought in mind, we now consider the above system of equa-
tions. As a first step, we sum the numbers in each row to obtain a “check
column,” which will be treated throughout as if it were an alternative right-

hand -olumn of numbers.

a, + .2 a, + .04 a; + 008 o, =
Say + 254, + 1254, 4+ 06254,
- .84, + .64a, + 5124, + 40964, =

91160
40547
58779

2.15960
1.34297
2.94939

a, + .2 a, + .04 a; + .008 4,
154, + .1054; + 05854,
48a, + 48 a, + 40324,

91160
—.05033
—.14149

2.15960
26317
1.22171

315

a, +.7 as+ 39 a4,
48a, + .48 a, + 40324,
8 a, + .96 a, + 992 4,

ay+ .2 a; + .04 a; + 008 4, =

91160
—.33553
—.14149
—.21845

2.15960
1.75447
1.22171
2.53355

{6} We divide the first equation through by its leading coefficient. The new
first equation is then multiplied by each other leading coefficient in turn,
and each result is subtracted from the corresponding original equation to
yield a new equation sans an 4, term. The process is continued.
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24, + .04a, + .0084; + .00164, = .18232  .43192
5S4, 4+ 254, + 1254, + .0625a4, 40547  1.34297
84, + .64a, + 5124, + .4096a, 58779  2.94939
1.02, + 1.004, + 1.000a; + 1.00004, 69315  4.69315

a4, + 2a,+ 04 a,+ 008 4, = 91160 2.15960
4y + 7 a3+ 39 a, = —.33553 1.75447

4y + 1.5 13586  2.63586

a4, = —.05462 94538

99666 —.46668 21779 —.05462
1.99666 53332 1.21779 94538

I

AN
>
I

(7) In this fashion, we reduce the original equations to triangular form. At
every stage of the numerical work, the computed check entry must agree with
the sum of coefficients plus right member on the same line. Finally, the un-
knowns and their check values are computed in obvious fashion.

2 .04 .008 .0016 18232 43192
5 .25 125 .0625 40547  1.34297
.8 .64 S12 4096 58779  2.94939
1.0 1.00 1.000 1.0000 69315 4.69315
2 2 .04 .008 91160 2.15960
S5 .15 v .39 —.33553 1.75447
.8 48 144 1.5 .13586 2.63586
1.0 .8 4 .08 —.05462 94538

99666 —.46668 21779 —.05462
1.99666 33332 1.21779 94538

(8) Dr. Crout’s procedure consists in a convenient organization of all this
numerical labor, as illustrated above. The first column of the system matrix
is copied to yield the first column of the auxiliary matrix, and the calculation
of the first row of the auxiliary matrix is obvious.
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(9) We then complete the second column of the auxiliary matrix; next the
second row, and so forth. The diagram above illustrates the general operation
by which each diagonal entry or entry below a diagonal entry is computed.

(10} And the diagram above illustrates the manner in which each entry to
the right of a diagonal entry is computed. The two operations differ only in
that we divide by the diagonal element on the line when it is to the left of
the number being computed.
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Topic Changes

1.000139 + .1828626x + .04774387x2

* -
$(%) = 0 6859635x £ 21374187 + 04685092
P - - P
‘o 1
1 + .3606032x
) 36716268 — 2272232£2 + 860199682
*(x) = : §

1.0 — 1.3562710£ + 1.6148087£2 — .2585377&*

(11) In several instances we have rewritten our original approximations in
“desensitized” form to facilitate their evaluation on machines (such as the
ENIAC) which compute to a fixed number of decimal places. Thus, the
approximation of Sheet 6 is a restatement of the top-line expression above.

1
€= 1+ px
p = .3606032
1 \—/
D($)
0 |

g 1

(12) By making the indicated transformation, the interval 0 < x» < oo is
reduced to 0 < £ < 1, and the variations of the transformed numerator N(£)
and denominator D(£) become bounded rather than unbounded.
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1
5:1—!—})x
p=23
1
D($) _
0 .
£ 1

(13) In quite general circumstances, the transformed denominator will have
minimum variation when p is chosen to make D(1) = D(0). In the example
considered here, a smaller value of p gives a lesser D(1), and the variation of
D(§) is seen to be increased.

1
g:1+px
p=4
1
D($)
0 |

£ 1

(14) Conversely, a larger value of p gives a greater D(1), and again the
variation of the denominator is seen to be increased. In the situation pictured
here, is it not quite reasonable to expect that the minimum D(£) value will
increase more sluggishly than the D(1) value?
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Sheet 43

. . a, R dy Norx
) =1 [(1 T T a T T O F px)“]@( )

S FN 1 o + €x + Cx? g2
=1 [ T+ p=)? ]""

(15) Let us now consider the fitting of Sheet 43, in which we do run into
nonlinear equations. We begin by rewriting the parametric form considered
in terms of new unknowns ¢, ¢;, and ¢,. This allows us to write the equations
to be solved in as linear a form as possible.

y(x) = e”[l — —szfx et dt:l

& <& < <

Co T Caxo + c2x§ = (1 + pxo)3y(x0)
€o + caxy + cxf = (1 + px,)%y(x,)
Co T 3% + cpx3 = (1 + pxz)_s}'(x2)
€o + c3x3 + x5 = (1 + px3)3y(xs)

(16) A set of “root equations” would then be written as above. Our problem
is that of solving for unknowns c,, ¢;, ¢,, and p. We begin by noting that p
must be assigned a value p, that will make the four equations above consistent
in the unknowns ¢, ¢, and c,.
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xo  x§ (14 pxo)3y(x)-
x3? (1 + px)3y(x1)
X, x3 (14 px)?y(x)
xg  xE (14 px)y(x,)

1) =

[
=
it

(17) These equations will be consistent if p, is chosen to make the above
determinant equal to zero. To determine this number, we expand the deter-
minant by elements of the rightmost column. We readily see that f(p) is a
cubic polynomial in p.

F(p)

Po P .

f() = Ao(1 + pxo)® + A (1 + pxy)3 + A (1 + pxy)® + As(1 + pxs)®

(18) But not being overly fond of algebra, we refrain from multiplying out
the third-power terms. We leave the expression as above, and then use a
standard iterative procedure, such as Newton'’s rule, to determine p,.
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& — — 1 2%
P(x) =1 I:l F124x)

.01 +
e(x)
0 |
1 Vx 2
—.01 |-

(19) Why do we take the smallest root to be p,? This is a very good question,
and we don’t have the best answer in the world. We began by trying to fit
the » = 1 case of the parametric form under consideration. A nearly level
error curve was obtained for p, = 1.24.

) =1 - [(1 4}2?344@ T4 %7.66314@2]"' -
.0004 |-
z(x)
o . |
1 V’; 2
—.0004 +

(20) Then we tried fitting the » = 2 case. We set up equations imposing
reasonable error-curve roots, and this led us to solve a quadratic equation in p,
yielding roots .644 and 2.18. The smaller root gave the better result. We
then felt that the p, we wanted should decrease with increasing 7.
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€o + 1% + x3 = (1 + Pox<>)3}’(xo)
co + axy + coxF = (1 + poxy)3y(x1)
Co T 1x3 + x5 = (1 + poxs)3y(xs)

(21) And so we choose to call the smallest root p,. Returning to the equations
of Frame (16), we replace p by p, and then discard any one of the four

equations. The remaining three linear equations are then solved for the
unknowns ¢,, ¢, and ¢,.

1 4 .28949x + .07681x2
* _ . _r2
) =1 [ (1 + 47294%)° :le *
.0000,2 +
s [\
0 §y b
1 W 2
—.0000,2 |

(22} The graph above and that of Frame (18) pertain to an actual cycle in
the fitting of Sheet 43. Roots were imposed at x = 0, .25, .7, and 1.2. The
above error curve was obtained and then leveled in later cycles.
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CHEBYSHEV POLYNOMIALS
Chapter 5
1 ik
y
0 )
X 1.0
__1 -
To(x) =1
Ty(x) =1 — 2x

(1) We shall now describe an infinite sequence of polynomials T',(x), of
exact degree # in x, called the Chebyshev polynomials of the first kind. Their
theory throws much interesting light on the subject of polynomial approxi-
mation.

1
y
0 J
x 1.0
-1
Ty(x) =1 — 8x + 8x2

(2) To begin with, let us say that we may think of each polynomial T,(x) as
having been constructed to start at the point (0, 1) and to oscillate back and
forth between *1 as many times as possible for 2 polynomial of its degree in
the interval (0, 1).

47
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Error = Approximation — Function
1
¥
0 i}
X 1.0
—1L
T,(x) = (1 — 18x + 48x%) — (32x%)

(3) And, apart from a multiplicative constant, we may also think of each
T,(x) as being the equation of the error curve that results from best-fitting
a polynomial of degree » — 1 to x™ over (0, 1).

__lr

T,(x) =1 — 32x + 160x? — 256x* + 128x*

(4) Thus, T,(x) = (1 — 32x 4 160x2 — 256x%) — (—128x*) in accord-
ance with the formula “Error = Approximation — Function.” As a, +
a X + a;x* + a,x* is a four-parameter form, and the above curve has five

equal greatest deviations of alternating sign, it is apparent that T',(x) has the
properties of a “normal” error curve.
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= cos 34

M——

0 T
! |
| [
| |
| |
| |
| |
1 [
| [
} I

l
! |
I |
t
|
|
|

D
e

(5) In the above frame, we have applied the transformation 6 = =x to the
function y = cos 3. We think of this one-to-one correspondence as defined
by vertical projection to the lower axis. The root and extremal locations of
9 = cos 36 have been indicated on the §-axis.

NN

(6) Let us now bend the segment of §-axis pictured into a semicircle of unit
radius: the unit referred to here is that of the 8-axis scale. Naturally this
changes the relationship between x and 6, which we continue to define by
vertical projection.




50 APPROXIMATIONS FOR DIGITAL COMPUTERS

/

!
|
!
|

e N\
SR

(7) When the bending has been completed, it may be shown that cos 36 has
been warped into T;(x). But first, what is the present relationship between
x and 8? As the radius of the semicircle is .5 in units of x, the accentuated line
segment has a length of .5 cos # in units of x.

-

cosf =1 — 2x

O R

L x

(8) Once this is seen, the relationship x + .5 cos § = .5 stands out, and we
next learn that our transformation can be written cos § = 1 — 2x, which in
turn says that cos ¢ is transformed into T, (x).
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cos 20 = 1 — 8x -+ 8x2

90°

(9) Then, as cos 26 = 2 cos? § — 1, we readily compute that cos 26 is trans-
formed into 2(1 — 2x)2 — 1 =1 — 8x + 8x% = T,(x). Now, if we can
prove that cos nf transforms under cos @ = 1 — 2x into a polynomial of
degree n in x, then that polynomial must be T,(x).

cos (7 -+ 1) == cos n6 cos § — sin 6 sin 6

and

cos (7 — 1) == cos »8 cos § -+ sin 6 sin 6

when added yield
cos (n + 1)8 = 2 cos § cos 70 — cos (n — 1)6
which transforms to

Ty (%) =2(1 — 2x)T,(x) — T,_1(x)

(10) This is becanse cos nf oscillates between 1 the appropriate number of
limes, and this property is preserved under transformation. Furthermore, the
transformed polynomial takes on the required value at x = 0.
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cos 3¢ — 1 — 18x + 48x% — 32x3

(11) And this we readily show by induction. Thus, the identity cos 360 =
2 cos § cos 26 — cos 8, coupled with the fact that cos # =1 — 2x and
cos 2§ = 1 — 8x + 8x? are polynomials of required degree, shows that
cos 36 transforms to 2 polynomial of third degree.

T,(x) = cos n{ arcos (1 — 2x)}

[EN
[«]

90°
22 = 22}
4 7!

[
|
|
|

| |

| |
| |

i |

| |

]

! f

! |

| [

|

|
]
|
|
|
|
|
|
[
[
|
I
|
|
|
|

N
RIVARVA

(12) The identity cos 48 = 2 cos § cos 360 — cos 26 then transforms to a
polynomial of fourth degree, and the induction may be carried out without
difficulty. Finally, let us remark that, as § = arcos (1 — 2x), we may write
the above simple formula for T, (x) valid over 0 < x < 1.

/

O
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B 1 1 (21‘ — 1)
X; = = — =cos |- T
2 2 2n
1.0 =
X
- e
O g
(2i — 1) /22 1.0

(13) Now, in the preceding sequence of diagrams, we emphasize, by vertical
projection from the semicircle, the manner in which the roots (and extremal
locations) of cos 78 are transformed into the roots (and extremal locations)

of T,(x).

J

(2i — 1)/2n

1.0

(14) If we wish, we may number the roots 7/ = 1, 2, -+ -, # and draw a*root-
location curve.” That is, the roots of T,(x) must satisfy the equation
narcos (1 — 2x;) = (2; — 1)w/2 rewritten above. The idea of looking for
such curves in nonpolynomial approximation is a rather interesting one!
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Sheet 46
90° °
g° <]
6o° | .
300 | °
& | ‘ J
0 5 i/m 1.0

(15) The carefully leveled error curves presented in Part II of this book con-
tain some, but all too little, data to be analyzed on the subject of root and
extremal locations. Consider Sheet 46, for example. We number the five roots
i=0,1,2,3,4 and plot root values 69 = arcsin £, against 7/4 to yield the
plot above.

Sheet 47
90° ~ o
9o o
60° | .
300 |- °
&— 1 |
0 5 i/m 1.0

(16) We next consider Sheet 47, which contains the second approximation in
the sequence. We number the roots 7 = 0,1, -+, 6 and plot 89 against 7/6
on the same sheet of graph paper. It now appears that our roots lie roughly
on a curve much as did the roots of T,(x).
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90°

60° -

30°

5 i/m 1.0

(17) If we were about to obtain the third approximation in the sequence, we
should now surely draw an approximate root-location curve and read off
09 values from this curve for i/m = 0(%)1. These 89 values would be used
to initiate the iterative procedure of Chapter 3.

Sheet 48

30°

0 ¥ | 1

S5 1/m 1.0

(18) And we shouldn’t be badly disappointed! In conclusion, it is very inter-
esting to note that the error curves of Sheets 49, 50, and 51 fall almost
exactly on top of the cotresponding error curves for Sheets 46, 47, and 48.
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Sheet 46 & | ! —4
| \
0 / | \ 90°
/ \ \
/ | \
Sheet 47 4 I N - .
/ 1 \
0 / i y 90°
/ | \
{ \ \\
Sheet 48  é— gl I J:l —
0 30° 60° 90°

(19) In trying to extrapolate root positions we often use the scheme illustrated
here. Imagine that Sheet 48 root locations must be estimated. Two roots are
being added at each step; the position of the middle root appears to be quite
stable. So we extrapolate the middle-root position.

i ! o
Sheet 46 S \\ \‘ / 200
\ | /
Sheet 47 & ' \ Ly ) —
\ { |
Q \ | i 90°
\ | |
L
Sheet 48 & 3 L ¢ 3 ¥ —
0 30° 60° 90°

(20) We might then extrapolate the position of the first and last roots. And
then we might extrapolate the positions of the roots to either side of the
middle root. Finally we might fudge in (©0»), the two other missing root

locations.
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y
In(1+x) = x
— Lox? =
+15x?
— Tt
+ ox®
_1/6x6
+ .
0 x 1.10

(21) This may be a good time to emphasize the difference between a “point
expansion” and an “interval expansion.” The usual power-series development
may be called a “point expansion,” in that the successive terms of the series
match the ordinate and successive derivatives of the function at some one
specified point.

e(x)

3 4

e(x) = (x—-%xz-’rlxs —lx“) —In (1 + x)

{22) When such an expansion is curtailed—that is, when all terms beyond
a certain point are discarded—an approximation is obtained which has all its
disposable roots located at one point and has only accidental roots elsewhere.
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y
In (_3___cggﬁ) — 37645

’ —.34315 cos 0
—.02944 cos 26
—.00337 cos 36
—.00043 cos 44
—.00006 cos 58
+.

0 —

0 ™

(23) A Fourier series, on the other hand, is an example of an “interval
expansion,” in that the determination of each parameter 4, is made to depend

on all values of the function approximated within the interval of approxi-
mation.

0005
O i
6 T
—.0005 L
8(0) = (m/ 4o cos @+ cos 260 +«-cos 30) — In (3 —2C05'0)

(24) If a rapidly converging Fourier series is curtailed, the resulting error
curve of approximation will have its roots quite evenly spaced. For, as in the
present instance, the error of approximation is nearly given by the first cosine
term neglected, except for sign which is reversed.
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y
In (1 + x) = .37645T,(x) s |
—.34315T,(x)
—.02944T,(x)
—.00337T,(x)
—.00043T ,(x)
—.00006T ;(x)
+.
0 x 1.2)

(25) From what has gone before, we now appreciate that the transformation
cos § = 1 — 2x will convert a Fourier cosine series into an expansion in
terms of Chebyshev polynomials, valid over the interval (0, 1).

.0005 ~
e(x)
0 -
X 1.0
—.0005 L
e(x) = [wTo(x) + T(x) +u To(x) +22T,(x)] —In (1 + x)

(26) And when such an expansion is curtailed, a nearly best polynomial
approximation is obtained. The corresponding polynomial of best fit must
therefore have an error curve with root and extremal locations much like
those of the appropriate Chebyshev polynomial.
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T, (x)

OO
?__._ - 221/20

T
04 31 .69 96

0 l
NS\

(27) This knowledge may be employed in the construction of a variety of
work sheets for use in the fitting of polynomials, and of course it may be
used to initiate the iterative procedure of Chapter 3—work sheet or no work
sheet.

{
]
!
{
!
|
| |
| {
]
|
i
]
{
I

D

ay + ayx + a,x% + ax® = y(x)
L < L 4 <
do + .04a; + 00164, + 0000644, = y(.04)
4y + 31a, + .0961a, + .0297914, = y(.31)

a4y + 694, + 4761a, + 3285092, = y(.69)
a4y + .96a;, + .9216a, -+ .8847364, = y(.96)

(28) In a typical instance, we determine the root locations of the Chebyshev
polynomial of appropriate order, set up root equations, and solve for the #; in
terms of the y(x;). In solving a specific problem, the y(x;) would be definite
numbers; in constructing a work sheet, the y(x;) would remain as written
above.
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=
l
é
A
(=

(e}
iy —

o

o

C
C

(29) Now, for a second example, let’s decide to construct a cubic work sheet
in which roots are to be imposed at each end of the interval (0,1). We
chop the two ends from T,(x) and consider the reduced interval to be (0, 1).

ay + aix + a,x? + a;x® = y(x)
& L & <
4 = )’(0)
ay + 3a, + .09a, + .0274; = y(.3)
ay + Ta; + 494, + 34343 = y(.7)
ag+ a+  a, + a; = 7(1.0)

(30) To an adequate degree of approximation, it suffices to record one-figure
values of root and extremal locations. The general root equations are inverted,
yielding 4, = y(0), 21a, = —121y(0) + 175y(.3) — 75y(.7) + 21y(1.0),
etc.
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Polynomial Work Sheet

Y(x) = a + ayx + ax* + ax®

4o dq a3 Ay
(0) 1 |—121| 200|{—100
y(3) ' 175|—425| 250
y(.7) —75] 325|—250
(1.0) 21|—100| 100

1 21| 21 21

x=.1]|x=.5] x=.9
a, 1.0 1.0 1.0
a4 1 S .
da, .01 .25 .81
a, .001 125 729
7 ]
y;
£

(31) And here is the finished product, ready for use. The top portion of the
work sheet is used to obtain the #;, while the lower portion is used to test
the resulting approximation at locations where the error is expected to be of
extremal magnitude,
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Polynomial Work Sheet
P(x) = ay + ayx + a,x® + a;x® + axt
) 4 3 a3 a4
¥(0) 1] —333| 972[—1125 225
y(.2) 500 | —2125 2875 | —625
y(.5) —256 1856 | —3200 800
y(.8) 125 | —1000| 2125 —625
7(1.0) —36 297 | —675 225
1 36 36 36 18
x = .07 x = .34 x = .66 x = 93
4, 1.0 1.0 1.0 1.0
a .07 34 .66 93
a, .0049 1156 4356 .8649
a, .0003,43 .0393,04 .2874,96 .8043,57
d, .0000,2401| .0133,6336| .1897,4736| .7480,5201

(32) The two sample work sheets given here are typical of dozens that we
constructed for our own use in the fitting of polynomial and other types of
parametric forms. Work sheets were constructed for use in imposing extremal
deviations as well as for the imposing of roots.
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CONCERNING WEIGHTS
Chapter 6

dy + 2d, + d, = 4d

(1) In a previous chapter, we employed simple geometrical reasoning to derive
the invariant (shown above) associated with the fitting of a straight line
to three points equally spaced in the x-coordinate.

L

dy

a, + Xody = Yo + o
ay + (% + b)dl =) — d,
a, + (xo + 217)41 =7 + d,

& & <
bha, = —y, +y —d, — 4,
bha, = —y, + 9, +d, + d,

> <& *
+2d,+dy= =9+ 2y — )

(2) Let us now remark that this invariant can be derived algebraically in the
manner illustrated here. The three deviations satisfy the top three equations.
Elimination of 4, and 4, then yields the required invariant.

65
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e(x)

4o+ 2d, + d, = 4d

(3) As the extremal locations of T,(x) are equally spaced, we shall say that
weights 1:2:1 are the Chebyshev weights associated with the fitting of
yH(x) = ap + aux.

() )

(]

dy + 2d, + 2d, + dy = 6d

(4) In a like fashion, we shall say that weights 1:2:2:1 are the Chebyshev
weights associated with the fitting of y*(x) = 4, + a,x + ax%.
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N

ay :}’o+d0
g+ tat+ g2 =y — 4,
dot day+ fra =y, + 4,
ay+ a,+  ay =y, —d,

(5) The pertinent equations appear above. We suggest that the reader verify
the equations and then eliminate the «; to obtain the required invariant.

Chebyshev Weights

(6} In the actual process of fitting a polynomial, the extremal locatious will
shift a bit from cycle to cycle and probably will not end up where the theory
indicates; but these are still the best a privri weights that we know of to use.
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¥ (xe:a,b,¢) = y(x,) + 4
Y (x1:4,6,¢) = y(x,) — d
Y(xp:a, b, ¢) = y(x,) + 4
Y (x3:a, b,¢) = y(x;) — d

(7) The concept of weights is still a useful one in more general circumstances.
Suppose that a best-fit situation is described by the equations above. The
extremal locations are then at x,, x;, x,, and x.

Y (xo:a + da, b+ db, c + dc) = y(x,) + 4,
V(%12 + da, b+ db, ¢ + dc) = y(x,) — d,
P (xz:a 4 da, b+ db, c + de) = y(x;) + 4,
P (xg:a + da, b+ db,c + dc) = y(x;) — ds

(8) A nearly best fit would then be described by these equations. Differential
variations in x; need not be taken into consideration, as the efror curve is
either flat at x; or the extremal location is fixed.
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e +mwdat+wn db+wde = y(x,) + d,
m +avdatay db+ - de = y(x,) — d,
v A datav db +nde = y(x,) + d,
w + wda+w db 4w de = y(x3) — dg

wdyt‘wd, tovd, +rdy =21

(9) Expanding each equation and neglecting higher-order terms, we get 2
system of consistent equations from which the differentials can be eliminated,
leaving the indicated approximate invariant. Note that the weights are not a
function of the y(x;).

Sheet 57
.0002
e(x)
0 |
V= 4
d
° 275*
—.0002 | 525
225
225

(10) Let's determine a few of these invariants to see what they look like.
Taking Sheet 57, we leave 4, free and squeeze the remaining extremal devia-
tions down to .000225 (a quite atbitrary level), with the result shown above.
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.0002 1
d
2(x) 1
0 )
V= 4
225
—.0002 | 275%
225
225

{11) One by one we leave each extremal deviation free and depress the
remaining three peaks to the same value of .000225.

.0002 |
e(x)
O ]
Vx 4
s 225
—.0002 L 225
261*
225

(12) The heavier the weight associated with a given deviation, the less the
free peak stands above the others, and conversely.



CONCERNING WEIGHTS 71

.0002
e(x) ds

0 . '
Vx 4

225

—.0002 - 225

225

238*

{13) One of these cases could have been omitted, as 4 is known, but it’s better
to perturb them all.

Calculation of Wei gbts

275w, + 225(1 — w,) = d

0w, =d — 225 50 20 2
50w, = d — 225 50 20 2
36w, = d — 225 36 28 3
13w, = d — 225 13 77 8

145 15

2dy + 2d, + 3d, + 84, = 154

(14) The resulting data are then used to solve for the weights appropriate to
each deviation. (Save for the decimal point, 28 is the reciprocal of 36.)
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Sheet 17
.00005 -
er(x)
O J
y X 1.0
d,
—.00005 +
2d, + 2d, + 2d, + 2d, + d, = 94

(15) In a like fashion, we determine rough weights appropriate to the
approximation of Sheet 17, where [1 + 4,x + a,x* + a3%® + a,x*]? is fitted
to 10? in the sense of relative error. How Chebyshev-like the weights are!

.0001

LN N
12104 \/ x \1.0

—.0001 [»

First-cycle Error Curve

(16) In the actual process of fitting Sheet 17, we began by imposing roots,
as illustrated above. Extremal deviations were then measured, and, as we
thought that the leftmost peak should be weighted quite heavily, we con-
siderably overestimated 4.
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.0001

T

e (x)

362

—.0001

T

Second-cycle Error Curve

(17) And, as a result, this is the error curve that we obtained at the end
of the second cycle. In practice, we usually only need to have an idea of the
weight of the free extremal in order to do a pretty efficient job of fitting.

First Cycle Second Cycle
1204 362
659 952
584 816
585 813
590 783

1204 22= ;2;‘ 362 .22

604 .78 841 .78
736 736

(18) We often estimate this number by “lumping,” as illustrated here. The
bracketed deviations are replaced by the simple average and the weights are
considered to be lumped. Then we solve for a value of w, (in this case) that
gives like estimates of & for the two sets of data.
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Calculation of Extremal Deviations

7=%4ﬁwww+%®%,

, A _ (8. + 8.)*
x 8(J_f) & 8 Y=Y~ g
.04 —.0001004
.05 1112
.06 1177,
.08 1199 89 —111 A
10 1110 5
12 047
_ (22 - 89)2 . ] | !
1199 “S(=Ti) 1204 ] ﬁ !

(19) Note: Our precise estimate of each d4; was obtained by taking the
extremal ordinate of a polynomial of second degree passing through three
equally spaced points on the error curve bracketing the peak.



FUNCTION WITH A PEAK
Chapter 7
PE(x)
2 L
0 ] }
x 1

(1) Our decision to attempt the rational approximation of a function with a
peak was simply based on a desire to see what would happen. And, sparing
but a few of the gory details, here is what occurred.

Sheet 24

e(x)
AW ,

First-cycle Error Curve

(2) On the first cycle of the Sheet 24 case we began by imposing roots. We
didn’t have much of an idea as to where to put the roots, but we thought that
the neighborhood of the peak would be quite critical. We placed two roots
to the left of the peak and three to the right.
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Sr
e(x)
0 N 1 .
/ X 1
—5
Second-cycle Error Curve

(3) On the second cycle we again imposed roots, as we felt that the case
would be a pathological one in some respects, and hence the imposing of
extremals might be a bit tricky. We thought that we were trying more
reasonable locations, and therefore the above result was a bit of a jolt.

e(x)
0 /\ ] i /
1

Third-cy¢le Error Curve

(4) However, the two cycles of data gave us enough confidence to dare to
impose extremal deviations of guessed-at magnitude on the third cycle. The
result was quite pleasing, and the case fell several cycles later without teach-
ing us much.
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w, w, w, w, w, w;

(5) Long after the three approximations discussed in this chapter had been
leveled, we perturbed the final Sheet 24 approximation and obtained the
above weights. Notice that the heaviest weight is associated with the peak
deviation.

Sheet 25

M N
\/

First-cycle Error Curve

(6) On the first cycle of the Sheet 25 case, the error curve went haywire on
the left end. This led us to-believe that maybe we should have imposed two
roots to the left of the peak and five to the right, instead of doing what
we did.
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2 F

N T~
V\/ x 1

Third-cycle Error Curve

(7) But the second cycle of calculation seemed to tell us otherwise. So we
took another look at the first-cycle error curve and decided that maybe the
trouble would go away if we just ignored it. And, strangely enough, it did.

"I /N
0‘ . J

Fourth-cycle Error Curve

(8) Now up to this time we had been leaving the extremal at x = 1 free,
thinking that it should be rather heavily weighted. We now learned that this
end extremal was not at all stable and began to suspect that the peak at
x = .2 was the dominant one.
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N
VIV

Fifth-cycle Error Curve

(9) But, for reasons now unknown, we failed to act on this cohjecture until
another cycle of calculation had been completed.

w, w, W, Wy W, W; W W

{(10) We now put the reader in a position of “one-upness” before the page
is turned. These are the weights associated with the approximation of Sheet
25. They were determined long after the three approximations discussed
here were derived.
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Sixth-cycle Error Curve

(11} We began to wonder if weights should not be especially heavy where
roots crowd up to overcome a difficulty, and we decided to make up some
weights that would go gently uphill in both directions to the number four,

or peak, extremal.

Sixth

Cycle
125
126
125
106
125
125
128
125

121

=R W N

[\
Y

120

Seventh
Cycle

121
122
122
116
122
121
121
121

—t
N W W 06 V0D W

A
o

(12) And so the sixth-cycle deviations were cautiously weighted, as shown.
When the seventh-cycle deviations were obtained, lumping indicated that
perhaps one-third of the total weight should be assigned to the peak at
x = .2. Perhaps the weights should look something like this, we thought.
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Sheet 26

Y AN J
‘\/ x 1

First-cycle Error Curve

(13) We began the Sheet 26 case by imposing roots, but our equations blew
up. We managed to redeem ourselves by throwing away the equation for
smallest x and making up for this deletion by guessing at a value for 4.
(This is equivalent to imposing an extremal deviation at x = 0.)

First Second Third

Cycle Cycle Cycle
06 4 640 4 663
14 5 657 5 663
.09 6 753 6 663
06 9 662 9 666
06 15 629 15 661
05 9 642 9 660
06 6 644 6 661
07 5 696 5 663
02 4 745 4 663
.02 3 640 3 663

064 66 0663 66

(14) We then dreamed up what we thought to be a reasonable set of weights
and applied them to the first-cycle deviations. These proved so effective that
we re-used them on the second cycle and the case fell on the third. Thus
ended our struggles with the P£(x) function.



RATES OF CONVERGENCE
Chapter 8

Sheet

(i) e

2 a(iy) +alEH) +eG5)

s (i) +o(G5) + () +oGF)

s a(t) ta(E) v o(G3) + «GF) + o G5)

{1) We shall again use the letter ¢ to denote the greatest error of approxima-
tion; and, as we consider mostly best approximation, it will usually be true
that e = 4. In this chapter, we consider ¢ as a function of parametric form
and begin by examining Sheets 1, 2, 3, and 4.

.001
NN
Igyox 3 \\
1 . L
01 \
. @
3 .000,602 041 L \
5 .000,033,7 AN
7 .000,002,06 @
051 | N
9 .000,000,132 N
\,
.01 1 | @
3 5 7 n 9

(2) A linear variable # is introduced to identify each form in the sequence,
and ¢ is plotted against # on semilogarithmic paper. A nearly linear relation-
ship is the result. Such linearity appears to be the rule rather than the excep-
tion, in our work.
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01 ~
1—¢*
B(x) =——— O}
x 001 | N\,
\.
n € N
£ N
2 .001,85 \@
3 .000,139 01 |- \\
4 .000,011,4 N
AN
\\
01 | @
2 3 ] 4

(3) In a similar fashion, we present here a diagram for the ¢(x) approxima-
tions of Sheets 5, 6, and 7. Notice that the error is only decreasing by about
a factor of ten for each two parameters added. This is rather slow.

.OOI@

AN
arctan x o1l N,
n P e @\\
S .000,608 04 L |
7 .000,081,4 \\
9  .000,011,4 o1 L @
11 .000,001,66 AN
13 .000,000,247 o1l @\
15 .000,000,037,4 \®
071 S S W
5 7 9 11 13 n 15

(4) We next present a diagram for the arctan x approximations of Sheets 8,
9, 10, 11, 12, and 13. Here the error decreases by about a factor of seven for
each parameter added. This is fairly good, to our way of thinking.
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01
arctan x
by .001()
a;x + ax? 4 o0+ axh AN
€ N
n & 031 + O\
3  .001,31 \O
4  .000,115 .04 - AN \Q
5 .000,024,3 N
6 .000,007,00 0°1 - N
7  .000,000,41 O
061 t 4 ! ]
3 4 5 6 »n 7

(5) And here, for comparison, are the results of fitting arctan x over (0, 1)
by the polynomial form without gaps save for the constant term a,.

PA(x) @
~
n € ~
,@_\
2 .246 1 —~—
3 120 Z
4 066

.01 ! -
2 3 ” 4

(6) Our approximations to the function with a peak P&(x) don’t exactly
converge in a spectacular fashion. This is to be expected in the rational
approximation of functions with derivatives that are discontinuous or infinite
at one or more points.
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.0437 4 3.1918x?
e

1 4 2.3833x2
04
g1(x)
0 J
T X 1.0
d,
— 04+

3dy + 4d, + 2d, + d, = 10d

(7) For another sad example, consider the fitting of YV x over (0,1) by a
polynomial of nth degree in x over a polynomial of nth degree in x, or the
equivalent problem of fitting x by the same parametric forms as functions

of x2.

A
X
Vx O
¥ AN
dy + ax + -+ + ax” \\
T+ byx + -+ bux® N
N
” R 01 - \O
N
1 .0437 \\\
2 .0085 ~
3  .0023% O
.001 ! j
1 2 ” 3

(8) These are our empirical results of best fit. The convergence is not what
might be called rapid, nor should we expect it to be. But how fast do the
points sink with increasing 7?
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°d

[ 1+ 48x?
a(*) = \{gF2s) ~ ¥

.05

£(x) /_\
° x \;.O

—.05 |

Ty(x) = 1 — 18x + 48x% — 32«3

(9) We don’t know, but here are a few hints which should enable the reader
to construct an infinite sequence of rational approximations to \ x over (0, 1)
in which the convergence of ¢, is like 4 /7% Can a better result be obtained?

Numerical Work of Evaluating
[1 4+ ax+- -+ a,,x”]2°

[something]? 1 a4, + a.x

[something]* 2 a4, + (a4, + ax)x

[something]® 3 4, + (4, + a,x + ax®)x
[something]i® 4 a4, + (4, + ax + 23x% + 4,x3)x

(10) We now describe three studies pertaining to the approximation of
exponential and exponential-like functions. We begin by pointing out that
g multiplications are required to raise a quantity to the 2%h power, and p
multiplications are required to evaluate a polynomial of pth degree.
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10° over (0, 1)

[1+ ax]®

[1+ ayx + a,x*]4

[1+ ax + a,x% + a;x3]?

[1 4 ayx + a,x* + ax® + axt]*

S VD
S N W

(11) And so the reader may verify by inspection that each of the parametric
forms listed above requires four multiplications to evaluate. In our first study,
each of these forms was best-fitted to 107 over (0, 1) in the sense of minimum
relative error.

1F
G3)
\
\
O1fF N\
por ®
1 3 .055,5 er ~ w=
~
2 2 .004,73 ~
001 | @~_.@
3 1 .001,28
4 0 001,10
031 i ] ! J
1 2 3 p 4

{12) The points thus obtained were then joined together by a dashed line.
The result is one connected string of points in our final chart. We shall say
that the work of evaluation is w = 4 (multiplications) for these cases.
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107
by [1 + ayx + -+ - + ax?]?’
over (0, 1)—best in the sense

@D\ of minimum relative error
\ ptg=w
\ O\
01 =

\\\\\\ \\
031 |- \\\\@2\ \\@\\ ’ ©
\@\ AN e
RO
01 - \ \\ \\@ 6/ ,@
\ Q ——®
051 |- \ N

OO S
081 |- \ \\@———/@
\ ©
\ 8
071 - @\ //

081 | 1 I | \ | |
1 2 3 4 5 6 7 p 8

(13) And this is the final chart. The reader may note that, except for the
points corresponding to Sheets 17, 18, 19, and 20, which are so labeled, we
have written the appropriate ¢ value in each little circle representing a point.
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e over (0, 00)

[1+ ax]

[1+ ax + a,x?]8

[1+ ax + a,x® + ax®]*

[1 4+ ax + a,x2 + a;x® + axt]2

N S -
- N W Ry

(14) Our second parameter study involved the fitting of ¢ over (0, ) by
reciprocals of the forms considered in the first study. Our sense of best fit
is once again the usual one—that the greatest absolute error of approximation
shall be made a2 minimum.

1
o1k

b g e @\

1 4 .007,74 el N\

2 3 .000,692 N\
001 I N

3 2 .000,233 @\

4 1 .000,238 \\@“’: @
021 i i ]

1 2 3 p 4

(15) Again we joined cases of equal work together in constructing the final
diagram. The forms considered on this page all require five multiplications
plus one division to evaluate. We shall say that the work of evaluation is
w = 6 for these cases.
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e-a:

by [1 + apx + -+ + 4?1
over (0, co )—best in the sense

.1 of minimum absolute error
’— ptrqg+1=w
\w = 4
.01 ~
IR @

.001 |- AN
©)
\\ 6@
\\@ o
.0%1 | <\
\@ \\@ O]
\ T~-G
041 \ 3 @
@_ 2
\@__/
0%1 |- \
N

N
081 |- \\@//

o1 I l l 1 | N

(16) And here is the completed diagram. The reader can see that, for mod-
erate accuracy of approximation, the fixed choice of a fourth-power exponent
is not a bad one. The parametric forms studied here-have been found very

useful in approximating functions whose asymptotic behavior is like that of a
decaying exponential as x — oo.
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P (x) over (0, 00)

1 — [1+4 a,x]e

1~ [1+4 apx + a,x?]8

1 — [1 4+ ayx + a,x? + a,x®]*

1 — [1 4+ ayx + a,x? + ax® + ax*]-2

™ W N e Y
o W A N

(17) Our third parameter study involved the fitting of the Gaussian error
integral ®(x) over (0, o) by unity minus the parametric forms considered
in the second study. Our sense of best fit is again the usual one of minimum
absolute error.

dr
o1}
P g e O
14— ‘ S @l
2 3 .006,81 ~-@®
001
3 2 .002,27
4 1 .001,81
031 I | L
1 2 3 p 4

(18) And, as before, we joined cases involving equal work of evaluation, It is
interesting to note in examining the final diagram that the strings of points
for fixed ¢ become quite irregular in rate of convergence as ¢ increases.
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2 '
D (x) =) e dt
Lo byl-—[1+alx+---+zz,,x”]“2q
@\ over (0, o) — best in the usual
\ sense of minimum absolute error
AN ptrg+l=w

o .

\\ @\‘@

.001 |- N\,
e c B0

ON

0%1 |- @\@j/®

@_ 9 LD

041 |-

.0°1 -

081 12’@/

] 1 | | [
1 2 3 4 5 6 p 7

(19) Again, a fourth power does very well for moderate accuracy; but, as
variety is the spice of life, we decided to present the three cases so marked
as Sheets 61, 62, and 63. The sequence of parametric forms so used has a
simple law of formation and gives rapidly increasing accuracy per step.



1.0 CHOICE OF FORM
Chapter 9

|
1.0 X

OC

(1) We were asked to approximate the scanty data plotted above, in which
the ovals denote especially untrustworthy points. The desired curve presum-
ably starts at (0, 0), rises steeply, follows the trend of the data, and then
goes down to zero asymptotically as x = .

i
1.0 X

00

(2) We began by writing an initial approximation having about the right
appearance in the neighborhood of the y-axis. Our plan was then to add
whatever appeared necessary to the denominator to bring the curve down
properly as x becomes large, but to leave it unaffected for small x.
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|
1.0 X

0%

(38) We first tried adding an x? term, but the shape of the resulting curve
doesn’t look quite right, as you can see. The x? term adds too much down-
stairs for small x and not enough downstairs for large x.

1.0 -

]
1.0 X

,O(,

(4) So we tried an x* term in place of the x? term. The result appears to be a
step in the right direction, and the shape of the curve is vastly improved.
However, the x® term still appears to contribute too much downstairs for
small x and not enough downstairs for large x.
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1

0‘;

1.0 x

(5} We next tried an x* term in place of the x? term, and this time the shape
of the curve appears to be about what it should be. Our next problem was
that of adjusting the parameter values in the selected form to obtain a
“best” fit,

1.0
X
y 7**.02+x+.6x4
0 -~
1.0 X

(6) As a first step, we lowered the coefficient of the x* term so that the curve
now passes through the points on the far-right end.
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[o X

y=
.02 + 1.1x + .6x¢

!
1.0 x

0

(7) Then we increased the coefficient of the x term downstairs so as to
depress the curve in the middle range.

1.0

. X
y = 014 + 1.1x + .6x*

0° '
1.0 X

{8) We then lowered the constant term so as to raise the curve a bit on the
left. The curve now appears to be a bit low in the neighborhood of its peak.
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1.0 ~

y= z
.015 4+ 1.09x + .6x*

I

0 ©

1.0 x

(9) We added .001 to the constant term and removed .01 from the coefficient
of the x term, thus leaving the ordinate unchanged at x = .1. When the
resulting curve was comparéed with the previous one, we concluded that
another such step would do the job.

1.0

x
V= .016 4+ 1.08x + .6x*

|

0°

1.0 X

(10) And so we added another .001 to the constant term and removed
another .01 from the coefficient of the x term downstairs. The resulting
approximation is about as good as we can ask for, considering the short-
comings of the data supplied.
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NACA Airfoil

¥
3% - o o o o o
° ° o
0 - %
o X o 100%
~3% | T
NACA 65A006
LE. 229%
T.E. .014%

(11} As we were about to write this chapter, we were asked to suggest a
parametric form that would be useful in the fitting of the wing section
known as NACA 65A006. Our analysis of this problem follows.

(12) As a first step, we determined a simple parabola x = Ajy? that would fit
a small region of the leading edge well. For this purpose we chose A so that
the parabola would have the proper curvature at the origin.
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-39 | °© o o

y = x(1 — .01x)Y .458x

(13) Then we solved for y in terms of x and prefaced the resulting right
member by a factor (1 — .01x) to bring the curve down to zero at x = 100%.
As the trailing edge doesn’t exactly come to a point, this is a slight violation
of the data,

—3%

y=*=(1 — .01x)\ .458x +m x* +M x® +w x*

(14) For increased accuracy of approximation, we then suggested the adding
of further polynomial terms under the square root sign. The sequence of
forms thus suggested proved to be quite satisfactory.
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Mortality Function
x L,
1.0 .10 1.00000
11 99251
12 98505
l ) )
0 ]
X 1.0

(15) Our next example concerns the fitting of the familiar American Experi-
ence Mortality table, “'decimalized” as indicated. The initial linearity of the
curve and its subsequent nonlinear behavior argue against the success of low-
order polynomial approximation.

001 -

AL
VRVA!

= 1.082967 — 2.819111x + 2.324859x2 — .586755x3
"”' 1.0 — 1.807696x + .308675x% + .691460x3

—.001

(16) We attempted to fit a polynomial of second degree in x over a poly-
nomial of second degree in x to /, but were unable to level the error curve.
Then we tried a cubic over cubic and obtained the rather remarkable approxi-
mation above.
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1.0

a x I,
N 93 .00079
94 .00021
95 .00003

O }
x 1.0

N(x) = 1.082967 — 2.819111x + 2.324859x2 — .586755x3

(17) We decided to examine this approximation in detail to see what we
could learn. In round numbers, we discovered that N(x) sinks to a minimum
of —.0001 at .94 and has roots at .93, .96, and 2.1. Thus we seem to need
a term like (.94 — x)? upstairs.

1.0
D
0 |
x 1.0
D(x) = 1.0 — 1.807696x + .308675x% 4 .691460x?

(18} This would be to give our approximation the proper behavior off to the
right. We also graphed D(x), observed its parabolic appearance, and noted
with interest how N(x) and D(x) conspire in quotient to fit the /, curve
so closely.
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005 +
e(x)
0 _J
X 1.0
—.005 +

[ (1.207 — x) (.94 — x)*
27 998 — 2.310x -+ 1.416x?

{19) A second requirement then appears to be a nearly equal quadratic term
downstairs that can cancel the early effect of the (94 — x)? term upstairs
and yet not detract from the ability of this latter term to give the proper
shape to the curve near the end of the table.

001

e(x)

—.001 B

o= (2.129 — x)(.94 — x)?
71,740 — 3.152x + .564x% + 1.175x%

(20) A final requirement appears to be a linear term upstairs that can give
the curve its required early linear appearance. Further terms then serve to
supply added flexibility; but we may ask, at this point, “How really good are
these data, anyway?”
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1.0
y =1 — 1.04x + 1.24x* — .04x% — .33x*
y
9r
8
7 . . 3
0 x 1.0

(21) Apart from knowing when something as awkward as a square root must
be incorporated in a parametric form, one of the approximator’s greatest
problems is that of knowing when a low-order polynomial has a chance of
doing a job and when it hasn’t.

1.
0 11— 27x + 4.6x2
y ) 1T 23% + 48
ok
8l
7 . : J
0 x 1.0

(22) Roughly speaking, low-order polynomials are quite “'rolly.” Comparable
low-order rational expressions, however, can be quite “‘angular.” The low-
order rational expression can turn sharply and then go much straighter than
the low-order polynomial can, with such a start.
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£E=

_ a4yt ax
1+ byx

<
ay T a1%,
1 4+ byx,
dy + a,x,
1+ 6.x,

ay + a,x,

= 1.0
14 bx,

Xo X1 Xy

(23) Often we run into curves that may be made quite polynomial-like by the
use of the simple rational transformation x — § defined above. To deter-
mine suitable parameter values, we divide the vertical range of variation into

two (roughly) equal parts.

y =

a, + a;x
o ( 1+ b]_X)

ay + ax 2
1+ bx

a, + 4lx)s
14+ b,x

o

o

{24) We then require that x,, x,, and x, transform to equally spaced £ values
of, say, 0, .5, and 1.0. The transformed curve is then approximated by a

polynomial in £ in the usual fashion.
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Sheet 1

x2  x3 xt
ln(1+x)-—x—?+-3_.—z.+...

(25) In this connection, it is interesting to consider the sequence of log-
arithmic approximations, beginning with Sheet 1. Polynomials of interestingly
low orders don’t handle a full logarithmic cycle very well.

S
1gy0 x
! T
I ()
‘ -5t
s =2 () +5650)

{26) But now let us introduce the transformation é(x) = (¥ — 1) /(x + 1).
When plotted against the new variable, £, the three points become equally
spaced horizontally as well as vertically, and the curve is now quite flat.
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lgyox
1+
| i
—1.0 ¢ 1.0
—1 b

(27) And other advantages every bit as great also accrue. Thus £(x) and any
odd power of this quantity satisfy the functional relationship f(x) = —f(x*)
satisfied by Ig,, x itself. Thus the form indicated, if fitted over (1, Y10), will
automatically hold over the full logarithmic cycle (1/Y 10, Y 10).

Sbeei‘ 8

™
e
y £
i )
1 ‘Y i
~10 B 1.0 g
a b
w
................................. E‘,
_ -
y=arctan§ = £ §+~5~ 7+9

(28) Sometimes it is advisable merely to note that a function is even or odd
in choosing a suitable parametric form. An approximation so made to hold
over (0, 1) then automatically holds over (—1, 1).
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arctan®* £ = ¢,& 4 ¢, 8 + ;&8 over (—1,1)

< < <&

T x—1
ctan x = - ct
arcta 4-}-eu: an(x+1)

. T x—1 (x — 1)° x—1\°
arctanx--Z+r1x—_}—_-—1— +cam +€5x+1 over (0, )

(29) In the case of the arctan x function, an approximation holding over
(—1,1) can be transformed into >ne holding over (0, o) by using the
addition law of this function in the indicated manner.

T
2
)
Y
4
B

a o L |
0 2.0 x 4.0

(30) And here, strangely enough, we have used exactly the same transforma-
tion to sttaighten out the arctan x function over (0, =) as we did to straighten
out the logarithmic function over (1,4 10, V 10).
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3 Sheet 30
8
K(o) =% = —-
K(n) )73
2 |
Y
=y — _ 24 n (2n + 1852 4 1613 + 4n*)
K(n) = (n— 282 —2n%) In ( - ) + ¥ n)?
0 | .
5 n 10

(31) A very simple approximation to K(7) over (0, o) was required for use
on a high-speed digital computing machine. If at all possible, we were to
obtain a rational fit, but observe: K(z) has an infinite derivative at #» =.0!

.01

e(n)

—.01

1.85997 + 2.6573n?

*(5) =
K*(n) = ¢55 1 250810 T 2

(32) And yet, despite the apparent difficulty of the task, 2 quadratic over a
quadratic gave us a fit good to about .01, and a cubic over a cubic gave a fit
good to about .001. Perhaps the indicated singularity is not quite so bad as
a \[ % singularity would be.
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107

{

1 V’;

(33) This is easily seen to be the case, and the fact is illustrated in the pair of
diagrams on this page. Against a ' 7 horizontal scale, the function y = YV~
is a straight line with unit slope, whereas the function y = —nlnz is a curve
with zero slope at the origin.

0

0

(34) Both the quadratic over quadratic and the cubic over cubic forms behave
like An for small », and against a '\ 7 scale An plots as a parabola with zero
slope at the origin.
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Sheet 46
Kby = [ —2
(&) = f Vi— Fsinid
K(k) = A+ (A Z 1)@2 —f—%(A - —Z—)é'“k
A=lny k=Vi-F
K*(£) = [a) + &, (1 — #?) + 4,(1 — £)7]
+ [bo + 5:(1 — £2) + B,(1 — £2)*] In (1_:_1_55)

(35) In preparing the sheets of Part II, well-known expansions of one kind
or another usually guided us in our choice of parametric form. Thus, the first
few terms of a curious elliptic integral expansion about £ = 1 had the above
form when rewritten,

Sheet 64

. ? et
—Ei(—x) = . —t—dt
-

. e 1t 2! 3!
—El(’“x)ﬂ?[l“';'+;;_}'§+‘f']
2 3
—Ei(=x) ==y —lnx+x = ooyt i = e
Ty ___e:f ay + a;x 4+ x*?
Er(=x) = X[50+blx+x2:|

(36} Matching the asymptotic properties of a function often allows us to
obtain an expansion over an interval extending to oo. In this case, the func-
tion has a logarithmic singularity at the origin and so we settled for approxi-
mation over (1, o).
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Sheet 67

1 -]
= = et g
7 V 27/ 20

eIy 1 1.3
7~ v 2r|l x  x° x5
1
g = —>qg=4In—

9

— 4, + a4y
) = [1 + by + 52’72]

{37) In the case of the inverse Gaussian, we examined the asymptotic expres-
sion and then introduced the new variable n. We could then see that x was
equal to » minus a quantity that — 0 as  —> oo. Hence our choice of form.

Sheet 69

_ ® ez du
W@ = ) B TR &

1
w(z) =5—%z+%z2—---

1,6/ 4
w(z)~z—2+};(1n2z—-—3—) + o

1+ a2

R Bl ey ey ey

(38! In this case, the integral expression tells us that w(z) is monotone
decreasing over (0, o). The asymptotic expansion tells us that w(z) goes to
zero like a constant over 22. Our choice of form for approximation over
(0, c0) then seems quite obvious.
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A SCORING-CAMERA PROBLEM
10° Chapter 10

(1) Our concluding example of choice of form concerns the reduction of
scoring-camera data: the problem to be discussed was referred to us by Mr.
John Lowe, of the Douglas Aircraft Company.

(2) To calibrate a scoring camera, a target array is set up and is photographed
by the camera to be calibrated. The optical axis of the lens system is centered
on the middle target of the array.

115
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o] 7
0°] .0 e
10°] 337 l

20°| .660 i

40° | 1.249

500 1.500

60° | 1.731

70° [ 1.934

80°| 2.101

T

(3) A photograph is taken and measured to yield data giving image distance
r as a function of entering-ray angle 6. The distance r is measured from the
point on the film intersected by the optical axis. A sample of such calibrating
data was given to us by Mr. Lowe,

e

6 r tan 6 d(rj

°l o | o 513

10| .337| .1763| .523

20°| .660| .3640| .552 .

300| 961| .5774| .601 tan 6
40°| 1.249| 8301 .672 ) a(ry=—,

50°|1.500| 1.1918| .795
60° | 1.731| 1.7321] 1.001
70° | 1.934 | 2.7475| 1.421
80° | 2.101 | 5.6713| 2.699

90°1 1, 00 0

(4) And we were asked to suggest a simple parametric form that would be
useful in the approximation of 4(r) = r* tan §. We began our investigation
by getting out a table of tangents and computing a column of d(r) values.
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¢
(d tan 0><d0) r 8 82 83
. 46 26°
80 ur ’
d6° 323
—.337 14
337 —14
_ 01745 R 000 o
! 014 337 ~14
—| 337 + ——]
10 [ 6 337 —14
’ 323 -8
=514; but an alternate .660 —22
calculation gave .512, 301
so we settled for .513. . 961

(5) The 4(0) entry was computed by the use of L'Hospital’s rule. One of
the derivatives involved had to be computed numerically, and for this purpose
a familiar central difference formula was employed.

(6) Notice that tan 6 is an odd function of 8, and that 6 is an odd function
of r. As a result, tan 4 is an odd function of r, and so 4(r) must be an even
function of r. If the r(6) relationship is extrapolated smoothly to 7(90°) = r,,
then 4(r) will have simple poles at =%7,.
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a, + a;r + a.r?

a*(r) =

ay + a,r? + anrt

a*(r) =

(7) We thought of the upper form. After all, the approximation required
would only be used for positive r. But no, () is an .even function of #, and
it would only be good craftsmanship to say so. We thought of the lower
form and felt much happier.

513 — .0292r2
% —
(1) = T"Toms
4% |
Eg
0 l 0 Q'
g ] go 80°
0 o G

(8) As r, is unknown, we replaced the quantity 7;? by the parameter 4,. In
our first attempt at fitting, we tried just two terms upstairs. To obtain addi-
tional points on the error curve, we interpolated midvalues of r(6) and
computed corresponding 4(r) values.
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513 — .0244r2 — .0045r%
* —
() 1 — .2#2
4%
R
I ? = | o ® 97
°1 o e, o ¢ o o © ©°go 80°

(9) Judging as best we could from the previous case, we then set up and
solved for the improved approximation above with three terms upstairs. An
interesting but quite unimportant question came to mind.

#° r 8 o2
50°  1.500
231
60° 1.731 —28
203
70°  1.934 —36
167
80° 2.101 —32
135
90° 2.236

(10} The value of &, appeared quite stable. Did it give us a reasonable esti-
mate of r,? To answer this question, we then computed 7, = \'5 = 2.236
and formed a difference table. See how this number fits in the table above!
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(11) When we reported our final approximation to Mr. Lowe, he remarked
“You've come up with a function of 2. That means I won't have to compute
any square roots.” It was only then that we thought to find out how the
approximation was to be used.

|

(12) And this is the remainder of the story: Coordinates x and y of the
image of an object in space ate read from the film. To clarify the geometry,
we consider the space object to be vertically above the ground target on
the right.
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)«
)

t

tan « = tan 6 cos ¢ (

__(tan ¥
T\
tan 8 = tan @ sinz/z=(tar:0

_Z

—

—dwn b

P

“tan g co, Ym

5

(13) The lens system is assumed to introduce no distortion of angle about
the optical axis. The big problem is that of converting film coordinates x and
¥ into angular space coordinates « and 8.

o | 513 — .0244(x® + y?) — .0045(x2 + »?)?
tana—l: e 5

o | -513 — .0244(x% + y2) — .0045(x% + ¥?)2
tan B = [ 1— 20 + ) ¥

(14) And so, by working out the little geometry and trigonometry involved,
we learned why out equations would be used in the manner indicated above.
Now, let’s browse through the second part of the book!



PART I



Sheet: 1

Function:
log,e X
Range:
1
Vi <X<V1o
Approximation:

Error Curve (Approximation-Function):

0005 —

€ (X}

-.0005 |—

Comments: An equally good approximation over 1 < X < 10 is

X—y10 X —Y10\3
log* X =L+ ¢, ————)+ca(———— :
10 2 X+1Y10 X+vYi1o

Vio

125
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Sheet: 2
Function:
log,, X

Range:

1

V‘Tl‘a <X<y1o
Approximation:
X —1 X—1 X —1\°
* ——

C, = .8690286

C, = .2773839

Cs = .2543275

Error Curve (Approximation-Function):

.0000,3 |—

(x}

-.0000,3 =~

Comments: An equally good approximation over 1 < X < 10 is

wx= e o( ) () oY)
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Sheet: 3

Function:
log,, X
Range:
1
—V——l—“ <X<Vy10
Approximation:

X 1 1 X — 1\’
lo*X C il el
& 1( +1)+C<X+1) +C‘"(X+1) +C7(X+1>

C, = .8685, 5434 C; = .1536, 1371
C, = .2911,5068  C, = .2113, 9497

Error Curve ( Approximation—Function):

.0000,02}—

(x)

-.OOO0,0ZT-

Comments: An equally good approximation over 1 < X < 10 1s

X = Cl(%—%)+ C{c B ?) e (X + \/v:)
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Sheet: 4

Function:
log,e X
Range:
1
V—_l6 <X<V1o
Approximation:

X X —1\¢ X —1)\°
logy X = C‘(X+ 1) C3(X+ 1) C”(X+ 1)

C, = .8685,91718 C, = .0943,76476
C, = .2893,35524 C, = .1913,37714
Cs = .1775,22071

Error Curve (Approximation-Function):

,0000,00t }—
€(x)
0
3 i
-.0000,001 |— \/ v

Comments: An equally good approximation overl < X< 10is
log* X = +C 2= ) C (

+C(X+\/v:)




APPROXIMATIONS FOR DIGITAL COMPUTERS 129

Sheet: 5
Function:
1 — X
Range:
0< X< w
Approximation:
1
E=1T pX
" — a,¢ + a,&?
v =TT hE
p = 47698 a4, = 42850 b, = —.57953
dy = 56965 b, = .57953
“Error Curve (Approximation-Function):
002 3
«(x)
0 : — =
1+X
-.002 -
 Comments:




130 APPROXIMATIONS FOR DIGITAL COMPUTERS

Sheet: 6
Function:
1 — e
P(X) =
Range:
0<X<w
Approximation:
1
s pX
a§ + 4,82 + 4,8
* X — 1 2 3
V) ETRET LB T BE
p = .3606032 a4, = .3671626 b, = —1.3562710
a, = —.2272232 b, = 1.6148087
4, = 8601996 b, = —.2585377

Error Curve (Approximation-Function):

000! p—

€{x)

-.000! p—

Comments:
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131

Sheet: 7
Function:
— X
(%) =3
Range:
0< X< w
Approximation:
1
$=TT%
rexgy = Gk 4k’ + af + 4
V) S TR T R T P+ F
p = .2898,9933 a4, = .2890,5386 b, = —2.2178,1431
4, = —.3324,0494 b, = 3.3313,1912
= .4554,8498 b, = —1.6278,1495
= .5878,5466 b, = .5143,1014

Error Curve (Approximation—Function):

AN

NV

Comments:
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Sheet: 8

Function:
arctan X
| Range:
—1<X<1
Approximation:

arctan* X = C, X + C,X® + C, X5

C, = .995354
C, = —.288679
Cs = .079331

Error Curve (Approximation-Function):

.0005 p—

€{X)

-.0005 |—

Comments: An equally good approximation over (0 < X < o) is

i X -1 X —1\? X-——l5
arctan X—4 +C1(——~————X+1>+C3(X————+1 + G Xr1i) -
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Sheet: 9
Function:
arctan X
Range:
-1<X<1
Approximation:
arctan* X = C,. X + C; X3 4+ C;X5 + C. X7
C, = .9992150
C, = —.3211819
Cs = 1462766
C; = —.0389929
Error Curve (Approximation—Function):
0000,5 —
€(X)
o | 1 | : |
2 4 8 8 1.0

—0000,5 —

Comments: An equally good approximation over (0 < X < o0) is

X—1 x —1\° X — 1\’
* el
arctan* X = — +C(X+1)+C‘°‘(X+1) + - +C(X+1) .
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Sheet: 10

Function:
arctan X
Range:
—1<X<1
Approximation:

4
arctan* X = E Cpi4, X242

C; = .9998660 C, = —.0851330
Cs = .1801410

Error Curve (Approximation-Function):

.0000,! |—

€(x)

V \

Comments: An equally good approximation over (0 < X < o) is

4 2441
rx =T (X1
arctan* X = v + ZCmﬂ(X T 1) .
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Sheet: 11

Function:
arctan X
Range:
-1<X<1
Approximation:

arctan* X = E Cin X241

1=0
C, = .9999,7726 C, = —.1164,3287
C, = —.3326,2347 C, = .0526,5332
Cs = .1935,4346 C,, = —.0117;2120

Error Curve (Approximation-Function):

.0000,01 |—
€(X)
[+}
)
~-.0000,01 }— \/ \

Comments: An equally good approximation over (0 < X < o) is

5 2§+1
sy T ) X-—-1
arctan* X = % + E_O sz(———-——-——x T 1) .
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Sheet: 12
Function:
arctan X
Range:
—1<X<1
Approximation:
6
arctan* X = Z C, i X211
1=0
C, = .99999,6115 Cy, = .07962,6318
C, = —.33317,3758  Cy; = —.03360,6269
Cs = .19807,8690 C,s = .00681,2411
C, = —.13233,5096

Error Curve (Approximation-Function):

.0000,002 -
€(x)

o

-.0000,002 [~ v \\—/

Comments: An equally good approximation over (0 < X < o0) is

6 2441
rctan* X = T (X1
arctan* X = 4 -+ Z; C””(X T 1) .
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Sheet: 13
Function:
arctan X
Range:
~-1<X<1
Approximation:
7
arctan* X = Cpiar X211
3=0
C, = .99999,93329 C, = .09642,00441
C; = —.33329,85605 C;1 = —.05590,98861
C, = .19946,53599 C,; = .02186,12288
C; = —.13908,53351 C,; = —.00405,40580

Error Curve (Approximation—Function):

,0000,0004 —

IAWAWAY|
VAR

Comments: An equally good approximation over (0 < X < o) is

7 ]
X _ 1 23+1
arctan* X = % + Zo Czi+1(‘X_’_*_—l) .

-.0000,0004 —
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Function:
. T
sin X
Range:
—1<X<1
Approximation:

sin*fzi,x = C,X + C,X® + C, X5

C, = 1.5706268
Cs; = .0727102

000t }—

€ (X}

Error Curve (Approximation-Function)/(Function):

Sheet: 14

-.0001 /

{ Comments:
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Sheet: 15

Function:
. w
sin 5 X
Range:
—-1<X<1
Approximation:

sin*—Z—X = CX + C,X* + C.X5 + C, X"

C, = 1.5707,94852

C, = —.6459,20978
C, = .0794,87663
C, = —.0043,62476

Error Curve (Approximation-Function)/(Function):
.0000,01 }—

€,(X)

~.0000,0t

Comments:
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Sheet: 16

Function:
T
sin — X
2
Range:
-1<X<1
Approximation:

sin*lzix = C,X + C,X* + C.X5 + C, X7 + C,X°

C, = 1.57079,631847 C, = —.00467,376557
C, = —.64596,371106 C, = .00015,148419
Cs = .07968,967928

Etror Curve (Approximation—Function)/(Function):

.0000,0000,5 —
€. (X}
o 1 | i | |
2 .4 6 8 M .o

—.0000,0000,5 1—

Comments:
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Sheet: 17

Function:
10X
Range:
0<X<1
Approximation:

(105)* = [1 + a4, X + 4,X% + 4, X3 + a,X*]?
a4, = 1.1499196 a; = .2080030
4, = .6774323 45 = 1268089

Error Curve (Approximation-Function)/(Function):

.0000,5 —

€,(X)

~.0000,5

Comments: The Chapter 6 invariant is roughly 24, + 24, + 2d, + 2d,
+ d, = 9d.




142 APPROXIMATIONS FOR DIGITAL COMPUTERS

Sheet: 18

Function:
10X
Range:
0< XK1
Approximation:

(10%)* = [1 + a,X + 4,X? + 4, X3 + a,X* + 4, X°]?
a, = 1.1513,8424 a, = .0589,0681
a4, = .6613;0851 as = .0293,6622
ay = .2613,0650

Error Curve (Approximation-Function)/(Function):

.0000,03 |—

€, (X}

-.0000,03 |—

Comments:
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Sheet: 19

Function:
10%
Range:
0<X<1
Approximation:

(10%)* = [1 + ;X + 4,X2 + 4,X® + a,X* + a4, X5 + 4,X°]?
4, = 1.1512,87586  a, = .0754,67547
4, = .6628,43149 25 = .0134,20940
4y = .2536,03317 dg = .0056,54902

Error Curve (Approximation-Function)/(Function):

.w000,001 }—

€4(X)

[¢]

] ] 1 \ 1 J
.2 .4 .8 .8 X 1.0
—.0000,004 v \/ \/

Comments:
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Sheet: 20

Function:
10%
Range:
0<X<1
Approximation:

(105)* = [1 + 4, X + 4,X2 + - -+ + a,X"]?
a, = 1.1512,9277,603  a; = .0174,2111,988
a, = .6627,3088,429 4s = .0025,5491,796
a, = .2543,9357,484 a; = .0009,3264,267
a, = .0729,5173,666

Error Curve (Approximation-Function) /(Function):

.0000,0000,5

ANAWL

-.0000,0000,5 |~ \/ \/ \/

Commerits:
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Sheer: 21
Function:
WX) =
e
Range:
—0 < X< 0
Approximation:
WH(X) = -
bo + bzxz + b4X4 + b‘;XG
by = 3.99416 b, = .066512
b, = 1.03000 b, = .0048992
Error Curve (Approximation-Function):
0003
elx)
. | | | | |
2 4 € 8 10

~0003 p—

Comments: Illustrative and possibly useful in “floating decimal” computing.




146 APPROXIMATIONS FOR DIGITAL COMPUTERS

Sheet: 22

Function:
e X
V) =areme
Range:
— < X< o
Approximation:

1
bo + b.X? + b, Xt 4 b X6 + b X

b, = 4.000935 &, = .0019864
b, = 994274 by = .0000950
b, = .0874877

W*(X) =

Etror Curve (Approximation—Function):

.0000,5 {—

€(x)

(=]

-.0000,5

Comments: Illustrative and possibly useful in “floating decimal” computing.
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Sheet: 23

Function:
X
VOO = ey
Range:
—o < X<
Approximation:
WX = e et 26){6 F 2X5 + 5;0X™
by = 3.9998488 b, = .00300575
b, = 1.0010596 bs = .00002974
b, = .0824114 by, = .000001157

Error Curve (Approximation-Function):

.0000,i p— )

. /\ /\ /\
] ] | i ]
2 4 6 8 x to

-.0000,i -

[e]

Comments: Illustrative and possibly useful in “'floating decimal” computing.
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Sheet: 24
Function:
PE(X) = 1.72 + 42X* over (0, .2)
.136
X32' : over (.2, 1)
Range:
0<X<1
Approximation:
. _ 4 + a, X + a,X?
PEX) =T33 78,5
au = 1.4740 bl — —"7-5274
a4, = —5.9044 b, = 17.7167
a, = 8.6931
Error Cutve (Approximation-Function):
21—
€(x)
o L 1 |
.2 B 1.0

Comments: Illustrative only! The function P£(X) is continuous over (0, 1),
but has a sharp peak at X = .2.
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Sheet: 25
Function:
PE(X) = 1.72 + 42X? over (0, .2)
'—;gzé over (.2,1)
Range:
0<X<1
Approximation:
N _ 4o + a, X + a4,X2 4+ a4, X3
PE(X) 1+ b6,X + 6,X% + 5,X3
4, = 1.83950 b, = —8.60126
4, = —16.45878 b, = 17.43641
a, = 51.11640 b, = 14.42411
a, = —36.09683
Error Curve (Approximation-Function):
e(x)
o 1 I | |
2 4 € X 8 1.0
Comments: Illustrative only! The function P£(X) is continuous over (0, 1),
but has a sharp peak at X = .2.
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Sheet: 26

Function:
PE(X) = 1.72 + 42X? over (0, .2)
%—(3—56— over (.2, 1)
Range:
0<X<1
Approximation:

PR (X) = ay + a X + a4, X2 + a4, X® + a4, X4
N b X + 6,X2 + b X+ b XA

a4, = 1.653700 b, = —14.291266
4, = 78.254604 b, = —207.451261

a, = —123.693897 by, = 238.403489
a, = 82.709541

Error Curve (Approximation-Function):

05—
e(X)
o | ’ |
4 ) 8 N 10

—05

Comments: Illustrative only! The function P£(X) is continuous over (0, 1),
but has a sharp peak at X = .2.
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Sheet: 27

Function:
1
E(X) = —(—— e%¥®
Range:
—w < X< w
Approximation:
1
’ ¥ o v
{E (X)} bo _+_ b._,X"’ + b4X4 + bGXG
b, = 2.490895 b, = —.024393

b, = 1.466003 b, = 178257

Error Curve (Approximation-Function):

002

€(x)

~002 p—

Comments: Illustrative,
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Sheet: 28
Function:
1
E(X) = —— %X
)=
Range:
-0 < X<
Approximation:
1
y * —
{E (X)} bo + b2X2 + b4X4 + bGXe + bBXB
b, = 2511261 b, = —.063417
b, = 1.172801 b, = .029461

b, = 494618

Error Curve (Approximation-Function):

.0005

e{x)

o
[7) B8

-0005 —

Comments: Illustrative.
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Sheet: 29

Function:
E/(X) = o %2
27
Range:
—0 < X< w0
Approximation:

1
[ J—
By = X T 5. T 5.5 T 50 T 5%

b, = 2.5052367 by = .1306469
b, = 1.2831204 by = —.0202490
b, = .2264718 bio = .0039132

Error Curve (Approximation-Function):

AN
IATAY,

Comments: Illustrative.

(]
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.00t

€{n)

-.00i

p = 222037

Sheet: 30

Function:
24 n (272 + 18n% + 16%° + 4n*)
— — YN e I8 .
K(n) = (n — 2n* — 2n%) ln< p. ) + Z F )
Range:
0<7< o0
Approximation:
£=_"
T p+n

61§ + 82 + ¢, 8
1+ dié + dy82 + 4,8
¢; = 1.651035 d; = 12.501332
£, = 9.340220 d, = —14.200407
cg = —8.325004 d; = 1.699075

K*(n) =

Error Curve (Approximation-Function):

Comments: The function K(#), when multiplied by the appropriate physical

constant, becomes the ‘““Total Klein-Nishina Cross Section’
function. We write K(o0) = 8/3.
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Sheet: 31

Function:

(1 + X)
Range:

0<X<K1
Approximation:

(14 X) =14+ 4, X + a4,X? + a4, X3 + a,X* + 4;X5

4, = —.5748646 a4, = 4245549
4y = 9512363 45 = —.1010678

Error Curve (Approximation-Function):
.0000,5 F—

€«(x)

-0000,5 |—

Comments:
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-.0000,05 }—

Comments:

Sheet: 32
Function:
(1 +X)
Range:
0<X<1
Approximation:
A+ X)) =1+ a,X + a, X%+ -+ + 4,X8
4, = —.5766,9867 4, = .6739,9080
4, = .9778,1781 4y = —.3282,7930
d3 = -—.8235,6270 46 = .0767,3206
Error Curve (Approximation-Function):
.0000,05
€(X)
o i l | |
.2 .4 X .6 -8 1.0
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Sheet: 33

Function:
I'(l1 + X)
Range:
0<X<1
Approximation:
FA+X)=1+aX+aX2+ -+ 4,X"
a, = —.5771,0166  a, = —.5684,7290
4, = .9858,5399 as = .2548,2049
d; = —.8764,2182 a; = —.0514,9930

4, = .8328,2120

Error Curve (Approximation-Function):

.0000,01

e{x)

o | | |

=.0000,01 —

Comments:
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Sheet: 34
Function:
1+ X)
Range:
0<X<1
Approximation:
I‘*(l +X) = 1 '+' 41X+ﬂ2X2+ "'+48X8
a4, = —.5771,91652 a4, = —.,7567,04078
a, = .9882,05891 ag = .4821,99394
a; = —.8970,56937 a, = —.1935,27818
a4, = .9182,06857 ag = .0358,68343

Error Curve (Approximation-Function):

AN NN
BivavavAl

Comments:

Q
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Sheet: 35
Function:
arcsin X =—g - V1 —-X¥(X)
Range:
0<X<1
Approximation:
¥HX) = a4 + ;X + a4, X% + 4, X3
4, = 1.5707,288 d, = .0742,610
a4, = —.2121,144  a, = —.0187,293
Error Curve:
0000,5 }—
Vo(x)-¥(x)
o | I J
.2 .8 t.0

-0000,5

Comments:
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Sheet: 36

Function:
arcsin X = % — V1 —=X¥(X)
Range:
0<X<1
~ Approximation:
V(X)) = ay + 4, X + 2,X% + 2, X3 + a4, X*
4, = 1.5707,8786 a4y = —.0357,5663

i

4, = —.2141,2453 a4, = .0086,4884

4, = .0846,6649

Error Curve:

.0000,1 |—

¥ (x)-¥(x)

~0000,1 —

Comments:
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Sheet: 37
Function:
arcsin X --:121r —V1—X¥X)
Range:
0<X<1
Approximation:
(X)) = a4y + 2, X + 4,X% + 4, X3 + 4, X* + 2, X"
a, = 1.5707,95207 a; = —.0449,58884
a4, = —.2145,12362 a, = .0193,49939
4, = .0878,76311 a5 = —.0043,37769
Error Curve:
.0000,01 .
V)= ¥ix)
. | | 1 J
2 4 6 8 X [Re)

~.0000,01 p—

Comments:
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Sheet: 38
Function:
arcsin X =% - V1 —-X¥X)
Range:
0< XK1
Approximation:
VX)) =a, + a X + a, X% + - -+ + 4, X®

4, = 1.5707,9617,28 a, = .0268,9994,82

a, = —.2145,8526,47 4, = —.0111,4622,94

2, = .0887,5562,86 ag = .0022,9596,48

a, = —.0488,0250,43

Error Curve:

.0000,0015

VXY= Yix)

-.0000,0015

AN

Comments:

10
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Sheet: 39

Function:
arcsin X = % ~ V1 —-X¥(X)
Range:
0<X<1
Approximation:

¥V(X)=ay+ . X+ X2+ -+ 4, X

4y = 1.5707,9630,50 4, = .0308,9188,10
a, = —.2145,9880,16 45 = —.0170,8812,56
a4, = .0889,7898,74 45 = .0066,7009,01
4, = —.0501,7430,46 4, = —.0012,6249,11

Error Curve;

'i::i;f::A /\ /\ A
VARVARVA

L]

~.0000,0002 —

Comments:
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Sheet: 40

Function:
log, X
Range:
1

YT X<vy2

Approximation:
X—1 X -1\°
E 3 .
logz; X = &1 X+1>+fi‘<x+1>
£, = 2.8852,2873
€, = .9835,2829

Error Curve (Approximation-Function):

.0000,05 }—

€{X)

1.4 VT

-.0000,05 —

Comments: An equally good approximation over (1, 2) is

| X-V2 X —-Vaye
IOgZX”E+Cl(X+\/"z) +C3(x+\/’z) :
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Sheet: 41

Function:
log, X
Range:
1
—= X <Y2
vEsXsV?
Approximation:

X—1 X —1\° X —1Y°
*X [ + P
foe: c‘(X+1 ‘3<X+1) fs(X+1)

¢, = 2.8853,9129,03
¢ = .9614,7063,23
5 = .5989,7864,96

Error Curve (Approximation-Function):

.0000,0003 |

€X)

~.0000,0003 |—

Comments: An equally good approximation over (1, 2) is

= o) D )
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Sheet: 42

Function:
log, X
Range: )
—<X<YV2
e
Approximation:

X —1 X —1\° X —-1\° X — 1\’
logi X = ‘1(X_‘“1) ‘3(x + 1) CS(X + 1) c’(x + 1)

¢, = 2.8853,9007,2738 ¢5 = .5765,8434,2056
c, = .9618,0076,2286 ¢, = 4342,5975,1292

Error Curve (Approximation-Function):

.0000,0000,02 }—

0 /\ /\
o . 1 I N 1
Lt L2 L3 X 1.8{vV2

~.0000,0000,02 |—

Comments: An equally good approximation over (1, 2) is




APPROXIMATIONS FOR DIGITAL COMPUTERS 167

Sheet: 43

Function:
2 X
d(X) = v"”—"f et dt
TJdo
Range:
0<X<w
Approximation:
_ 1
T pX

*(X) =1 — (a9 + a,m® + a;n*)®'(X)
p = 47047  a, = .3084,284
4, = —.0849,713
4, = .6627,698

Error Curve (Approximation-Function):

.0000,2

€{x)

2.0

-0000,2—

Comments: Especially useful when ®(X) must also be computed.
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Sheet: 44

Function:
2 X
*(X) = th et dt
TJo
Range:
0<X< w
Approximation:
1
TTT X

*(X) =1 — (ayn + a9 + azp° + am*) ¥ (X)
p = 381965 a4, = .1277,1538
4, = .5410,7939
a; = —.5385,9539
a, = .7560,2755

Error Curve (Approximation-Function):

.0000,01 b~
€(x)

o ] L l 4

—~.0000,0!

Comments: Especially useful when &(X) must also be computed.
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Sheet: 45

Function:
2 X
(X)) = V—;f e dt
0

Range:

0<X<
Approximation; .

"ETER

O*(X) =1 — (a1 + am® + a3n® + ayp* + 45’75)‘1”(){)
p = .3275,911 a, = .2258,3684,6

d, = -—-2521,2866,8
4y = 1.2596,9513,0
a, = —12878,2245,3

a; = .9406,4607,0

Error Curve (Approximation-Function):

.0000,00i5 i~

€(X)

-.0000,0015 }—

Comments: Especially useful when @ (X) must also be computed.
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Sheet: 46

Function:
/2 do
o = [ =
Range:
0<k<1
- Approximation:
n=1-—42

R*(E) = {4 + @i + a7} + {Bo + bym + bsn?) ln—,l;
a, = 1.3862,944 by = .5
a, = .1119,723 by, = .1213,478
4y = .0725,296 b, = .0288,729

fl

| Error Curve (Approximation-Function):

.0000,3 —

ek}

30° arcsin k €0°

-.0000,3 —

Comments:
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Sheet: 47

Function:
/2 d(p
K& = f Vi-Fsine
Range:
0<t<1
Approximation:
n=1— k2

K*(k) = {40 + ayn + amn® + an®} + {bo + bun + bon® + ban®} ln%
4, = 1.3862,9436,1 by = .5
4, = .0979,3289,1 b, = .1247,5074,2
4, = .0545,4440,9 b, = .0601,1851,9
4, = .0320,2466,6 b, = .0109,4491,2

Error Curve (Approximation—Function):

.0000,006 p—

€{k)

30° f10nd ] s0°
p arcsin k

-.0000,006 —

Comments:
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Sheet: 48

Function:
Yak.v44 d(p
K(# —'[; V1— £sinze
Range:
0<k<1
Approximation:
n=1— &2

1
K*(k) = {ay + amm + -+ am*}y + {bo + bin + - - - + bun*} ln;
da, = 1.3862,9436,112 0o = .3

b
.0966,6344,259 b, = .1249,8593,597
a, = .0359,0092,383 b, = .0688,0248,576
b
b

D
Il

1]

a, = .0374,2563,713 s = .0332,8355,346
a, = .0145,1196,212 . = .0044,1787,012

«

Error Curve (Approximation-Function):
.0000,0001,5 }—

€ (k)

arcsin kK

—0000,0001,5 —

Comments:

90°
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Sheet: 49

Function:

7/2

E(k) = f 1 — £2sin? ¢ do

(1]

Range:
L 0<é<1

Approximation: -

n=1— &

E*(8) = {1 + ayn + 4} + {ban + bon?) ln%

4, = .4630,151 b, = .2452,727
4, = .1077,812 b, = .0412,496

Error Curve (Approximation-Function):

.0000,4 |—

€lk)

30° arcsin k 60°* 90*

-.0000,4 —

Comments:
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Sheet: 50

Function:
) w/2
E(k) = f 1 — £2sin? ¢ do
0
Range:
0<k<1
Approximation;
n=1— k2

E*('é) = {1 + am + am® + ‘13’73} + {bl”l + byn? + 53773} ln%

a; = .4447,9204,0 b, = .2496,9794,9
4, = .0850,9919,3 b, = .0815,0224,0
4, = .0409,0509,4 b, = .0138,2999,0

Error Curve (Approximation-Function):

.0000,007 |—

€(k)

arcsin k

~.0000,007 I~

Comments:

90
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Sheet: 51

Function:

/2

E(#) =f V1 — £ sin2pdo

[
Range:

0< k<1
Approximation:

p=1— 42

E*(é) = {1 +amn+ .- +44,74} + {51’7 4+ o0 + 54,74} ln%

a, = .4432,5141,463 b, = .2499,8368,310
4, = .0626,0601,220 b, = .0920,0180,037
4, = .0475,7383,546 b, = .0406,9697,526
4, = .0173,6506,451 by = .0052,6449,639

Error Curve (Approximation-Function):

.0000,0001,5

elk)

arcsin k

-.0000,0001,5 |—

Comments:
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Sheet: 52
Function:
In (1 + X)
Range:
0<X<1
Approximation:
In* (1 + X) = a,X + ,X* + a,X* + a,X*
4, = .9974,442 a4, = .2256,685
a4, = —.4712,839 a, = —.0587,527
Etror Curve (Approximation-Function):
.0000,5 +—
€(X)
5 l | 1 1 J
2 4 .6 8 X .
-0000,5 |—
Comments:
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Sheet: 53

Function:

In (1 + X)
Range:

0<X<1
Approximation:

In* (1 + X) =4, X + 2,X? + 4,X% + 2, X* 4 a;X°
a, = .9994,9556 a4, = —.1360,6275
a, = —.4919,0896 a; = ,0321,5845
4, = .2894,7478

Error Curve (Approximation-Function):

.0000,l

€(x)

—=.0000,i |

Comments:
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Sheet: 54

Function:

In (1 + X)
Range:

0<X<1
Approximation:

In* (1 + X)) =a,X + a,X2+ -+ + 4,X"

a, = .9999,0167 4, = —.1937,6149
4, = —.4978,7544 a5 = .0855,6927
4, = .3176,5005 4 = —.0183,3831

Error Curve (Approximation-Function):

.0000,015 }—

IRvasva

Comments:

€(x)

~.0000,0i$




APPROXIMATIONS FOR DIGITAL COMPUTERS 179

Sheet: 55
Function:
In (1 + X)
Range:
0<X<1
Approximation:
In*(1 4+ X) =a, X +a,X2+ -+ + 2, X7
4, = .9999,8102,8 a5 = .1%46,3926,7
a4, = —.4994,7015,0 a4, = —.0551,1995,9
a4, = .3282,3312,2 a;, = .0107,5736,9
a, = —.2258,7328,4

Error Curve (Approximation-Function):

0000, 002~

€(x)

i i { )
° 2 P v 8 \} 1.0
-.0000,002

Comments:
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Sheet: 56
Function:
In (1 + X)
Range:
0<X<1
Approximation:
In* (1 + X) = a,X 4+ 4,X% + - -+ + 4,X8
a;, = .9999,9642,39 a; = .1676,5407,11
a, = —.4998,7412,38 a; = —.0953,2938,97
2, = .3317,9902,58 4, = .0360,8849,37
4, = —.2407,3380,84 4, = —.0064,5354,42

Error Curve (Approximation-Function):

RIAWAWANI
BIRVARVARV

Comments:
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Function:
e—X
Range:
0< X< w
Approximation:

(exyr =

[T+ aX + 4 X2 + 4, X5
a, = .2507,213.
ay = .0292,732
a, = .0038,278

Error Curve (Approximation-Function):

Sheet: 57

VX
do

-.0002 }—

Comments: The Chapter 6 invatiant is roughly 24, + 24, + 34, + 84,

= 15d.

0002
€{x) \ /
| | ] ]
°IN 1 ‘2 3 4
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Sheet: 58

Function:
e-—X
Range:
0< X<
Approximation:

(e = S
[1+aX + a,X2 4 a,X3 + 2, X4]*

a, = .2499,1035 a, = .0022,7723
a, = .0315,8565 a, = .0002,6695

Error Curve (Approximation-Function):

0000,2 -

a
©

€(x)

—.0000,2

Comments: The Chapter 6 invariant is roughly 4, + 4, + 4, + 2d; + 54,
= 104.
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Sheet: 59

Function:
e X
Range:
0<X<w
Approximation:
1

Y = I X Tl 7 aX T 4% F X
4, = .2500,1093,6 4, = .0001,2799,2
4, = 0311,9805,6 a5 = .0000,1487,6
4y = .0026,7325,5

Error Curve (Approximation-Function):

,0000,02

€(x)

~.0000,02 [~

Comments;
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Sheet: 60

Function:
e—X
Range:
0< X< w
Approximation:
1
{e-—X}* —_

T+ aX + X+ a X+ a X+ 4, X + a Xt
4, = 2499,9868,42 4, = .0001,7156,20
4, = .0312,5758,32 4, = .0000,0543,02
4, = .0025,9137,12  a, = .0000,0069,06

I

Error Curve (Approximation—-Function):

.0000,002 —

€ {x)

—.0000,002 |—

Comments:
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Sheet: 61

Function:
2 X
0 = [ v
@ =V=
Range:
0 <X <o
Approximation:

1
[T+ & X + X2 + 4,X° + a,X*]*
a, = .278393 a, = .000972

*(X) =1 —

d, = .230389 a, = .078108

Error Curve (Approximation-Function):

0005}

€(x)

a
o

-0005 —

Comments: The Chapter G invariant is roughly 24, + 24, + 2d, + 3d,
+ 9d, = 184.
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Sheet: 62
Function:
2 X
= = —%
@(X) \/; , 4 dt
Range:
0< X<
Approximation:
1
* =1 —
X)) =1 [1 4 2, X + a,X2 4 2, X% + 4,X* + 4, X°]®
4, = .1411,2821 a, = —.0003,9446
4, = .0886,4027 45 = .0032,8975

a; = .0274,3349

Error Curve (Approximation-Function):

0000, -

€lx)

~0000,1|—

Comments:

2.0
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Sheet: 63

Function:

2 X

*(X) =V‘:f e dt

w™Jo

Range:
0<X<
Approximation:
1
P*(X)=1—

[1 4+ aX + a,X% + a4, X3 + 2, X% + 2. X5 + a,X¢]18
a, = .0705,2307,84 4, = .0001,5201,43
a, = .0422,8201,23 as = .0002,7656,72
4y = .0092,7052,72 a4, = .0000,4306,38

Error Curve (Approximation—Function):

.0000,003

e(x)

-=.0000,003 |—

Comments:
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Sheet: 64
Function:
. ® et
—Ei(—X) = — dt
x ¢
Range:
1<X< w
Approximation:
) eX [ay + a, X + XZ}
. k. —_ 0 1
EF(=X) =% {b,, ToX + X2
4, = .250621 by = 1.681534
4, = 2334733 b, = 3.330657
Error Curve (Approximation-Function)/(Function):
.0000,8—
€q (X)
° : : < : Tio

-.0000,5 —

Comments: The Chapter 6 invariant is roughly 24, + 24, + 24, + 34,
= 94.
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Sheet: 65

Function:
oo 4
—E(-X)= | * o
x !
Range:
1< X< w
Approximation:
eX g +4X+4X2+X3}
_ el - 0 1 2
B (=X =% {bo F X+ 6,X2 + X°

4y = .2372,9050 b, = 2.4766,3307
4, = 4.5307,9235 b, = 8.6660,1262
4, = 5.1266,9020 b, = 6.1265,2717

Error Curve (Approximation-Function)/(Function):

.0000,0!

€, (X) /\ /\ /\
0 L L 1 1 |
.2 4 K 8 1.0

1
vX

-.0000,0! -

Comments:
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Sheet: 66

Function:
. Cet
—Ei(—X) = —dt
x ¢
Range:
1< X< o
Approximation:

_EM(—X) = ﬁ__f{“o + &, X + 2,X% + 4, X3 + X*}
' X by + 5, X F 5,X% + 5,X° + X+

4y = .2677,7373,43 by = 3.9584,9692,28
4, = 8.6347,6089,25 b, = 21.0996,5308,27
4, = 18.0590,1697,30 b, = 25.6329,5614,86
45 = 8.5733,2874,01 by = 9.5733,2234,54

Error Curve (Approximation—Function)/(Function):

.0000,0002 —

& (X)

] ] ] ] |
.2 .4 .6 .8 10
L
VX
-.0000,0002 |-

Comments: The approximation is based on our own 18D estimates of the
function —Xe*Ei(—X).
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Sheet: 67
Function:
9= = f et dt
V27 Jxw
Range:
0<g<5
Approximation:
1
n = lﬂ?‘
% — . dy + 4177 }
XU = {1 F b + bur®
a, = 2.30753 by = 99229
a, = .27061 b, = .04481
Error Curve (Approximation-Function):
003
€la)
I | ]
° IZ 4I .6 8 Lo

—=.003 -

Comments:
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Sheet: 68

Function:
q = . f e th g
V 27 Jxwp
Range:
0<<g< 5
Approximation:

, i
n = ].l'l*2
9

dy + am + am?
)& — . [5} 1 .
2 7 {1 + b + bym® + byn?
a9 = 2.515517 b, = 1.432788
4, = 802853 b, = .189269
4, = .010328 b, = .001308
Error Curve (Approximation—Function):
0004
€(q)
° 2 . : :

—=.0004 —

Comments:
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Sheet: 69
Function:
* e du
viz) = j: Ki(w) + w2li(u) «
Range:
0<Z< w
Approximation:
N 1+ 4,72
VD = 557502700
4, = 058689 b, = 1.624877
b, = 440731
b, = 084386
Error Curve (Approximation-Function):
00015 |—
€(2)
° % : — 1o
\ N
-.0001,5 }—

Comments: The approximation is based in part upon function values com

= 9d.

puted under the direction of Dr. E. T. Goodwin and Dr. L. Fox.
The Chapter 6 invariant is roughly 4, + d, + d, + 2d, + 44,
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Sheet: 70

Function:
© —UZ d”
W(Z) = ¢ il
2) f KiGs) + 7 E()
Range:
0<Z <
Approximation:

1+ a,Z + a,Z2
2 + b, Z + b,Z22 + b,Z% + b, Z*

a, = .0490,1768 b, = 1.5975,1756

a4, = .0074,9940 b, = .4659,6355
by = .0732,2506
b, = .0070,0350

W*(Z) =

Error Curve (Approximation-Function):

.0000,05 r—
€(2)
o | vv 1
2 4 6 .8 1.0
1

+2

=40000,05 |~

Comments: Dr. E. T. Goodwin and his associates in the Mathematics Divi-
sion of the National Physical Laboratory, Teddington, Middle-
sex, England, very graciously computed for us the 9D table of
W (Z) upon which this approximation is based.
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Sheet: 71
Function:
P(X) = f sin (¢ — X) dt
X :
Range:
1<X <
Approximation:
1 fag + a,X? + X*
% —_ 0 2
PX =z {bo FhXE T X4}
a, = 2.463936 by = 7.157433
a4, = 7.241163 b, = 9.068580
Error Curve (Approximation-Function):
.0001,5 L
€{x)
5 | | | |
2 4 6 \ 8 1.0
;,OOOI,S —
Comments:

P(X) = {% — Si(X)} cos X + Ci(X) sin X
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*xj—

~.0000,08 —

Comments:

P(X) = {; — Si(X)} cos X + Ci(X) sin X

Sheet: 72
Function:
P(X) — * sin (i —‘“X) dt
X t
Range:
1<X<w
Approximation:
2 4 6
PH(X) :L{”O + 4,X% + a,X +X.]
X by + 6,X2 + b, Xt + X
a, = 8.493336 b, = 30.038277
4, = 47411538 b, = 70.376496
a, = 19.394119 b, = 21.361055
Error Curve (Approximation—Function):
.0000,08 |—
€(x) /\ /\
o 1 1 ! i J
.2 4 K] .8
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Sheet: 73

Function:
“sin (¢t — X) dt
o = [0 0=
X
Range:
1<X <
Approximation:

PH(X) = _1_{40 + 2, X2 + a,X* + a4, X5 + XS}
T X %y F BXE F B X+ bX + X5

d, = 38.102495 by = 157.105423
4, = 335.677320 b, = 570.236280
a, = 265.187033 b, = 322.624911
a5 = 38.027264 bs = 40.021433

Error Curve (Approximation-Function):

+0000,005 }—
) | ] ]
.2 K3 -] .8
i

X

=0000,005 —

Comments:

P(X) = {g — S/'(X)} cos X + Ci(X) sin X

1.0
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Sheet: 74

Function:
"® cos (¢t — X) dt
000 = [T
X
Range:
1<X <
Approximation:

1 4+4X2+X*}
* —_ 0 2‘ h
"X _Xz{bo+b‘2X2+X4

4, = 1.564072 b, = 15.723606
4, = 7.547478 b, = 12.723684

Error Curve (Approximation-Function):

000! }—

€(X)

=.0001 }—

Comments:

0(X) = {% — Si(X)} sin X — Ci(X) cos X
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Sheet: 75

Function:
*cos (¢ — X) dt
000 = [T X)
X
Range:
1< X< w
Approximation:

. _ 1 40+42X2+44X4+X6}
X =% {bo + 5, X + 5, X* + X©

a, = 5.089504 b, = 76.707878
a, = 49.719775 b, = 119.918932
a, = 21.383724 by = 27.177958

Error Curve (Approximation-Function):

.0000,05 b~
€(X)
a | | | ! |
2 4 .

8 (0]

-.0000,05 —

Comments:

o(X) = {g — Sz'(X)} sin X — Ci(X) cos X
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Sheet: 76

Function:
“cos (t — X) dt
o = [t X
X
Range:
1<X<w
Approximation:

o(x) = {40+42X2+44X‘*+46X6+X8}
e =5 by + b, X% + b, X* + b X* + X°

4y = 21.821899 by = 449.690326
4, = 352.018498 b, = 1114.978885
a, = 302.757865 b, = 482.485984
ag = 42.242855 by = 48.196927

Error Curve (Approximation-Function):

PAN N
Enavavel

Comments:

0(X) = {g — Si(X)} sin X — Ci(X) cos X
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