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PREFACE

One important function of reservoir and production engineers is to
predict results of simmitaneous flow of gases and liquids through reservoir
rocks, Rates of flow into or away from wells and the fraction of oil and
gas that will be recovered are two very important items that the engineer is
often required to evaluate. One means of making such predictions is by use
of valid engineering equations and specific data on the reservoir fluids and
rocks involved,

Relative permeability wvalues are called for in both flow and recovery
calculations, In many instances the relative permeability - saturation cuxve,
or equation, selected to represent the reservoir system has more effect on the
ultimate answer than any other variable in the calculation., Consequently, it
is important that the engineer have a good understanding of relative permeability
behavior and be able to select the most appropriate values for use in his
calculations,

I believe most engineers have the greatest confidence in thelr predictions
when they have laboratory-measured relative permeability walues to use in their
calculations, (Yet, in my opinion, laboratory measured values may not always
reflect in-situ reservoir behavior.) But laboratary measured values often
(usually ? ) are not available., So what other sources of data are there ?
Basically, there are these:

1, GCuess. Take a piece of graph paper and draw curved lines that
simulate the shapes seen in text books, technical articles, etc.
The accuracy of the resulting relative permeability values in
representing your specific reservoir condition will be unknownm,
but generally poor. Furthermore, other engineers will always
argue with the way the curves were draum.

2. Analogye. Select relative permesbility ~ saturation curves from
the petroleum literature and assume that your system has the same
characteristics. A very favorite correlation of many engineers
1s that of Arps and Roberts (Irans.,ADE (1955), 204 ,120) that is
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reproduced on pages 386-387 of Craft and Hawicin text ® Applied
Petroleum Reservoir Engineering ®. Results of this approach will
be just about as inaccurate as those mentioned above, but will be
more acceptable to other engineers.

3., Use measured capillary pressure - saturation data to characterize
pore structure of the reservoir rock., Use this characteristic in
empirical relationships that relate relative permeability to pore
structure as well as saturation and saturation history. In many
instances this approach will yield fairly accurate results , as
judged by comparison with measured laboratory wvalues, But of
equal importance to some calculations, the empirical relationships
can often be used to extrapolate and average measured data in a
consistant manner,

The subject of these notes is the theory behind the empirical relation-
ships that tie relative permeability to rock pore structure , saturation , and
saturation history and the equations that result from the theory. I have found
such equations to be very useful in day-to-day engineering calculations =
particularly when measured data are limited in extent or non existant but also
in judging the validity of measured data, In adiiition, I feel that developing
an understanding of the theory behind these relationships greatly improves one's
capability of handling and using relative permeability data.

M.B.Standing

Trondheim, No
August 197k
Revised, 1978

way
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NOTES ON RELATIVE PERMEABILITY RELATIONSHIPS

A1l equations used to calculate fluid flow in reservoir rocks require
effective permeability values. The effective permeability expresses the perm-
eability to the flwid flowing under the saturation condition existing in the
rock, Effective permeabilities have the wnits of darcys or millidarcys, The
symbols kg 2 k o 2 and. lc"f are used to designate effective permeability to gas,
oil, and water, In a general sense, effective permeabilities can be considered
functions of:

1. pore size distribution 3. saturation
2., wettability L. saturation history

The absolute permeability of a rock, k , is defined as the permeability to
a 100% saturating fluid that does not treact® with mineral components of the
rock. In effect, absolute permeability depends only on the first parameter listed
above,

Relative permeabilities, krg' kro’ and k. ot TS the result of expressing
the effective permesbility as a fraction of some base permeability value. The
three most common base permeability values used are; (1) the absolute permeability,
k , (2) the dry air permeability, k_» measured at near atmospheric pressure, and
(3) the effective permeability of one of the hydrocarbon phases at irreducible
water saturation, Sqqe Other base permeability walues can be used as the tem
relative is completely general. The sbove three base permeabilities are numeri-
cally different so that the value of the relative permeability mzy vary depend-
ing on which base is bedirg used. For example, consider a core sample that has an
absolute permesbility of 100 md and, at some particular saturation condition, an
effective oil permeability of 50 md, The relative oil permeability at this cond-
ition would be

k
. . [} ]SQ,SV - . 50 - o 50
TO k 100 *

This same core would have an air permeability of about 115 md, The relative oil
permeability based on the air permeability would be:
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If the irreducible water saturation of this core was 307, the oil permeability
at irreducible water saturation and zero gas saturation would be gbout 0,7 of
the absolute permeability., The resulting relative permeability on this base
would be: ko ]S S

o?w 50 ”
T ————————— - P sy 3 00,1
k ]S 70
510

As can be seen from the above example, it is important to know which

base permeability is being used in expressing the relative permeability value.
Other things being equal, it is usually best to work on an absolute permeability

base,

vhen dealing with relative permeability ratios such as krg/kro and
k ruﬂgro’ it is necessary, of course, that both relative permeability wvalues be
relative to the same base permeability.

Saturation history is indicated by two temms: drainsge and imbibition.
Drainage relative permeability curves, or values, apply to processes in which
the wetting phase is, or has been, decreasing in magnitude, Imbibition rela-
tive permeability curves, or values, apply to processes in which the wetting
phase is, or has been, increasing in magnitude, The way of indicating drainage
and imbibition relative permeability values is by means of subscriptse. That is:

kro dr ™ drainage kro edmh imbibition

ArTrows are used on graphs pointing in the direction of wetting phase saturation
change to indicate drainage and imbibition curves-as shown below.
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Figure 1a 11lustrates drainage oil and water relative permeability curves
(absolute permeability base), while Fig..1b illustrates imbibition curves. Water
is the wetting phase in both sets of curves., Figures 2a and 2b illustrate gas
and o0il relative permeability curves in the presence of irreducible water. Sy
denotes the irreducible water saturation value, Of the three phases indicated on
the plots, water is considered to have the strongest affinity for the rock surface,
(most wetting) followed by oil and gas. Thus, wetting phase saturation wvalues
plotted on the abcissa are sums of water and oil saturation values and are indi-
cated by the symbol Sy, (total liquid saturation). The arrows point the direction
of oil saturation change.

1 T l
| |
/ & \
sl N RE: g N 5
ol o] w /| & Y.
_14“ m'rll \\ V 4 - ng w‘ﬁ' *\ .ﬂa
\ \
' \\/ § \(

0 ——— T S - 0 oo S AN ] 0
OSL“Siw"‘So 51, = Siw *+ So
————= gas
Figure 2a = —eil Figure 2b

Use of drainage and imbibition relative permeability values in reservoir
engineering calculations are usually as follows:

Drainage Curves Tmbibition Curves

1. Tarner or Muskat solution 1. Water flood calculations
gas drive calculations (water displaces oil and/or
(gas displaces oil) gas)

2, Gravity drainage calculat- 2. Water influx calcu:!.a.tions
ions (gas replaces (water displaces oil and/or
drained oil) gas)

3. Gas drive calculations 3. 0il displaces gas, water
(gas displaces oil and/or saturation constant (oil
water) being forced into a gas cap)

L. 0il or gas displacing water

The above is predicated on water being the preferred wetting phase (water-wet
rock) and oil being the wetting phase of the two hydrocarbon phases.
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L
Fundamental Concepts About Fluid Distribution in Porovus Rocks
and Its Effect on Relative Permeability Curves

The purpose of this sectlon is to lay out some simple concepts about the
distribution of fluids in porous rocks and the resulting effect on the relative

permeability curves.

As a start, it is helpful to consider the pore structure of reservoir rock
to be like an assemblage of many different size and different shape pores with
each pore interconnecting several other pores, Figure 3 uses the network model
of porous media idea proposed by Fatt (1) to
illustrate this point, An individual pore is
represented by a line segment between connect-
ing points. Keep in mind, though, that each
pore has its own size, shape, and surface char-
acteristics. The main point here is there are
many different routes by which fluids may get
from one part of the system to another part.

The second concept concerns the
distribution of fluids in the pore
structure when a particular saturation
condition has been reached via a
specific desaturation process., Figure L
shows a hypothetical frequency distribue
tion curve of a pore network such as that
i1lustrated in Fig. 3 and the location
of wetting phase (water) and nomwetting
phase (0il) in the pore structure when Figure k
0il has displaced water under capillary
control., Under this drainage process s o1l enters the largest pores first and
progressively desaturated smaller and smaller pores. Some water remains in the
oil-invaded pore sizes but it is immobile as a result of being trapped in indi-
vidual pores by oll or adsorbed on mineral surfaces of the pore walls, In
essence, saturation and wettability conditions pretty mich determine the pore
sizes in which wetting and nonwetting fluid are located. As we shall see later,

water
oll

Frequency ~ percent

7

Pore radius (size)

¥ Just how the equivalent pore radius is defimed s mot important to the
present discussion ; that is, we are not concerned here whether the pore cross
sections are circular, elliptical, rectangular, etc,
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this “location effect" has a lot to do with the way relative permeability varies
with saturation,

The third concept that helps to understand relative permeability ~ saturation
behavior deals with flow paths that develop through the rock as a result of
saturation changes, If we consider the network model shown in Fig. 3 to be 100%
saturated with water (wetting phase), a permeability measurement made with water
would yield the absolute value, Water would flow in all pores. This absolute
permeability value can be considered to be proportional to some function of the
cross~-gection area of all pores and inversely proportional to some other function
of the average flow path length., Note that the network has, in effect, a built-
in tortuosity in that the average flow path length is greater than the straight
line left-to-right distance.

As mentioned previously, when oil or any other nonwetting phase invades the
pore structure, it preferentially enters the largest size pores., This results
in a reduced water permeability because the cross-sectional area of the pores
conducting water is less than before and the average flow path length of these
pores is greater; that is, the water must now flow around pores filled with oil.
It is the combined effect of area change and effective flow path length change
(as saturation changes) that causes a relative permeability - saturation curve
to have a given shape. As illustrated in Fig, 1a, the water curve reduces quite
rapidly at first but eventially approaches zerc asymptotically and becomes zero
at the irreducible water saturation value, Siy »

Changes in flow area and flow path length resulting from saturation changes
also combine to yield the drainage oil (nonwetting phase) relative permeability -
saturation curve. Note, however (Fig. 1a), that the oil curve terminates at
the Sj; saturation walue at less than full absolute permeability., This is to
be expected as there is still some water in the pore structure to impede the flow
of oil,

More complex flow behavior occurs when
three phases are distributed in the pore structure.
Figure 5 presents a concept of phase location when
gas, oil, and water are present, but the water
saturation is at the irreducible value, The irre-
ducible water resides primarily in the smallest
pores, gas is primarily in the largest pores, and 7/

g

water

Irreducible

Frequency - percent

oil £i11s the pore sizes left over, The resulting Pore radius (size)
gas and oil curves are like those illustrated in Figure 5
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Fig. 2a, The water relative permeability value is zero, of course, because at
irreducible saturation value all water is immobile,

The following points summirdze the concepts about drainasge relative perm-
eability -~ saturation behavior presented so far., Imbibition curve concepts
and behavior will be presented later,

1« Each fluid moves through separate groups of connected pores.
Two or three fluids do not flow in the same pore, Saturation changes
cause redistributions of the pore size occupled by the separate fluids.

2. The shape of relative permeability - saturation curves comes
about from changes of flow area and flow path length as saturations
change. The area changes are tied into the pore size distribution of
the rock.

3. In water wet systems in which water and hydrocarbon phases have
become distributed under capillary control, water preferentially fills the
smallest pores, gas fills the largest pores, and oil £ills an intermediate
range of pore sizes that depend on the water and gas saturation values,

As a consequence of this distribution ;

a) kpy depends only on the amount of mobile water, (Sw - Siw)s
present, It does not depend on whether the hydrocarbon phase
is oil, gas, or both.

b) kyg depends on the amount of gas present, Sg. It does not
depend on whether the other phases are water, oil, or both,

c) kypo depends on the amount of oil present, Sg , and the range
of pore size in which it lies., kpy for Sy = 0,55 , Sy = 0.L0 ,
Sg = 0.05 will be greater than for saturation values of Sp = 0.55,
Sy = 0,30, Sg = 0,15 because oil will be distributed in smaller
pores in the second case, It is necessary to specify two sat-
uration values when defining oil relative permeability conditions.

Tt 4is easier to discuss relative permeability - saturation behavior if
effective saturation units are used rather than the pore saturation unmits used
so far. Definitions of these effective saturation units is the subject of the

next section,

Effective (Normalized) Saturations

The effective, or normalized, saturation expresses the fluid saturation as
a fraction of the mobile fluid(s) range, Effective saturations are usually
indicated by a superscript asterisk, such as Sw ’ S§ s and S: e In the older
literature the symbol Spe Was often used. By definition the effective saturat-
ions are written in terms of the irreducible wetting phase saturation. Thus
for a water-wet reservoir rock condition the effective saturations would be
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Pore saturations and their corresponding effective saturations for two
common reservoir situations are illustrated by the bar displays below,

Irreducible water + Oil + Gas

Pore
Saturations Siw ™ 0.25 So = 0,50 Sg = 0.25
0 J / 1
Ve /
yd /
0 d { 1
* 3
Effective S = 0,67 I S = 0,33
Saturations ° €
Irreducible water + Mobile water + Oil + Gas
Pore (Sw - S:!.w)
Saturations 7 Si¢ = 0'22| = 0.18 l S, = 0,10 l Sz " 0'20,
0 A J/ [
7’ / /
s /
7 s !
Pd
0 ¢’ ¢ - { 1
Effective s¥ = 0.2 s¥ = 0.51 S_ = 0,26
Saturations lﬁ w 3 ] o 5 ' g

Some reservoir rocks are apparently preferentially oil-wet. In this
instance the effective saturations would be written in terms of an irreducible
oil saturation as follows:

% (So - S40) ™ Sw * S

g
Se " (1-81) 3 S¢ ™ (T-8510 ° S ™ (1-55)

011 would preferentially fill the smallest pores, gas would be located in the
largest pores, and water would f£ill pores of intermediate size,
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Theory of Two-FPhase Drainage Relative Permeabilities

It was pointed out in the introduction that the effective permeability of
a given fluid at a particular saturation condition is a function of pore size
distribution of the porous rock, the relative wettability of the fluids to the
rock surface, and the saturation history of the rock-fluid system. The same
can be said of the relative permeability wvalue,

The object of this section is to develop-some general relative permeability
relationships in terms of effective saturation units and a definable pore size
distribution function. One restriction of these relationships is that they
apply only to drainage conditions that is, conditions in which the wetting
phase has been or is decreasing, The second restriction is that onme of the two
fluids wets the rock surface strongly as compared to the second fluid., While
these relationships will be completely in terms of ®wetting fluid" and ®non-
wetting fluid," they will be applied later to rock-fliid systems that contain

water and oil or water and gas.,

To start with, it is well to make the following definitions of terms to
be used in this section. Specificaliy:

Sw = wetting phase saturation, pore volume fraction (not water)
Sn = nonwetting phase saturation, pore volume fraction
Siw = irreducible wetting phase saturation, pore volume fraction
Sﬁ = effective wetting phase saturation, = (S - Siw)/(1 - Siw)
kv 5 kn = effective permeability, md , of wetting phase and nonwetting
rhase at a given wetting phase saturation.

ki) o ¥ » = effective wetting phase permeability, md , at effective
Su wetting phase saturation equal to 1.

kn)o* = effective nonwetting phase permeability, md , at effective
S0 wetting phase saturation equal to O
ki = normalized wetting phase permeability, = ky / k)o*
.o Sw=1

kpn = normalized nonwetting phase permeability = kp / kn)s:;:o
A = pore size distribution index, defined in Eq.1

Figures 6 and 7 illustrate some of the relationships between the terms
defined above, Points A and B in Fig, 6 identify the effective phase per-
meabilities used to get the normalized permeability walues plotted in Fig 7.

The normalized permesbility could just as well be called a relative permeability
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but were not so called in order to reduce confusion later,
in Fig. 7 correspond to different pore size characteristics. The solid curves,
A = 2, are characteristic of rocks having a wide range of pore sizes, while the
dashed curves, A = L, represent a medium range of pore sizes. Curves identified
by A= 2 are often called "Corey curves" after A,T. Corey, an early researcher
of relative permeability behavior. The larger the value of A, the more uniform
the pore size distribution.
size., Natural sandstones and some limestones are characterized by lambda values
between about 0,5 and Li, Lambda between 0,8 and 1.5 represents a good average
range of sandstone values.

Lambda is called the pore size distribution index, It can be determined
from drainage capillary pressure curves, or from a drainage Leverett J function
curve, Brooks and Corey (2,3), on the basis of experimental data, proposed the
relationship of Eq. 1 for determiming

=X\
(Pe/Pe) = Sy (1)
A simpler equation to use is the logarithmic equivalent
log P¢ = log Py - 1/N log S:' ¢2)

Equation 2 shows that the reciprocal of the slope of a straight line
on log Pe - log S: coordinates defines )\ . Figure 8 shows such plots from
air-brine capillary pressure data for two Berea and two Boise sandstone
core samples. Effective water saturation values were calculated by reading
saturations at which the capillary pressure curves became essentially verti-
cal and designating these values as Syy.

In some instances a plot like Fig., 8 will show slight curvature at low
values of S:. Such curvature can be rectified by changing the value of Sj;

B =65
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The two sets of curves

A lambda value of infinity represents a uniform pore
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used in calculating S: . Generally speaking, it is not worth-~while consider-
ing data at 83 values less than about 0.1 when determining X .

50 BN RN T illlng

"/

10
- “ =
SO :
g b— -
a |- N N
|- N
B
o | -~
3
o
(&)
B = -
g = —
'é N Sample Symbol A N\ N
—  BR3C O 1.36
n BR 2B o) 1.68 S
BO 1C A 0.93
0,2 i i1 l N | 13 | P
0.01 0.1 1

Effective water saturation, S§

Figure 8. log-log relationship of capillary pressure and
effective water saturation, Boise and Berea sandstone.

It was point out on Page S that as effective wetting phase saturation
declines from its starting value of unity during the drainage process, changes
occur in both the cross-section area of flow and the flow path length of both
phases, The early work of Burdine (L) and others associated with Gulf Research
and Development Company, led to the following drainage relationships for the
two normalized permeabilities:
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Knar = oy = 0-S0? (1)

1
I (1/8,)? as
for the nomwetting phase.

In the sbove equations, the portions that involwve the ratio of integrals of
(1/‘1’,:,)2 dsf, represent flow area changes, while the other terms, (S:.',')2 and
(1-5:)2, represent flow path length changes.

Solutions of Eqs. 3 and L can be obtained by several means, When the
pore size distribution index, A , is known, the solutions become:

<o ¥ 2432

pear = (5 2 (5)
for the wetting phase, and

oo %2 w222

K g = (=S9? [1-(sh) A (6)

for the nomwetting phase. When the index, A , is not known, or when the log Pg-
log S: plot is not linear in the saturation range of interest, the integral
ratios can be evalitated by graphical methods, The following sketches illustrate
the graphical method of determiming areas under the (‘I/Pc)2 vs S: curve,

Shaded area under (1/Pc)2

T
€. ti: curve equals
l N 21 r: 2 . *
. 3 [ 1/p0)? os;
| of Equation 3.
R /l o S /
1
q';' 3 Shaded area under (1/p¢)°
: Y o curve equals
] ¢
°  Sw ’ N [aree)? as}
~ (-]
Figure 9 of Equation 3,
o Se !
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s~_~: Shaded area under (1/Pc)2
| . oy curve equals
(\3 1 A 7/ 2 3%
NN : (1/pc)
| N // Joy (7" o5
[ /I b=y A ", of Equation L.
31
(rj'f Shaded area under (1/Pc)2
! | curve equals
. o
Se ] - 4 +*
° ¥ [aree)? asy
Figure 10 < < \\ °
L AN of Equation L.
S /

Note that it is not necessary to perform four graphical integrations as indicated
by the four skeiches above, Two suffice,

Table 1 lists several relationships of normalized permeability and effective
wetting phase saturation. The pore size distribution indexes of 2, L, and oo
produce the equations proposed by Wyllie (5) to be used for cemented sandstones
and oolitic and small-vugular limestones ( A = 2) , poorly sorted unconsolidated
sandstones ( A = L), and well sorted unconsolidated sandstones ( N =00), The

Table 1
Two-phase Drainage Normalized Permeability Relationships

Porous Media k:;:dr Kn:dr,
Characteristics A (Eq. 5) ( Eq. 6)
Very wide range of pore size 0.5 ( S§ )7 (1-5:;)2 (1- (S:)s )
Wide range of pore size 2 ( sh)b (‘I-S‘:f,')2 (1-(s9)2 )
Medium range of pore size N ( Sk )35 (1-sH2(1 - (33)1‘5)
Uniform pore size co ( S: )3 (1 - S:)3

pore size distribution index of 2 yields the so-called Corey equations that are
used extensively in reservoir engineering calculations when nothing specific is
known of the porous media characteristics, My experience, however, is that a
pore size index in the range of 0.6 to 1 is more frequently encountered than an
index of 2,
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The next two sections will show how the normalized permeability relationships
given by Eqs. 5 and 6 and Table 1 can be adjusted to relative permeabilities based
on absolute permeability. The first section considers adjustments that will
compensate for the amount of irreducible wetting phase present. The second
section concerns an adjustment of the nonwetting phase relationship to accommodate
critical saturation and/or stratification effects.

Adjusting Normalized Permeabllities for Ss:r « The relationship of normalized
permeability and effective wetting phase saturation given by Eq. 5 can be used
directly to represent relative permeability of the wetting phase as a function

of effective saturation, This is because the base of the normalized permeability
is ky) qu g which is also the absolute permeability of the porous media,k «
Consequently, the following relationships apply :

oo ) 'O ky ( )
ke = gk K kru 7
definition definition
Therefore 3
. 2830
Kpgsde = (Sw ) 2 (8)

On the other hand, it is always necessary to discount the normalized non-
wetting phase permeability to obtain a corresponding relatdve permeability.
This is because the base of the nonwetting phase normalized permeability is
kn)s§=o , which is always less than the sbsolute permesbility of the porous
media, The necessary discount factor is the effective nonwetting phase perm-
eability at irreducible wetting phase saturation, kn)Siw . This can be
shown as follows @

f:; - _;k_g__:* - kk;l %)

kn)sw.o n)sivw

N
definition )
N Siw
Multiplying both sides of this equation by X yields
7

b.mlste, Yo, kst | Ma (10)
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. . kn)siw . o
Letting the relative permeability term " be symbolized by kp, Eq. 10

becomes

kn
knkQ = "7 =k (1)
Substituting the relationship of Eq. 6 for kp yields the following nonwetting
phase relative permeability equation: 041
<+
kmiar = K2 (1=50)2 | 1~ (s A ] (12)
In order to make effective use of Eq. 12, it is necessary to relate k?.

to the irreducible wetting phase saturation, Sjy. It is to be expected that the
larger the irreducible wetting phase, the smaller will be the wvalue of kg o« This
follows because the irreducible wetting phase acts to reduce the cross-section
of area of flow of the nonwetting phase and increase its flow path length. It
is also expected that any relationship of kg and Sy should show some effect of
pore size distribution,

To my knowledge, no one has shown how )\ affects kg at various wvalues of
Siwe Neither has a correlation of kg and Sj; been published., Considerable
laboratory test data are gvailable, however, to develop correlations for specific
rocks. Commercial laboratories normally list air permeability and the nonwetting
phase effective permeability at residual wetting phase saturation in their labor-
atory results, A value for kg can be obtained by correcting the air permeability
1o absolute permeability and dividing it into the measured kn)Siw value,

Figure 11 shows the result of plotting kg s calculated as above, against
S4y for approximately 35 sandstone core samples. Siy values fell between 0.2
and 0,5 . While the data showed considerable scatter, the trend line is useful
when direct information is unavailable, The curve of Fig. 11 has the relationship

K2 = 1,31 - 2,62 Siy + 1.1 (Siw)? (13)

This relationship should not be used at Sy > 0.5. At Sy values less than 0.12,
the value of ki should be taken as wnity.

Equations 8, 12, and 13 are useful general relationships for calculating
two~phase drainage relative permeability values. Differentiating the equations
with respect to Sy and evaluating the derivatives at the end-point saturations
yields the following information:

R ETI
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0.8

0.6

O.k -

Nonwetting phase effective permeability
Absolute permeability

0.2

] 0.2 o.L 0.6
Irreducible wetting phase saturation - siw

Figure 11, Average curve of nonwetting phase relative perm-
eability at irreducible wetting phase saturation

Thus, the wetting phase curve leaves krw:dr ™ 1 with a slope indicated by Eq. 1L,
and terminates at kpy:dr = O with zero slope. Equations 16 and 17 show that the
nonwetting phase curves starts with zero slope at kyn:dr = 0, and terminates at
the irreducible saturation with & value of k2 and a slope of (=2 K2/(1-Siw)).

dkpn - dkrn - "'21“?‘
dsy  [Sy=1 0 (16) .a_sw_ - (1-S357) (17)

Adjusting krn for Critical Saturation and/or Stratification Effects. As
indicated by Eq. 16, the slope of the nomwetting phase relative permeability
curve as it leaves its origin (Sy = 1; kyp = 0) is zero. 4As nonwetting phase
saturation develops the relative permeability curve increases continmuously in
slope and magnitude. This is illustrated by Curve A, Fig., 12, which is a

graphic. representation of Eqs. 12 and 13 for conditions of A= 23 Siixr ™ 0.2.
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1
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\r kg
0.8
Equations 12,13
3
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g 1
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0 0.2 O.L 0.6 0.8 1
Wetting phase saturation -~ Sy

Figure 12. Graph illustrating the effect of critical
saturation and/or stratification on nomwetting phase
drainage relative permeability curves.

When results of laboratory tests on core plugs are plotted on the coor-
dinates of Fig. 12, the nomwetting phase relative permeability curves often
show trends that differ from those of Curve A, Curve B, for example, while
exhibiting the same general shape as A, apparently starts from a saturation
value (determined by extrapolation) somewhat less than unity. Curve C, on the
other hand, starts from the Sy = 15 kyn:dr ™ O coordinate with a very definite

slope and 4is straighter.

One explanation of the behavior of Curve B involves the so-called "crit-
ical saturation" effect, The idea here is that while the nomwetting phase sat-
uration is less than some critical value, the nomwetting phase is distributed
throughout the pore system as unconnected islands of saturation, and can not flow,
At saturations greater than critical, the islands have become connected so that a
continuous path exists to conduct nonwetting phase. One often hears the temm
meritical saturation" in relation to gas saturation; i.e., "critical gas satura -
tion", However, the critical saturation effect explained above is a property of
the nonwetting phase and is just as applicable to oil in an cil-water system as it
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is to gas in a gas-water or gas-oil-water system,

While the above description seems to explain the relationship of the A
and B curves of Fig. 12, it fails to explain the behavior of Curve C. Corey
and Rathjens (6) have shown that stratification within the core can affect lab-
oratory results., They found that measurements made on the same core gave dif-
ferent relative permeability curves when flow was parallel to bedding and when
flow was perpendicular to bedding, Parallel-to-bedding flow tended to yield
Kpn.gp Values that increased very rapidly, as illustrated by Curve C. Perpen~
dicular-to-bedding flow tended to yield curves more akin to Curves A and B, It
appears then, that stratification effects have some influence on the shape and
position of relative permeability curves.

Whether the above described nomvetting phase relative permeability behavior
results from critical saturation effects or from stratification effects is not
clear. Obviously, though, Eq. 12 is of limited usefulness because it can not
duplicate observed behavior of many rock-fluid systems, Better agreement of cal-
culated and measured relative permeability curves can be obtained when Eq. 12 is
modified in the manner proposed by Corey (7). This is to incorporate an addi-
tional wetting phase saturation parameter, Sp, into Eq. 12 so that the temm
(1 ~ 582 becomes (1 = (Sy-Six)/(Sp=Six)° Equation 12 then becames

2
- 242

The wetting phase saturation parameter, Spm , has no physical significance.

It is simply a variable in Eq. 18 that partially controls the shape and position
of the nonwetting phase drainage corve, Figure 13 shows krp:dr curves calculated
from Eq. 18 for various Sp values. Other parameters are A = 2 and Siw ™ 0.2 «

As illustrated by the Sp=0.9

curve, behavior suggestive
0,01 of critical saturation effects
are obtained when Sp is less
than 1: that is, the curve is
gero valued and has zero
slope at Sy ™ Spe Note also
that Eq. 18 will yield invalid
Krnsdr values (dashed line)
when Sp { Sy < 1. The Sp = 1

curve also has zero value and

0,005

krmdr —
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zero slope where Sy = Spe At Sp values greater than 1 the characteristic of
having zero slope at the saturation of origin no longer holds., All curves orig-
inate at the kpp,qr=0; Sy=1 coordinate, have increasing slope values at the
origin, and are straighter. This is clearly shown by the Sp=1.1 and Sp*1.2 curves.

Because of the added variable, S, , Eq. 18 has much greater applicability
to reservoir engineering calculations than Eq. 12. Comparison of a number of lab-
oratory measured kpp.qr values with those calculated from Eq. 18 indicate that Sj
usually falls between 0.9 and 1.1 and is seldom greater than 1.3.

The next section presents two simplified reservoir engineering calculations
that illustrate use of the relative permeability relationships developed so far.

Example Use of Two-Phase Drainage Relationships. It is, perhaps, worthwhile
to restate conditions to which Eqs. 8 and 18 apply in reservoir calculations
before going into the illustrative calculations, These are:

1. Two phases, In petroleum reservoirs, these would normally be gas-water or
oil-water systems. Thus the relationships could be used in calculations
that pertain to gas cap or oil zone conditions.

2. Drainage. Wetting phase saturation change previous to or during the time
of calculation must be in a decreasing direction. It is generally believed
that hydrocarbons migrate into and displace original water from petroleum-
bearing structures. Thus, draihage conditions would apply to calculations
concerned with initial conditions in the reservoir,

3. Wettability. One of the two phases must wet the rock matrix strongly in
preference to the other phase., Under cas cap conditions water is always
the wetting phase. Under oil zone conditions water is usually the wetting

phase,

Water is considered the wetting phase and either gas or oil the nomwet-
ting phase in the example calculations that follow. The symbol k... will
therefore identify water relative permeability values., Iikewise, symbols
krg:dr and kpg:dr will identify gas and oil relative permeability values.

Example A illustrates the calculation of a probable producing water-oil
ratio if the well is completed in a given section. The section lies within
the so-called transition zone, so the water has some degree of mobility.
Should the calculated water-oil ratio be greater than 1, say, it might not be
profitable to complete the well in this section.
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Example A, Calculation of Probable Water—oil Ratio
Given: Average conditions in the completion interval are believed to be as

follows:
0il Water Source of data

Fluid saturations,S 0.LS 0.55 E log calculations
Irreducible water saturation,Si., 0.30 Guestimate

Fluid viscosity, u cp 3 0.5 Est. from 9API, °F
Formation vol. factors, B 1.2 1,05 Est. from CAPI, °F
Pore size distribution index, A 2 Assumed
Stratification factor, Sp 1 Assumed

Solution: Water-oil ratio is calculated from radial flow equations for each
phase separately. After canceling common parameters, the ratio is:

p ky. Wo Bo Kry:dr Mo Bo
W/ " %y vy By kro:dr ¥w By

% =(Sy-Siw)/(1-S1x) = (0.55-0,30)/(1-0.30) = 0,357
*&ﬁ'\ h

Kppsdr = (Sy) A = (0.357) = 0,0163
o 2 L2

krowdr = ky ((Sp=Sw)/(Sp=Siw))° (1~ (Sy4) * )

KO = 1.31 = 2.62 Siyy + 1.1 S35 = 0,623

Krordr = 04623 ((1-0.55)/(1-0.30))2 ( 1 = (0.357)% ) = 0.225
Therefore
@w/q0 = (0.0163 ¢ 3 «1,2)/(0,225 * 0,5 « 1,05) = 0.5

Comments:  Note the low value of the water relative permeability, 0.016 ,
even though water fills 55 percent of the pore space, This illustrates the
asymtotic~to-zero shape of the water curve when approaching the irreducible
saturation value,

Example B 1llustrates the calculation of gas relative permeability values
in a limited range of gas saturation. In this example the pore size distribution
index and the irreducible water saturation values are obtained from a laboratory
capillary pressure curve.
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Example B, Calculation of Gas Relative Permeability Values

Given ¢ A study is being made of storing gas by injecting it into an aquifer.
Calculations require values of gas relative permeability in the gas saturation
range between zero and 20%. Laboratory determined capillary pressure-saturation
data for air displasing 5000 ppm brine gre availsble on a typical core sample
from the zone of interest., It is assumed that critical gas saturation will

be 5%.

Capillary Pressure Data Solution ¢ Values of S; calculated from
Pe Brine Saturation the capillary pressure data using the 300
psi fraction psi saturation value of 0.16 as the irre-
0.5 0,965 ducible water saturation value are plotted
;'g 8‘&; against capillary pressure as shown. From
k.0 0.347 the plot the slope of the straight line is
8.0 0.266 - 0.81
16.0 0.219 1e2. Llambda is, therefore, 0.061.
32.0 0.191 Other parameters are as follows:
300 0,160 .
+
Y 3.4L7
Siy = 0416
Lo KD = 0.92
30 ' Sp = 0.95
20 N
\\ Gas relative perme-
10 A ability values are
% 8 St calculated by use of
st 6 \\ Eq. 18 as shown on
g N the following page.
H b N
[+2]
k3 \
N
e
8 1 Fo
o8
.6
ol
0.2 1

o 0e1
Sy = (i = 0.16)/0.8L
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krg:d.r =
-
o 5
s A
o |& £5
1] ~
o | oF !
3 -
0,00 1.00 1.000 0.00L00 1,000 0,000 0,000000
0,05 0.95 0.9L0 0,00000 0.808 0,192 0,000000
0,08 0.92 0,905 0.001L4L 0.707 0,293 0.000387
0.11 0.89 0.869 0.00577 0,61l 0.368 0,00205
0.1k 0.86 0.833 00,0130 0.531 0.L69 0,00560
0.17 0.63 0.798 0,0231 0.L456 0.5Lk 0.,0115
0,20 0.80 0.762 0.0361 0.389 0.611 0.0203
Comments : Note that in drawing the straight line on the P vs S$ plot, the

entry pressure point was given little weight, Entry pressure points often do

not correlate well with the other points. The capillary pressure data were for

a single core =~ hopefully it is typical of the formation as a whole. If capillary
pressure data are available on a mumber of core samples it is generally better to
normalize the capillary pressure data into the form of the leverett J function
and use the J-function to determine A and Sgy. The assumed critical gas
saturation of 5¢ was, of course, an independent choice. Had a different value
been selected, the gas relative permeability values would have been considerably
different,

Probably, the majority of reservoir engineering calculations involve condi-
tions in shich three phases, gas, oil, and water, are present in pore structure,
The general concepts and theories used previously to develop two-phase drainage
relative permeability relationships are extended in the next section to three-
phase drainage relationships.
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Three-phase Drainage Relative Permeability Relationships,

It will be recalled from previous theory that the relative permeability
value that a particular phase exhibits depends, in part, on the radii or size
of the pores that contain the phase, Also, that under drainage conditions
(nonwetting phase displacing wetting phase) the nonwetting phase tends to be
located in the larger pores while the wetting phase tends to be in smaller pores.
The resulting distribution of phases, at a particular saturation condition, was
illustrated in Fig. L4 , page L.

In dealing with three phases it is necessary to consider ia greater detail
the relative affinity of the phases for the rock surfaces and the sequence of
phase displacements that led to the saturation state of interest. These factors
have a bearing on the pore sizes in which the three fluids will be located and
consequently an effect on their relative permeability values at the particular
saturation, In this section of the notes water will be considered to have the

strongest affinity far the rock surfaces (most wetting phase), oil will be con~
sidered to have an intermediate wettability,
and gas to be the least wetting phase,

irreducible water The displacement sequence will be that
Y—— mobile water

water initially occupied &ll pore space
but a portion was displaced by oil, Later,

a portion of the oil was displaced by gas?
As a consequence of this preferential wet-
tability situation and the two displace-
Pore radius (size) ments the resulting distribution of the
Figure 1L three phases in the pore structure is vis-
ualized as sketched in Fig. 14 o Irreducible
water remains in pores of size range (a-»b), Mobile water that was not displaced
by oil occupies pores of size range (b-»c¢). O0il and gas phases occupy pores
of size range (c—=d) and (d—+e), The question now becomes how to use this

Frequency, percent

* Note that this two-step displacement process of oil displacing water and in

turn being partially displaced by gas is generally in line with the displacement
processes in oil fields that produce by solution gas drive or by expanding gas

cap drive, It is generally thought that during the formative stages of an oil
field that oil migrates into a trap and displaces part of the water there initially.
Gas displaces oil during the production phase of operations,
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idealized fluid distribution model to develop useful three-phase relative perm-
eability equations,

Corey, Rathjens, Henderson, and Wyllie (8) were perhaps the first to publish
a set of three-phase relative permeability equations, Their equations were based
on results of laboratory relative permeability measurements on cores from several
sources., Basically their experiments consisted of comparing gas and oil rel-
ative permeability - saturation curves obtained under different drainage test
procedures, In the first set of tests the core was saturated 100 ¢ with.CaClp
brine, Brine was then displaced by oil under controlled capillary pressure
conditions to some lower saturation, The core was then desaturated further by
displacing a portion of the oil by gas, The second displacement was also under
controlled capillary pressure conditions, The resulting fluid distribution in
the pore structure is illustrated by Fig. 14 «

The second set of tests used the same core but eliminated the use of the
CaCl; brine, Gas displaced oil - always under two-phase conditions, Refering
to Fig., 14 , pore size range (a-~Db) would contain irreducible oil and mobile
0il would £ill pore size range (b-—=d),

The important result of these tests came from comparing the gas relative
permeability - gas saturation curves of the two tests., They were found to be
the same, within experimental error. Corey et al hypothesized that this behavior
indicated that oil displacement by gas was 100 % effective in pores which prev-
iously had experienced water displacement by oil, To put it differently, when
oil displaced water in pore size range (d—>e) of Fig. 14 there could be some
residual water remaining because of entrappment in individual pores and/or
adsorption on rock surfaces. When gas displaced oil from this same range of
pores sizes, there was no additional entrappment or adsorption of liquid (oil).
Carrying this hypothesis to its extreme means that water will constitute the
only residual liquid (or irreducible liquid) remaining from an oil - water
displacement process that is followed by a gas - oil displacement, Vhether this
hypothesis is valid for all, or most, pore structures is questionable ( the Corey
tests were on only a limited number of cores having pore size distribution
indexes near 2), but it remains a very basic factor in the three-phase relative
permeability equations that will be developed further along,

One important implication of the Corey et al hypothesis is that the same
basic methods apply to the calculation of two-phase and three-phase drainage
curves, Refering back to Eqs. 3 and L on page 11 it will be seen that for the
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two-phase systems the normalized permeability walues were products of the square
of their effective saturations and a ratio of integrated values of the 1/P¢ vs
S§ relationship, (Note that the subscript w here refers to wetting phase and not
water), Under the "no residual oil" hypothesis three-phase relationships can be
developed by changing the variable of integration from effective wetting phase
saturation, S§ s to effective total liquid saturation, SE e This results in the
following three equations for normalized permeabilities :

for the mobile water phase, -
[
oo k‘w 3% 2 o 7CD.Z
k ] - —— = (Sw) . (19)
Widr kw) - ?
Sem/ -/‘I dsg*
° 7*
for the oil phase,
f £ st
oo ko *2 St Pcz
ko . " —— . = (SO) ; (20)
Z
(=Y [N
and for the gas phase, v 6[5‘*
3
ece kg 3¢ 2 S: <
kg]d" kg)g.: 5g) i
A 3
where S
Sw = Siw So g
+* —_——— 3 - —— * - ——
S¢ " Toswm 3 S " Tosy § %" Tosm (&)
and.
Syw + So = Siy
2% 3% +* 3*
SL = Sw*So 1= 510 = 1=-5g (23)

Again, as in the case of the comparable two-phase relationships (Eqs 3 and
4) there are two ways of solving Eqs 19 = 21, When capillary pressure - effect-
ive water saturation values form a straight line on log-log coordinates (as i11~
ustrated by Fig. 8) analytical solutions can be obtained in terms of the pore
size distribution index, A , and the irreducible water saturation Sjy. These
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solutions may be of several forms, but the following three are perhaps the most
useful, Note that these are relative permeabilities on an absolute permeability
base. As can be seen both the gas and oil equations incorporate kg to adjust
for the irreducible water saturation, The gas phase equation incorporates Sy
to permit adjusting for critical gas saturation effects.

For the mobile water phase, 2+32
X S -5 A 2+32
W - W iw - * A
krw]dr.k (1_3 (s;) (2L)
iw
For the oil phase, - 291 242
- l - S. A
x ] __li)_ - °. 5o Sot Sy Saw) " (.E;!__%‘_{ ) (25)
o * (2 % 22 * &;‘.}
-k*(S°)~[(SL) - (s;) ] (26)
For the gas phase, s 242
k S +8S -1 S+8~-5,_\%
TE lar k r Sp - iw l_ iw
2 -
S +S -1 242
T Sm - S:‘_w g

When the log Pe -~ log Sf curve is not linear within the satiration range
probably the next best approach is to prepare a plot of 1/?3 vs Sf and to
determine areas under the curve that will correspond to various fluid saturaticn
conditions, The areas may be determined graphically (such as counting squares.)
or the curve can be fit by a simple equation and the integraticn performed on
the equation., The areas so determined represent the mumerator of the integral
ratios in Eqs., 19 - 21, The denominator is, of course, the sum of the three
individual fluid areas, In accordance with Eqs. 19 - 21 the ratio of areas are
multiplied by  the square of the appropriate effective liquid saturation.

The procedure of determining areas graphically is illustrated in Fige. 15 .
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Figure 15

Having developed a set of equations for relative permeability of water, oil,
and gas as functions of saturation and rock character it is of interest to see
what the resulting curves might look like., Probably the majority of reservoir
calculations are for conditions in which the water saturation is at, or close to,
the dirreducible value, At this condition the water relative permeability is
zero and the oil and gas equations take on the form of Egs. 8 and 12 with oil
being the wetting phase. Figs. 16a and 16b show the shapes of typical kypg and
krg curves for Sjy values of 0.2 and Ok » Note that because of the ¥no residual
0il® hypothesis discussed previously the kpg curve terminates at the Siy value,
Also note that kp, remains essentially zero valued over almost one-third of the
effective oil saturation range., By refering to Fig. 7 it can be seen that for

a rock having a pore sige distribution index of unity, X\ = 1, the oil curve
would be lower and the gas curve higher,

Fig. 16c shows the shape of the 0il and gas curves with 20 % irreducible
water and 20 ¢ mobile water present., Although the mobile water £ills one-fifth
of the pore volume its relative permeability calculates to be only 0.0039 because
of its location in the smaller pores. The oil and gas curves appear to be mmch
the same as those of Fig. 16b , however there are small differences in the values
of kro andkrg at a given value of Sg .

Fige 17 11lustrates how several variables affect gas-oil relative permeability
ratio curves, Fig. 17a shows the usual behavior of kpg/kpo becoming larger as
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Siw increases, Had the plots been continued to higher values of gas saturation
the curves would approach being vertical as Sy approaches (1 - Siw). Figs. 17b
and 17c¢ show the effect of critical gas saturation on the gas-oil relative perm-
eability ratio curves, Note that Sm has a very nonlinear effect on the ratio
curves in the low gas saturation region. The effect of lowering A from 2 to 1
is to raise the ratio curve and make it slightly more vertical.

Before illustrating the development of relative permeability data for use in
reservoir engineering calculations it is pertinent to note other three-phase
relationships that appear in the literature. Wyllie (5) presents the following
table in Frik's Petroleum Production Handbook, The relations in the table are
slight variations of equations published by Corey and Rathjens(6) and Wyllie and
Gardner (9),

Table 2, Wylliet!s Equations for Three-phase
Relative Permesbilities.,

Type of formation ke ¥ro krg
Unconsolidated sand, 03 s’ Sg°
well sorted grains., (Sw) (1 =~ 850)3 1 - Siw)3
2 2
Ce-njented sandstones, .t Soz ( 25y + So = 2545 ) s; [(1-55_“) - (SI,-Siw)]
oolitic limestones, (sy) (- siw)-q. - Siw)+
vugular rocks,

The above equations have a number of restrictions. In the first place all
apply to zero critical gas saturation - that is, for the condition of Sp = 1.
Secondly, the hydrocarbon equations do not take into account kg e In early
publications originating from Gulf Research and Development Corporation the
assumption was that nonwetting phase relative permeabilities (oil and gas in this
instance) were independent of the amount of irreducible water present, I feel
this is directionally so at low irreducible water saturations - say, less than
20 ¢, but not so at higher irreducible water saturations. In my opinion the
above equations are better catagorized as normalized permeabilities, é‘; and 1;;
and should be multiplied by k3 determined from Eq. 13 ar Fig. 11. The equations
given for unconsolidated sands,well sorted grains were developed from a theoretical
capillary pressure curve of packed spheres (like stacked ball bearings). Such a
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curve corresponds to a pore size distribution index of infinity ( A = )

The cemented sandstones, odlitic limestones, vugular rocks equations corresponds
to the condition of the 1/P; vs Si curve being a straight line. This condi-
tion is equivalent to A = 2. The equations in Table 2 can be obtained from
Eqs. 2L - 28 by substituting in the specific conditions outlined above.

Two examples will now be given to illustrate the use of ideas developed in
this section, Example C shows a calculation procedure for computing kpey],. »
krol s and krg]d,. values by use of Eqs 19 - 23, One would use this procedure
when log Pe is not linear with log Si . The data used in the example is the
dimensionless J factor'vs Sy curve of the Weber Sandstone, Rangely Field, Colorado,

of Fig. 18.(10) Actually, the

v i Buovss  Fametn  YT.aS) Rangely curve does produce an acc-
“ nl; prsviriiires o154 eptal linear plot of log J vs log Ser
') :‘ i 1 Rodie Siorene o.t8
] S| Giose Vities Pyt as we shall see in Example D.
pp= SN | Ledue Owvenien 0.114
L [t Rindom Tomsoidated] O3
S 'Y \' ] . Lowrstt (uncomeiideled) 0.419
:eip 0 “ 1‘ \ Example C., Calculation of Drainage
S o 1 ‘\2 i Kryw 9 kro » and kpp Values, Weber
1 3
;- as t \? x Sandstone, Rangely Field, Colorado.
T o7 \\ \
e os -+ Thooretical Fning 4 Given: Ieverett J vs Sy curve, Fig.l
a | )\:\\ LN velus for reguine —_—
& o R = Siw = 0430 5 S¢ = Oulli 5 5n = 1.0
% U~ g = — . N
% 04 L:\ - -Y.'ﬂ-... ""“r::-u SOlutiUn: Stgp 1. C&lﬂlatlon Of SL
W) | >« orRong fo]
S o “\ NN and 1/3%
'*\4 ~3 A
o2 D R S T I Sw Joim  SL=Su 1/904m
o4 PRI 0.35 0,78  0.071 1.64
Kineslis shele
%620 30 40 50 & R e 010 0.40 0.6k 0.1L3 2.l
Water saturation, Sy 0.50 0.L8 0,286 he3l
Capillary retention curves. (From Rose and Bruice: ) 0.60 0.35  0.L29 8.16
0.70 0.28 0,571 12.75
Figure 18 0.80 0.23 0.7tk 18,90
0.90 0,18  0.857 30,86
1.00 0,15  1.000 Llso Ll

S = (S, =~ 0.30)/ 0.70

# The Leverett J function can be used in place of Pe in all equations
developed so far as J is the product of a constant and P,  The dimenionless Jd
used in Fig. 18 makes use of metric units, for which Po = dyne/ cn 3 k = cm™ 3
and o =dyne/cm , If oilfield umits of Po ~psi 3k =md, 3 and ¢ = dyne/
cm  are used to compute J , then

Jpield ™ L.5 Jpinm (29)
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Step 2. Calculation of areas under 1/5" ws S; curve,
3t
Cum, - Jo T T T

InteI‘val Area Area At Sy = O.Lk Figure C-1 b
0.0-0.1  0.088 0.088 (()05’51*‘0'30)/0-70 G B
0.1-0,2 01257 003’45‘ ‘(\ . Qe p /.
0.20.3  O.kiz 0757 > dst/a* = 0.3 Jo %
o.g-o.h o.g? .3;0 4t o 5 /
0,40, 0.882 2,252 = 0.3 ¥ 57 = 0,

5 \ O 1. . 20 / -
0.5-0.6  1.202  3.L5h f ds;/a’- 2,252 N d
006'007 1.600 5.09& - 0.31‘5 /0
0,7-0.8 2,098 7.152 —_— /%
008“009 20820 90972 1.907 < 7 /
0.9-1.0 3.820 © o2 94 06 o0& LD

Note:

13.792 /
[ aspst = 130192

Areas listed in the above tabulation were calculated from a large

scale plot like Fig., C~1 and Simpson Rule integration.

Step 3. Calculation of water relative permeability, krw]dro

S‘bep hc

Sy = Okl 3 Sy = 0,30

From Equation 19 -
¥k
krw]d.— = kg V

Ew)x

3

Loy

s 5 - ImyJ

Sa=f
\( always 1 for "most wetting® phase)
2
< kpylge = (0.20)¢ 0.345/13.792 = 0.0010

Calculation of oil relative permeability, kyrolr o

S

Si = (0,4li=0,30) / (1-0.30) = 0.20

S = Oy = Sy =0,20 ; Sy = o.3o k2 = 0,623 (Eq. 13)

From Bquation 20 -
km.]dr = kg k

z
kg ¢ (So

At Sp = 0,30 ; ST = 0,50 &nd So = 0,3¢(1-0,3) = 0,21

So

'—?5'1—’15"6'29'9‘

0.3
O.h
0.5

0.6

0.7
0.8

Lo/
fllsﬁ/.r& km]dr So
L J 6.6 :
0.0743 0.,00185 O.1L
0.138 0.,00775 0.21
0.225 0.0225 0.28
0,341 0.0532 0.35
0.hoL 0.111 0.2
0,698 0,213 0.L9
0.975 0.389 0.56
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Step 5. Calculation of gas relative permeability, krg ]d,.
Sw = Ol ;5 Siw = 0,30 ki =0.623 (Eq. 13) ;5 Sp =1

From Equation 21 - /%, .2
Kpglacm kO e Xg = K2 o(sE ) . Ly st/ 3

ar g T g ¥, oZ
VAN

At Sz = 0,30 3 SI = 0,70 and S = 0,50
krg]dr- 0.623 L4 (0030) b4 (130792"5005)4)/130792 = 000355

£;£17Jz
* ooz
Sg LA/ g, Sg

0.8 0.975 0.389 0,56
0.7 0.9U45 0,289 0.L9
0.6 0.901 0.202 0.42
0.5 0.837 0,130 0.35
0. 0,750 0.0747 0.28
0.3 0.634 0.0355 0.21
0.2 0.481 0.0120 0.1k
0.1 0.277 0.00173 0.07

Step 6., Summary of calculations,

Fleld: Rangely, Colorado
Sand: Weber
Data Source: Rose and Bruce (10)

Sg So krgl, krol,, krg/kro] g

0 0,56 0 0.389 0

0,07 0.L9  0,00173 0.213 0.00812

0.1k 0.2 0.0120 0,111 0,108

0.21 0.35 0,0355 0,0532 0,667

0,28 0.28  0.07L47 0,0225 3.32

0.35 0.21 0.130 0.00775 16.8

0.L42 0.1Lk  0.202 0.,00185 109

0.L9 0.07 0.289 0,00019 1520

0.56 o 0,389 0 )

krw], = 0.0010

The calculation procedure illustrated sbove in Example C is quite laborious
- primarily because of the graphical integration of the 1/J% vs Sf curve. An
alternate to the graphical integration is to fit the curve (see Fig. C-1) with a
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polynomial equation and perform the integration on the equatione.

Example D uses the sams capillary presswre - saturation data as Example C.
The object here, however, is to illustrate the use of Egs. 24 ~ 28 and to compare
resulting values with those of Example C and walues obtained by use of Wyllie's
equations in Table 2,

Example D, Calculation of A and Drainage ky; 5 kpy s and kp, Values.
Weber Sandstone, Rangely Field, Colorado.

Given: Leverett J vs Sw curve, Fig.18.
Siw = 0630 3 Sy =0kl 3 Sy =1,
Solution. ¢ Part 1. Determination of A .

3 3
Sw Ipim  SL% S g e e s s .
0035 0078 0,071 N\ SIO.pf -0, 87
0.0 0,64 0,143 o.¢ : \‘R A= 1lS -
0.50 0,18 0.286 i 1
0.60 0,35  0.L29 or ..
0,70 0,28 0,571 fos3 42 <
0080 0.23 0071’4 h | ! ‘\
0,90 0,18  0.857 0.2 , b1
1.00  0.15 1.000 g = [Semodo) |t || PN
- (7—o0.3c)
ol 1111 ! : X
o.o¥F ol 0.2 o,Y o.bo¥®/

S
Note that log J is not linear with log Sf. A straight line that fits the
data in the region 0,29 < S; <1 yields a pore sie distribution index of 1415 .
It is best to fit the high values of SE as this is the range of saturation of
interest to gas and oil relative permeabilities.
Part 2. Calculation of kgL, » Krolss » and krols. by.Eas. 2k, 26, 28.

A =1.15 3 Sp =1 3 Sy = 0.20 3 k2 = 0.623 ; -2—;{3-- 2.71;;&):33-!;.71;

3
3% 3 2.74 3 274
s, stosEostoEh G kplae krglae  krgfirolu

0] o] 0.8 140 1,000 0,0122 0,39 0 0
0,07 0.1 0.7 0.9 0.7L9 0.225  0.00156 0-00%3
0.1’4 0.2 0.6 0.8 005&3 0‘119 0¢°11h 0.29
.21 0.3 0.5 0.7 04376 0.0567 0.0350  0.617
0028 O.h O.h o.6 0021‘7 0.023h 0.0751 3021
0¢35 0.5 0,3 0.5 0,150 0.00771 00132 17.12
0.l2 0.6 0.2 0.t 0,0812 0.,00172 0.206 120
0,k9 0.7 0.1 0.3 0,0369 Y 0,00015L 0.29L 1909

o} 0.3% ©

0,56 0.8 0 0.2 0,0122
ke = (0,20 = 0,000L9
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Part 3. Calculation of kry], » krg],. , and kr&'[h' by Wyllie's Eqs.(Table 2)

Sw = Oulili 3 Si; = 0,30 ;3 (k2 = 0.623)
Note: The Weber sandstone is a very well consolidated quartzitic sand-
stone, The lower equation of Table 2 applies,

Sg So R _Yrglee Yerg/Xro)ar
o} 0.56 0,683 (o] o)
0,07 0.L49 0,480 0.00118 0.,00247
0.1k 0O.k2 0,320 0.0090 0,0280
0.21 0635 0,200 0.,0286 0,143
0.28  0.28 0.11L 0.0638 0,560

0.35 0,21 0.0561 0.117 2,08
0.L2 0.1k 0.0214 0.188 8.82
0.k 0,07 0.00LL45 0.278 62,1
0.56 0 (o] 0.383 o

ko]~ (0,205 = 0.0016

Part L. Comparison of Calculated krgly, » Krgls » 804 kpg/coly, Values.

Note: The following tabulation compares relative permeability values
calculated in Parts 2 and 3 sbove with comparable values calculated
in Example C. The comparison is on the ratio of values.

Values by Eqs 26 and 28 Values by VWyllie's Eq.
VYalues by Eqs 20 and 21 Values by Eqs 20 and 21
Se ko,  krg,, lwefeed,. Ko, Krea  Erefkeo],,
0 1.013 - — 1,756 - -
0,07 1,056 0.902 0.853 2.25L 0,682 0,304
0.1k 1,072 0.950 0.887 2.883 0.750  0.259
0.21 1,066 0.986 0.925 3.759 0,806 0,21k
0,28 1,040 1.005 0,967 5.067 0.85Lh  0.169
0.35 0.995 1,015 1.019 7239 0,500 0.12L
0,42 0,930 1.020 1,101 11.57 0.931 0.081
0.49 0.810 1.017 1.256 23.h2 0.962 0.0L1
0056 — 1.013 bsand »an 00985 hasad

Comments, It can be seen*from the gbove tabulation that approximating the
log J v8 log Sy, curve by the straight line shown in Fig D-1
resulted in errors w to 25% in kpo/kyo values, Vyllle's
equations gave large errors in kpo/k., values (to 2500%).

This is because Wyllie's equations apply only-to pore size
distribution index of 2 whereas the Weber Sandstone used in
the example has an index of approximately 1. One should be
careful in using Wyllie's equations unless it is known that
the pore size distribution index is close to 2.

This concludes the section on developing three-phase drainage relative
permeability values from capillary pressure curves, The relationships shown
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on page 2L and 25 are very useful when laboratory measured drainage values are
not availgble but drainage capillary pressure curves are available. The next
section will develop a theory that can be used to calculate two-phase imbibition
relative permeability wvalues.

Theory of Two-Phase Imbibition Relative Permeabilities.,

Imbibition relative permeabilities apply when the wetting phase is, or
has been, increasing in magnitude., The most important use of imbibition walues
is in waterflood calculations where water ( wetting phase ) is displacing oil
( non-wetting phase ) A similar application of imbibition values occurs in
calculations concerned with influx of aquifer water into gas reservoirs,

Laboratory work carried out in the eary 1950 period showed that the
direction of saturation change has an important bearing on the value of the
non-wetting phase relative permeability at a given saturation., The basic
difference in values is illustrated by the two non-wetting phase curves of

Fig. 19. As can be seen, the drainage

I ° curve has a greater value, at a given
I r saturation , than the imbibition value. On
T dr the other hand, apparently there is little
N & imb difference in drainsge and imbibition values
~§ | \ A for the wetting phase. Therefor, in this
- ! TN section we will be concerned cnly with the
9 [6 = A behavior of the nan-wetting phase and will
/=5, develop equations that fit its behavior,
Figure 19 A reasonable explaination for the behavior

illustrated in Fig 19 can be developed by considering the difference in behavior
when a pore system is being drained of wetting phase and when it is 4mbibing
wetting phase, Under drainage operations capillary forces and viscous forces
both operate in a direction that promotes desaturation of the largest pores
first, followed by progressive desaturation of smaller and smaller porese. Undexr
imbibition operations, however, capillary forces and viscous forces operate,

in effect, in opposite directions. Cappilary forces favor resaturation of the
smallest pores first while viscous forces favor resaturation of the largest
pores first. The net effect is that pore sizes are not resaturated in the
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same sequence during imbibition as they are desaturated during drainage. During
the imbibition process a portion of the non-wetting phase becomes trapped by
wetting phase and consequently does not contribute to relative permeability,
Refering to Fig. 19 , if A represents a relative permeability~saturation value
on the drainage curve, the saturation on the imbibition caurve that has the

same relative permeability valus is indicated by B, The trapped saturation
developed during imbibition from k2 : Sp,. to saturation B is the difference in
B and A saturation values.

The most important early work on imbibition relative permeability behavior
was that of Naar and Henderson (11). The more recent work of C.S.Land of the
U.S. Buresu of Mines (12) (13) is of greater importance in that it leads to
useful mathematical relationships which spparently are in good agreement with
laboratory measurements, The notes that follow essentially reproduce Land's
work,

The crux of Land!s method of calculating two and three-phase imbibitlion
relative permeability values is to subtract the amount of trapped non-wetting
phase saturation from the total non-wetting phase saturation, This ylelds a
ufree" gaturation value ( free to flow and consequently contribute to the
relative permeability ) that is used in the same basic equations discussed
previously for drainage processes. The amount of trapped non-wetting phase
depends on the particular rock involved and the number of saturation units in
which imbibition takes place.

The material that follows is presented for two phase conditions. The
non-wetting phase is indicated by the subscript n and would. correspond to
either gas or oil phase in a petrolemm reservoir. The wetting phase is
indicated by the subscript w and normally would be considered to correspond to
water phase in a reservoir. 4As indicated above the trapping characteristic of
the rock is an important addition to previous theory so it will be discussed
first,

Trapped Non-Wetting Phase Saturation. Imbibition experiments with core
samples show that the residual non-wetting phase saturation , Sp, , that is
finglly attained as a result of imbibition is related to the initial non-
wetting phase saturation, Spi , and some characteristic of the core. Land
(12) found that a general relationship could be written in terms of
effective saturations as
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1/Sar = 1/Sy = C (30)
where C is a ® trapping constant® of the
rock, The effective saturations are, of
(5,‘;,. N course expressed as

ez 4 acé- *
Spg = Sy / (1 =8iw ) (31)

*

A— —do,3 Spr = Spp/ (1 =85 ) (32)

g’ - ——-/
5 LS:r)rn”
Figure 20 shows shows the characterdistics
o *, of curves of Eg. 30,
Sk / Eq. 3

-3¢
Snr

Figure 20 The value of C for a given rock can be
determined by simple laboratory experiments. In Fig 20, S;L = 1 represents
imbibition starting from an irreducible wetting phase saturation condition, and
( S:r)m represents the resulting residual non-wetting phase saturation.

From Bq. 30
. C= 1/ (Sardpax = 1 (33)

Thus to determine C, the rock sample is first saturated 100 % with wetting
phase (water, say ) , desaturated to irreducible wetting phase saturation by
use of capillary pressure equipment, and then allowed to spontaneously imbibe
wetting phase to equilibrium. The residual non-wetting phase is then determined
and used in Eg. 33 to calculate C.

By way of illustration, the two curves of Fig. 20 have the following
trapping constants

Curve (Sz*n')m c
A 0.5 1.0
B 0.3 2.33

Note that if no trapping occurs (thisui]lbeszr- 0 ) the value of C becomes
infinity. It is somewhat wfortunate, in my opinion, that Land elected to
define the trapping constanmt such that the higher the value the less residual
phase results. It would have been easier to have the relationship the other

way around,

In the absence of lsboratory results to determine the trapping constant
it is probably best to use a value between 1 and 3 in the equations that follow,
The value of 3 corresponds to an often used rule of thumb in waterflood calculat-~
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ions that the residual oil left in a core after many pore volumes of water
throughput will be about 20 ¥ of the infitial oil saturation at the start of
displacement.

The trapping constant, C, is an important parameter in imbibition relat-
ive permeability relationships developed in the next section., When one specifies
the value of C, he automatically fixes the shape of the non-wetting phase curve.

Inbibltion Relationships, Non-Wetting Phase. Relative permeability - saturation
equations are usually written in terms of wetting phase saturation units, Thus
an expression for the drainage non-wetting phase relative permeability is :

o * w222
k], = KR (1-s5f[1-6H* ] (3k)
( This is also Eq. 12 on page 1k ). However , there is some slight advantage
in writting the present development in terms of non-wetting phase saturation

units. Recognizing that in a two-phase system S: + S: =1, Eq. 34 can be
restated as
2+A

kmle = 62 () [ 1-C=siy7 ] (39

The relationship for the imbibition situation is similar to Eq 35 but
differs in that “"free* non-wetting phase saturations units are used, This
leads to

2+

2
km ], = ¥ (5o [1-(1-%)""‘] (36)

To use Eq.356 requires that the Mfree® saturation be knmown at various
values of total non-wetting phase saturation. To accomplish this we can 8%y,
first , that total non-wetting phase saturation is the sum of ®free” saturation

and trapped saturation, That is:

Sa = SoF * Sm (1)

A second relationship is that the trapped saturation, at any total non-
wetting phase saturation , is equal to the residual non-wetting phase saturation
present vhen kpp ];,p = O minus the amount of non-wetting phase that gets
trapped during saturation change from S: to S:r . 4n expression of this

behavior is
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%%
Snt = Snr = GS:F + 1 (38)

Eliminating S:t between Eqs., 37 and 38 results in a quadratic equation
for Shp . The solution of the quadratic on interest is

Sar = 1/2 [(S:“‘S:r)"' \/(S:-Sgr)z+—lg-(53-s:r) ] (39)

Equation 39 is not in optimm form as it contains the residual non-wetting
phase saturation temm S:r . However, this term can be gotten rid of by solving
Eq. 30 for Spp and substituting it in Eq. 39. That is, from Eq.30

3%

Sar = Spg/ (CSm+ 1) (ko)

This would yield an equation for the "free'" non-wetting phas saturation in terms
of the saturation value at the start of the imbibition process , Spi, and the
existing non-wetting phase saturation , S: e In practice, however, it is easier
to employ the two equations separately. That is, use equation LO to evaluate
Snr and then plug the value into Eq. 39 to get Swp « The resulting value of
S:F can then be used in Eq. 36 to cbtain the imbibition non-wetting phase
relative permeability.

Before workdng an example problem to illustrate the use of Egs. L0, 39,
and 36 in calculating an imbibition curve for a non-wetting phase it is inter-
est to show graphically what the equations infer. Figore 21 shows three

imbibition normalized permeability

/ curves, 4, B, and C, The corresp-
onding drainage curve is shown as
the dashed curve. The starting
point of each imbibition curve
lies on the drainage curve, as ind-
icated by the small dots, At the
starting points there is ,aof course,-
no trapped non-wetting phase
( because trapping occurs only
during the irbibition process and it
hasn't started yet ) so the relative
permeability can be calculated from
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Eq. 36 by noting that Sxr = Spi . Or, as the starting points of imbibition
curves lie on the drainage curve.Eq. 35 may be used to calculate the relative
permeability at the starting point.

The bottom end of an imbibition curve is fixed by the starting saturation,
S:i » and the trapping constant C in accordance with Eq. 4O . This defines the
residual non-wetting phase satwration, S:r s the smaturation at which krn]u-a = 0.
Note that as € in Eq 4O increases the value of S:r decreases so that the bottom
end of the imbibition curve moves to.the right in Fig. 21. Far a value of C
equal to infinity the imbibition curve will lie exactly on the drainsge curve,

The shape of the imbibition curves between the two limits is controlled
by Egs. 39 and 36. In general, the lower the value of C the stralghter will be
the imbibition curve.

The non-wetting phase imbibition relationships developed above consider
that ho # critical ® saturation exists for the drainage curve: that is, the
drainage relative permeability curve starts from Sj = O as illustrated in Fig.2l.
However, should the drainage curve start from some so-called ¥critical® saturat-
ion value, Spe, it may be appropriste to introduce a modification into the imbi-
bition equations to account for this. Otherwise, at large ¥alues of C the
calculated value of km] ,ms WA be greater than kyply, . It will be recalled
that for drainasge curves the fcritical® saturation effect was taken care of by
introducing the parameter Sp into the appropriate equations. S was defined
as the wetting phase saturation at which the non-wetting phase relative perm-
eability curve started. ( This is discussed on page 17, and handled by Eq. 18 )
M,R, Monroy of Chevron 0il Field Research Company (14) has suggested that to
handle ®critical® saturation effects on non-wetting phase imbibition relation-
ships that Eq. 36 be altered to

2
-1 1«5 2tA
Ga-1) |, g =5 i"))] [1 - (1—=szp) 2 (1)

Krg]. = kp
=Jins l°‘”[<sm--s=-x> ™ (on - S

An example calculation of krn]imb will now be given to illustrate the
use of the iwbibition equations developed in this section, Example E 1s based
on the Leverett J vs Sy curve of the Viking Formation, Kinsella Reservoir of
Fig. 18 , page 29. (il is assumed to be the non-wetting phase in these
calculations. It is also assumed that the irreducible water saturation in
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this reservoir is 0,36 and that the actual water saturation is 0.50 at the
start of the imbibition process,

Example E, Calculation of )\ and Imbibition kpry vValues

Viking Formation, Kinsella Reservoir

Given: Leverett J vs Sy curve, Fig 18, page 29.
Siw = 0.36 3 Sy =050 3 Sp=1
Solution: Part 1. Determination of A.

S¢  Jpin S

0,40 1.0 0. e~ T T *‘f :

0..50 0052 0038 o, é o \ R

0,70 O.hk 0.53 0.4 [y J/C'Fe =- ‘h‘o,\! ! r

0,80  0.37  0.69 godtf— 2= &7 | .'\'?,\L;

0,90 0.35 0.84 59 3 ' + Ll .“-

1.00 0,32 1.0 e : gj AN
* o,2 NS SV N S O
Sy = (Sy~0.36)/(1-0.36) (Su—-0.3¢) . ;

5‘_“‘_ (7-238)
From the slope of the line 0. — ‘ 0
of Fig B-1, A is 2.1 cos” Al of a3e¥ ac ‘e

Part 2. Calculstion of krol,.s by Bquations 40, 39, and 36

A=2,1 $Sju=0.36 3 Suf =050 3 k2 =051 3 C=1.5
(2+A)/X = 1,95 ; Soi = 0.5/(1-0.36) = 0.761

Sor = S04/(C Shy +1) = 0.781/( 1.5 o @781 +1) = 0,360
sor = 1/2 [ (55 - 5&) + V(s&= &+ L (5 - s3]

(1)

3 * * \1e )
So S: (Sg‘sgr) Sor (SoF')2 (1=SoF) 95 kroLnb kmld r

0.50 0,781 O.h21 0.781 0.609 0.,0519 0.295 0.295
0.5 0,703 0.343 0.680 0.h62 0,109 0.210 0.228
0.0 0,625 0.265 0.573 0.329 0.190 0.136 0.170
0,35  0.547 0.187 0.459 0.210 0.302 0.075 0.120

0.25 0,391 0.031 0,160  0.0256 0,712 0.00L 0,048
0,23 0,360 0,000 0,000 0.,0000 1,000 0,000 0,038

(1) Drainage values calculated from Eq, 12 for comparison with km] 1mb
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Imbibition Relationships, Wetting Phase, In two-phase systems the amount
of wetting phase over and above the irreducible wvalue is mobile and contributes
to relative permeability. During imbibition, as the wetting phase saturation
increases from its initial value some non-wetting phase is trapped. This
trapping behavior was explained previously on page 35. 4As a result of non-
wetting phase entrapment the wetting phase occupies pores of larger sise, at a
given saturation, than it would have occupied had entrappment not occured. As
fluids flow easier in large pores than in small pores, the effect of the entrap=~
ment 13 to yield a larger value of relative permeability, Thus, directionally
the imbibition relative permeability curve should lie sbove the drainage curve
as illustrated in Fig. 22. On the other hand, it can be argued that entrapp-
ment of non-wetting phase should result

-~

] . in a slightly longer flow path for the
F | franese t which would act towards
3 [ bibiticn / wetting phase -~ ch wo ac
X decreasing the imbibition relative perm-
A / eability,
E /
~ Sp=c.7 N F Relatively simple equations for
3 Sizpel X o calculating the effect of trapping non~
X / wetting phase during imbibition have not
o il — been worked out., Land (12) showed for
@ Se / one specific set of conditions (A =2 ;
Figure 22

C = 1.5 ) that in most of the saturation
range of interest there was little difference between the imbibition and drain-
age curves. Until further developments on this point are presented it Beems

best to assume that the two curves are the same, The appropriate equtions are:

2+3A
T =krlae = (S5) 7 (k2)
or 2o IA
krlny " Epglor = (1=SE) 7 w3)

Calculation of kry)7ms Values from either Eq. L2 or L3 is straight
forward. Example F illustrates the calculation based on the Leverett J vs
Sw curve of the Viking Formation, Kinsella Reservoir of Fig. 18, page 29. As
in Example E, it is assumed that dirreducible water in this reservoir is 0.36
and that the actual water saturation is 0,50 at the start of the imbibition.
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Example F. Calculation of Imbibition ks, Values

Vilkcing Formation, Kinsella Reservoir

Given: leverett J va Sy curve, Fig. 18, page 29. .
Siy ® 0,36 3 Spf =050 3 Sp =1 3 A =2.1 (From Ex. E)

Solution:
(2 +3X)/A = 3.95 3 k], = (1-85)3%
(1)
5% %

SO SO (1 = SO) kz-w]'mb kx'ﬁkro].mb
0.50 0.761 0.219 0.0025 0.0083
0.hs 0,703 0.297 0.0083 0.039
0.4o 0.625 0.375 0.021 0.153
0.35 0.547 0.453 0.0kl 0.584
0.30 0.L69 0.531 0.082 2,Th
0.25 0.391 0,609 0.141 37.6
0.23 0.360 0.640 0.172 o

(1)Imbibition kpg values from Example E.
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NOMENCLATURE

c trapping constant characteristic of each porous media = 1/ (S:r)m -1
J Leverett J function

k absolute permeability

kg air permeability

ke effective permeability to gas

ko effective permeability to oil

k, effective permeability to water

kn effective permeability to a non-wetting phase

¥y effective permeability to a wetting phase

krg  relative permeability to gas, = kg / k

kro  relative permeability to oil, =k, /k

kyy  relative permeability to water =ky / k

ky)s:s effective wetting phase permeability at wetting phase saturation equal to 1.

kn).,:, o effect?.b:eonon-wetting phase permeability at wetting phase saturation
equal .

kw normalized wetting phase permeability = ky / kyl)sz =/
kpn normallized non-wetting phase permeability = kn / kp)si-o

154 relative permeability of non-wetting phase(s) at irreducible wetting
phase saturation = kn)s;, / k

A (lmnbg:)/ gore ?gg_j Adist:ibution index , exponent in equation
c -

Pe capillary entry pressure
Pe capillary pressure

¢ porosity
S satwration,
Sgr residual gas saturation

Sgp nfree® (mobile) gas saturation

Sgt trapped gas saturation

Spr residusl non-wetting phase saturation

nfreet (mobile) non-wetting phase saturation
trapped non-wetting phase saturation

So o1l saturation

Sor residual oil saturation

)

B-99



NOMENCLATURE (Continued)

) water saturation
Sw wetting phase saturation
Siw irreducible water or wetting phase saturation
Syl indtial water of wetting phase saturation
Sm - total liquid phases saturation at start of non-wetting phase relative
permeability curve. = 1 « Sen
Sen critical non-wetting phase saturation (usually gas)
s* effective saturation
SZ - Sg / (1 =5iw)
S:- =So/ (1 =584
Sg = (Sw=5Siw)/(1 - Siw)
S, = Sa/(1-5iy)
SaF = SoF / (1 = Sy )
4 (sigma) interfacial tension
Subscripts
F free or mobile

dr drainage cycle ( decreasing wetting phase saturation )
imb imbibition cycle ( increasing wetting phase saturation )
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13. Land, C.S, *® Comparison of Calculated with Experimental Imbibition
Relative Permesbity " Trans ATME ( 1971 ) 251, L19

1L, Private gommmiecsation., M.R.Monroy , Chevron 0il Field Research Co.
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Problem B-1 Calculation of Reservoir Capillary Pressures

( The purpose of this simple exercise is to illustrate the calculation
of capillary pressures and capillary pressure gradients in reservoirs, )

The Core Labs completion
coregraph at the left shows two
transition zones. The gas-oil

bt transition lies between 6816 and
=X - 6820 feet. The oil-water trans-
ition zone starts at about 6850
but its lower limit is somewhat

!
11

indefinitely defined,
R AN Y
e e Elevations at which P = 0
;...-.-Ja_ﬁa__n'- are always below the correspond-
""“':‘A:' A fe ing transition zone. For this
r S Iny problem we will consider that

Po = O at 6821 (gas-o0il) and at
”E.“.g_:___g ) 6862 (oi1l-water).

XA TR The depth of this formation
e e} and usual hydrostatic pressure
CERCEARYREST and temperature gradients indi-

XN ENTY cate that initial pressure/temp-
—— erature conditions at this
DA EA R location to be near 3000 psig
CEERNRNETT and 200 °F, At these conditions
LM TR E the reservoir fluid densities
EN-ENETN N should be close to
nt aiuse -l
- e fod connate water = 65,0 1b/ft3
NN WYY oil (gas sat) = 41,0 1b/ft3
&1 :‘“;,__E 51 gas-cap gas = 12,0 1b/f
R Use these values in your calcu-
o o o X lations.
'::ﬁ LI B )
LR RS NEY What!s Wanted
CHKIXHE E-XT
T o ST )
b2 ] oo L T (1) The numerical value of the
o R T capillary pressure at 6803.5 feet
i o S (core # L3).

(2) Rate of change of capillary

pressure with depth in the gas
e e o e T i iy ireing slection of el and cap and oil band sections of the

= reservoir,
Answers

(1) 13.27 psi
(2) 0.368 psi/ft ; 0,167 psi/ft.
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Development of a Leverett J Function - Water Saturation

Problem B-2
Curve from Laboratory Capillary Pressure Data.

( The primary purpose of converting laboratory measured Py -~ Sy data to
leverett J function =~ Sy data is to obtain a single relationship from which
water saturation in the reservoir can be estimated at any given elevation for
any given fluid pairs, and any given permeability-porosity combination. Basic-
ally, the J function represents a means of normalizing laboratory values into
relationships (plots ar equations) easily used in reservoir calculations. Putt-
ing capillary pressure data into J form is a means of detecting erroneous data
( yes, laboratories do turn out some ) ar non-conforming data.)

The following data are a portion of the capillary pressure - saturation
data measured on 14 cores from a sandstone reservoir in California. ( Only three
sets of data are given in order to shorten up the problem) The tests were run
by displacing filtered formation brine by kerosene ( a very poor practice), For
this problem we will assume that the interfacial temsion, & , was L2 d&ynes/cm
and that the oil-water contact angle, € , was 60° in the laboratory tests.

Assignment

Calculate values of the leverett J function corresponding to each of the
given saturation values. Plot log J vs Sy ( three~cycle semi-log paper ) and
construct what you believe to be the best average curve through the pointse.
Take care in making the plot as it will be used in several other problems.

Laboratory Data

kair @ Capillary Pressure - psi
Samole md g 0.5 1.0 1.5 2.0 3.0 5.0

Water Saturation, S, - %

5 115 19.0 89.5 60,0 k7.8 L3.1 38.1 35.1
28 581 20,0 68.0 4s.0 37.5 34.L 31.3 29.L
18 16L0 27.0 65,0 36,k 33.2 31.1 28.3 26.9

5.0 6.0 7.0 8.0

5 3341 31.8 30.9 30.0
28 28,2 27.6 27.4 27.4
18 25.7 2Lh.9 2k.2 23.8
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Use of leverett J Function and Reservoir
Problem B~3 Parameters to Calculate Average Water Saturation
of a Given Section of Reservoir.

{One important use of J = Sy correlations is in evaluating an average
water saturation of a given section of reservoir. This problem illustrates
the procedure involved.)

In this problem you are to calculate the best possible value for the
average connate water saturation, Syc , of the gas cap interval shown in
Core Labs! completion coregraph of Problem B-1, In doing this you are to
assume that the J function ~ Sy curve developed in Problem B-2 is applicable
to this reservoir., You may neglect in you calculations the three feet of
lost core shown in the interval 6813 - 6816. Reservoir fluid properties that
might be involved in your calculations are:

Pressure, psig = 3000 psig
Temperature, OF = 200
Water density, pef = 65,0
0il density, pcf = k1,0
Gas density, pef = 12.0
Comnate water

salinity, ppm. = 65,000

Answer

— |€8e3 v
Swn égza - 2807'0
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Problem B-l, Calculation of Field Average Water Saturation Using
Leverett J Function =~ S Correlations Plus Other
Reservoir Parameters.

( Calculation of the average water saturation of a reservoir as a whole
requires consideration of the reservoir structure as well as pertinate fluid
and rock properties., This problem tries to emphasize the effect of structure
and is, admittedly , somewhat ildealized, Actual situations are more complicated.)

Contour Acres Enclosed

0 1560
10 1130
20 813
30 534
20 285
go 145
0 71

s 70 26

a0 80 0

&0

20 e N\

0O / O/w oY 4 \

Section A-A.

The contour map and cross section shown above illustrates an oil colum
underlayen by water. For purposes of this problem, we will consider that the
oil-water contact is defined as the elevatién where capillary pressure is
equal to the entry pressure value of the rock-fluids system ~ not where Pc = O.
This is equivalent to saying that only water resides below the oil-water contact.
In calculating a value for Sy for this reservoir we will alsc assume that the
J = Sy curve developed in Problem B+2 is applicable and that other pertinent
reservoir properties are as follows ¢

Connate water density = 65 1b/£t3
Feservoir oil density = L5 1b/ft3
Average alr permeability = 100 md
Average porosity = 20¢%
Interfacial tension (0-w) = 35 dynes/cm
Oil-water contact angle = 300

Answer
9o 60

_8;'1]% -5 %=
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Problem B— §. Development of Drainage Relative Permeability Curves
from Capillery Pressure Data.

( Calculating expected oil producing rates, producing gas-oil ratios,
and percent recovery of gas and oil during depletion drive (solution drive)
operations requires drainage relative permeability « saturation data for the
reservoir gas and oil. Other appropriate data are needed slso. The purpose
of this problem is to show you how easy it is to develop a set of kpy &and kyg
values from capillary pressure data. )

For this problem we will assume that the oil zone section between
shales at 6828 and 6846 on the Core Labs! completion coregraph will be perforated

for production. We will also assume that the
Leverett J va Sy curve you developed from the
capillary pressure data in Problem B - 2
applies to this reservoir, Other information
developed from the coregraph and capillary
pressure data that may be pertinent to this
problenm are :

-~

1 The irreducible water saturation for
this rock is 21 %,

2, The &average water saturation of
the oil zone { 6828 -~ 6846 ) as calculated
corg-;o-—core with the J function curve is
29.

3. The geometric average air permeability
of the oil zone calculates to be 816 md.

Whatts Wanted

1. A plot of krg and ko ¥s Sy, and Sg as 41lustrated above. The plot
should be on x 11 inch cordinate paper and indications given of Siy and S
Also indicate on the plot the wglue of kr . You may assume any value desire
( within reason ) for a critical gas saturation, but indicate its value on the
plo‘b.

o Arg= Ak

2. Calculate the effective permeability of gas, oil, and water in the
zone when 15 ¢ gas saturation has developed as a result of production.

Answers

1« A =0,77
2. kg =12.63 ko =152 ; ky = 0.0033 nd
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